A Link Between Tissue Kallikrein and the KLK-Related Peptidases
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ablation of Kallikrein 7 (KLK7) in Adipose Tissue Ameliorates
Cell. Mol. Life Sci. DOI 10.1007/s00018-017-2658-y Cellular and Molecular LifeSciences ORIGINAL ARTICLE Ablation of kallikrein 7 (KLK7) in adipose tissue ameliorates metabolic consequences of high fat diet‑induced obesity by counteracting adipose tissue infammation in vivo Konstanze Zieger1 · Juliane Weiner1,2 · Anne Kunath2,3 · Martin Gericke4 · Kerstin Krause2 · Matthias Kern3 · Michael Stumvoll2 · Nora Klöting3,5 · Matthias Blüher2,5 · John T. Heiker1,2,5 Received: 21 April 2017 / Revised: 4 September 2017 / Accepted: 13 September 2017 © The Author(s) 2017. This article is an open access publication Abstract Vaspin is an adipokine which improves glu- cytokine expression was signifcantly reduced in combina- cose metabolism and insulin sensitivity in obesity. Kal- tion with an increased percentage of alternatively activated likrein 7 (KLK7) is the frst known protease target inhib- (anti-infammatory) M2 macrophages in epigonadal adipose / ited by vaspin and a potential target for the treatment of tissue of ATKlk7− −. Taken together, by attenuating adipose metabolic disorders. Here, we tested the hypothesis that tissue infammation, altering adipokine secretion and epigo- inhibition of KLK7 in adipose tissue may benefcially afect nadal adipose tissue expansion, Klk7 defciency in adipose glucose metabolism and adipose tissue function. Therefore, tissue partially ameliorates the adverse efects of HFD- we have inactivated the Klk7 gene in adipose tissue using induced obesity. In summary, we provide frst evidence for conditional gene-targeting strategies in mice. Klk7-defcient a previously unrecognized role of KLK7 in adipose tissue / mice (ATKlk7− −) exhibited less weight gain, predominant with efects on whole body energy expenditure and insulin expansion of subcutaneous adipose tissue and improved sensitivity. -
Newly Developed Serine Protease Inhibitors Decrease Visceral Hypersensitivity in a Post-Inflammatory Rat Model for Irritable Bowel Syndrome
This item is the archived peer-reviewed author-version of: Newly developed serine protease inhibitors decrease visceral hypersensitivity in a post-inflammatory rat model for irritable bowel syndrome Reference: Ceuleers Hannah, Hanning Nikita, Heirbaut Leen, Van Remoortel Samuel, Joossens Jurgen, van der Veken Pieter, Francque Sven, De Bruyn Michelle, Lambeir Anne-Marie, de Man Joris, ....- New ly developed serine protease inhibitors decrease visceral hypersensitivity in a post-inflammatory rat model for irritable bow el syndrome British journal of pharmacology - ISSN 0007-1188 - 175:17(2018), p. 3516-3533 Full text (Publisher's DOI): https://doi.org/10.1111/BPH.14396 To cite this reference: https://hdl.handle.net/10067/1530780151162165141 Institutional repository IRUA NEWLY DEVELOPED SERINE PROTEASE INHIBITORS DECREASE VISCERAL HYPERSENSITIVITY IN A POST-INFLAMMATORY RAT MODEL FOR IRRITABLE BOWEL SYNDROME. Running title: Serine proteases in visceral hypersensitivity Hannah Ceuleers, Nikita Hanning, Jelena Heirbaut, Samuel Van Remoortel, Michelle De bruyn, Jurgen Joossens, Pieter van der Veken, Anne-Marie Lambeir, Sven M Francque, Joris G De Man, Jean-Pierre Timmermans, Koen Augustyns, Ingrid De Meester, Benedicte Y De Winter Hannah Ceuleers, Nikita Hanning, Jelena Heirbaut, Sven Francque, Joris G De Man, Benedicte Y De Winter, Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium. Samuel Van Remoortel, Jean-Pierre Timmermans, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium. Jurgen Joossens, Pieter van der Veken, Koen Augustyns, Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium. Sven Francque, Antwerp University Hospital, Antwerp, Belgium. Michelle De bruyn, Anne-Marie Lambeir, Ingrid De Meester, Laboratory of Medical Biochemistry, University of Antwerp, Antwerp, Belgium. -
Functional Characterization of BC039389-GATM and KLK4
Pflueger et al. BMC Genomics (2015) 16:247 DOI 10.1186/s12864-015-1446-z RESEARCH ARTICLE Open Access Functional characterization of BC039389-GATM and KLK4-KRSP1 chimeric read-through transcripts which are up-regulated in renal cell cancer Dorothee Pflueger1,2, Christiane Mittmann1, Silvia Dehler3, Mark A Rubin4,5, Holger Moch1,2 and Peter Schraml1* Abstract Background: Chimeric read-through RNAs are transcripts originating from two directly adjacent genes (<10 kb) on the same DNA strand. Although they are found in next-generation whole transcriptome sequencing (RNA-Seq) data on a regular basis, investigating them further has usually been refrained from. Therefore, their expression patterns or functions in general, and in oncogenesis in particular, are poorly understood. Results: We used paired-end RNA-Seq and a specifically designed computational data analysis pipeline (FusionSeq) to nominate read-through events in a small discovery set of renal cell carcinomas (RCC) and confirmed them in a larger validation cohort. 324 read-through events were called overall; 22/27 (81%) selected nominees passed validation with conventional PCR and were sequenced at the junction region. We frequently identified various isoforms of a given read-through event. 2/22 read-throughs were up-regulated: BC039389-GATM was higher expressed in RCC compared to benign adjacent kidney; KLK4-KRSP1 was expressed in 46/169 (27%) RCCs, but rarely in normal tissue. KLK4-KRSP1 expression was associated with worse clinical outcome in the patient cohort. In cell lines, both read-throughs influenced molecular mechanisms (i.e. target gene expression or migration/invasion) in a way that counteracted the effect of the respective parent transcript GATM or KLK4. -
New Insights Into the Functional Mechanisms and Clinical Applications of the Kallikrein-Related Peptidase Family
MOLECULAR ONCOLOGY 1 (2007) 269–287 available at www.sciencedirect.com www.elsevier.com/locate/molonc Review New insights into the functional mechanisms and clinical applications of the kallikrein-related peptidase family Nashmil Emamia,b, Eleftherios P. Diamandisa,b,* aDepartment of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5G 1L5, Canada bDepartment of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada ABSTRACT ARTICLE INFO Article history: The Kallikrein-related peptidase (KLK) family consists of fifteen conserved serine proteases Received 13 July 2007 that form the largest contiguous cluster of proteases in the human genome. While primar- Received in revised form ily recognized for their clinical utilities as potential disease biomarkers, new compelling 4 September 2007 evidence suggests that this family plays a significant role in various physiological pro- Accepted 7 September 2007 cesses, including skin desquamation, semen liquefaction, neural plasticity, and body fluid Available online 15 September 2007 homeostasis. KLK activation is believed to be mediated through highly organized proteo- lytic cascades, regulated through a series of feedback loops, inhibitors, auto-degradation Keywords: and internal cleavages. Gene expression is mainly hormone-dependent, even though tran- Kallikrein-related peptidases scriptional epigenetic regulation has also been reported. These regulatory mechanisms are PSA integrated with various signaling pathways to mediate multiple functions. Dysregulation of Proteolytic cascades these pathways has been implicated in a large number of neoplastic and non-neoplastic Skin desquamation pathological conditions. This review highlights our current knowledge of structural/ * Corresponding author. Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada. -
Analysis of the Indacaterol-Regulated Transcriptome in Human Airway
Supplemental material to this article can be found at: http://jpet.aspetjournals.org/content/suppl/2018/04/13/jpet.118.249292.DC1 1521-0103/366/1/220–236$35.00 https://doi.org/10.1124/jpet.118.249292 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 366:220–236, July 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Analysis of the Indacaterol-Regulated Transcriptome in Human Airway Epithelial Cells Implicates Gene Expression Changes in the s Adverse and Therapeutic Effects of b2-Adrenoceptor Agonists Dong Yan, Omar Hamed, Taruna Joshi,1 Mahmoud M. Mostafa, Kyla C. Jamieson, Radhika Joshi, Robert Newton, and Mark A. Giembycz Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Received March 22, 2018; accepted April 11, 2018 Downloaded from ABSTRACT The contribution of gene expression changes to the adverse and activity, and positive regulation of neutrophil chemotaxis. The therapeutic effects of b2-adrenoceptor agonists in asthma was general enriched GO term extracellular space was also associ- investigated using human airway epithelial cells as a therapeu- ated with indacaterol-induced genes, and many of those, in- tically relevant target. Operational model-fitting established that cluding CRISPLD2, DMBT1, GAS1, and SOCS3, have putative jpet.aspetjournals.org the long-acting b2-adrenoceptor agonists (LABA) indacaterol, anti-inflammatory, antibacterial, and/or antiviral activity. Numer- salmeterol, formoterol, and picumeterol were full agonists on ous indacaterol-regulated genes were also induced or repressed BEAS-2B cells transfected with a cAMP-response element in BEAS-2B cells and human primary bronchial epithelial cells by reporter but differed in efficacy (indacaterol $ formoterol . -
Table of Contents
Table of Contents Preface V List of contributing authors VII Table of Contents XI Introduction to Volume 1: Kallikrein-related Peptidases. Characterization, Regulation, and Interactions Within the Protease Web 1 Bibliography 3 1 Genomic Structure of the KLK Locus 5 1.1 Introduction 5 1.2 Kallikreins in rodents 6 1.2.1 The mouse kallikrein gene family 7 1.2.2 The rat kallikrein gene family 8 1.3 Characterization and sequence analysis of the human KLK gene locus 9 1.3.1 Locus overview 9 1.3.2 Repeat elements and pleomorphism 11 1.4 Structural features of the human KLK genes and proteins 12 1.4.1 Common structural features 12 1.5 Sequence variations of human KLK genes 13 1.6 Regulation of KLK activity 14 1.6.1 At the mRNA level 14 1.6.2 Locus control of KLK expression 15 1.6.3 Epigenetic regulation of KLK gene expression 17 1.7 Isoforms and splice variants of human KLKs 18 1.8 Evolution of KLKs 21 Bibliography 22 2 Single Nucleotide Polymorphisms in the Human KLK Locus and Their Implication in Various Diseases 31 2.1 Introduction 31 2.2 KLK SNPs – data-mining from SNPdb and 1000 Genomes 32 2.3 Functional annotations using web-based prediction tools 34 2.4 Experimentally validated functional KLK SNPs 35 2.5 KLK SNP haplotypes and tagging 36 2.6 Malignant and non-malignant diseases and association with KLK SNPs 38 2.6.1 Association studies on high-risk variants in KLK genes 39 XII Table of Contents 2.6.2 Association studies on low-risk variants in KLK genes 39 2.7 Conclusions 71 Bibliography 71 3 Evolution of Kallikrein-related Peptidases 79 -
Aberrant Human Tissue Kallikrein Levels in the Stratum Corneum and Serum of Patients with Psoriasis: Dependence on Phenotype, Severity and Therapy N
CLINICAL AND LABORATORY INVESTIGATIONS DOI 10.1111/j.1365-2133.2006.07743.x Aberrant human tissue kallikrein levels in the stratum corneum and serum of patients with psoriasis: dependence on phenotype, severity and therapy N. Komatsu,* à K. Saijoh,§ C. Kuk,* F. Shirasaki,à K. Takeharaà and E.P. Diamandis* *Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5G 1L5, Canada àDepartment of Dermatology and §Department of Hygiene, Graduate School of Medical Science, School of Medicine, Kanazawa University, Kanazawa, Japan Summary Correspondence Background Human tissue kallikreins (KLKs) are a family of 15 trypsin-like or Eleftherios P. Diamandis. chymotrypsin-like secreted serine proteases (KLK1–KLK15). Multiple KLKs have E-mail: [email protected] been quantitatively identified in normal stratum corneum (SC) and sweat as can- didate desquamation-related proteases. Accepted for publication 7 November 2006 Objectives To quantify KLK5, KLK6, KLK7, KLK8, KLK10, KLK11, KLK13 and KLK14 in the SC and serum of patients with psoriasis, and their variation Key words between lesional and nonlesional areas and with phenotype, therapy and severity. diagnostic marker, human kallikreins, psoriasis, The overall SC serine protease activities were also measured. serine proteases, stratum corneum, therapy Methods Enzyme-linked immunosorbent assays and enzymatic assays were used. Conflicts of interest Results The lesional SC of psoriasis generally contained significantly higher levels None declared. of all KLKs. KLK6, KLK10 and KLK13 levels were significantly elevated even in the nonlesional SC. The overall trypsin-like, plasmin-like and furin-like activities were significantly elevated in the lesional SC. -
Human Tissue Kallikrein Expression in the Stratum Corneum and Serum of Atopic Dermatitis Patients
DOI:10.1111/j.1600-0625.2007.00562.x www.blackwellpublishing.com/EXD Original Article Human tissue kallikrein expression in the stratum corneum and serum of atopic dermatitis patients Nahoko Komatsu1,2,3,4, Kiyofumi Saijoh4, Cynthia Kuk1, Amber C. Liu1, Saba Khan1, Fumiaki Shirasaki3, Kazuhiko Takehara3 and Eleftherios P. Diamandis1,2 1Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada; 2Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; 3Department of Dermatology, Graduate School of Medical Science, School of Medicine, Kanazawa University, Kanazawa, Japan; 4Department of Hygiene, Graduate School of Medical Science, School of Medicine, Kanazawa University, Kanazawa, Japan Correspondence: Eleftherios P. Diamandis, MD, PhD, FRCPC, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada, Tel.: +1 416 586 8443, Fax: +1 416 586 8628, e-mail: [email protected] Accepted for publication 9 March 2007 Abstract: Human tissue kallikreins are a family of 15 trypsin- or differ significantly. In the serum of AD patients, KLK8 was chymotrypsin-like secreted serine proteases (KLK1–KLK15). Many significantly elevated and KLK5 and KLK11 were significantly KLKs have been identified in normal stratum corneum (SC) and decreased. However, their serum levels were not modified by sweat, and are candidate desquamation-related proteases. We corticosteroid topical agents. The alterations of KLK levels in the report quantification by enzyme-linked immunosorbent assay SC of AD were more pronounced than those in the serum. KLK7 (ELISA) of KLK5, KLK6, KLK7, KLK8, KLK10, KLK11, KLK13 and in the serum was significantly correlated with eosinophil counts in KLK14 in the SC and serum of atopic dermatitis (AD) patients by the blood of AD patients, while KLK5, KLK8 and KLK11 were ELISA, and examine their variation with clinical phenotype, significantly correlated with LDH in the serum. -
1 No. Affymetrix ID Gene Symbol Genedescription Gotermsbp Q Value 1. 209351 at KRT14 Keratin 14 Structural Constituent of Cyto
1 Affymetrix Gene Q No. GeneDescription GOTermsBP ID Symbol value structural constituent of cytoskeleton, intermediate 1. 209351_at KRT14 keratin 14 filament, epidermis development <0.01 biological process unknown, S100 calcium binding calcium ion binding, cellular 2. 204268_at S100A2 protein A2 component unknown <0.01 regulation of progression through cell cycle, extracellular space, cytoplasm, cell proliferation, protein kinase C inhibitor activity, protein domain specific 3. 33323_r_at SFN stratifin/14-3-3σ binding <0.01 regulation of progression through cell cycle, extracellular space, cytoplasm, cell proliferation, protein kinase C inhibitor activity, protein domain specific 4. 33322_i_at SFN stratifin/14-3-3σ binding <0.01 structural constituent of cytoskeleton, intermediate 5. 201820_at KRT5 keratin 5 filament, epidermis development <0.01 structural constituent of cytoskeleton, intermediate 6. 209125_at KRT6A keratin 6A filament, ectoderm development <0.01 regulation of progression through cell cycle, extracellular space, cytoplasm, cell proliferation, protein kinase C inhibitor activity, protein domain specific 7. 209260_at SFN stratifin/14-3-3σ binding <0.01 structural constituent of cytoskeleton, intermediate 8. 213680_at KRT6B keratin 6B filament, ectoderm development <0.01 receptor activity, cytosol, integral to plasma membrane, cell surface receptor linked signal transduction, sensory perception, tumor-associated calcium visual perception, cell 9. 202286_s_at TACSTD2 signal transducer 2 proliferation, membrane <0.01 structural constituent of cytoskeleton, cytoskeleton, intermediate filament, cell-cell adherens junction, epidermis 10. 200606_at DSP desmoplakin development <0.01 lectin, galactoside- sugar binding, extracellular binding, soluble, 7 space, nucleus, apoptosis, 11. 206400_at LGALS7 (galectin 7) heterophilic cell adhesion <0.01 2 S100 calcium binding calcium ion binding, epidermis 12. 205916_at S100A7 protein A7 (psoriasin 1) development <0.01 S100 calcium binding protein A8 (calgranulin calcium ion binding, extracellular 13. -
Biochemical Characterization of Human Kallikrein 8 and Its Possible Involvement in the Degradation of Extracellular Matrix Proteins
Biochemical characterization of human kallikrein 8 and its possible involvement in the degradation of extracellular Title matrix proteins Author(s) Rajapakse, Sanath; Ogiwara, Katsueki; Takano, Naoharu; Moriyama, Akihiko; Takahashi, Takayuki Febs Letters, 579(30), 6879-6884 Citation https://doi.org/10.1016/j.febslet.2005.11.039 Issue Date 2005-12-01 Doc URL http://hdl.handle.net/2115/985 Type article (author version) File Information FL579-30.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Biochemical characterization of human kallikrein 8 and its possible involvement in the degradation of extracellular matrix proteins Sanath Rajapaksea, Katsueki Ogiwaraa, Naoharu Takanoa, Akihiko Moriyamab, Takayuki Takahashia,* aDivision of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, 060-0810 Japan bDivision of Biomolecular Science, Institute of Natural Sciences, Nagoya City University, Nagoya 467-8501, Japan *Correspondence: Takayuki Takahashi, Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan Tel: 81-11-706-2748 Fax: 81-11-706-4851 E-mail: [email protected] 1 Abstract Human kallikrein 8 (KLK8) is a member of the human kallikrein gene family of serine proteases, and its protein, hK8, has recently been suggested to serve as a new ovarian cancer marker. To gain insights into the physiological role of hK8, the active recombinant enzyme was obtained in a pure state for biochemical and enzymatic characterizations. hK8 had trypsin-like activity with a strong preference for Arg over Lys in the P1 position, and its activity was inhibited by typical serine protease inhibitors. The protease degraded casein, fibronectin, gelatin, collagen type IV, fibrinogen, and high-molecular-weight kininogen. -
Development and Validation of a Protein-Based Risk Score for Cardiovascular Outcomes Among Patients with Stable Coronary Heart Disease
Supplementary Online Content Ganz P, Heidecker B, Hveem K, et al. Development and validation of a protein-based risk score for cardiovascular outcomes among patients with stable coronary heart disease. JAMA. doi: 10.1001/jama.2016.5951 eTable 1. List of 1130 Proteins Measured by Somalogic’s Modified Aptamer-Based Proteomic Assay eTable 2. Coefficients for Weibull Recalibration Model Applied to 9-Protein Model eFigure 1. Median Protein Levels in Derivation and Validation Cohort eTable 3. Coefficients for the Recalibration Model Applied to Refit Framingham eFigure 2. Calibration Plots for the Refit Framingham Model eTable 4. List of 200 Proteins Associated With the Risk of MI, Stroke, Heart Failure, and Death eFigure 3. Hazard Ratios of Lasso Selected Proteins for Primary End Point of MI, Stroke, Heart Failure, and Death eFigure 4. 9-Protein Prognostic Model Hazard Ratios Adjusted for Framingham Variables eFigure 5. 9-Protein Risk Scores by Event Type This supplementary material has been provided by the authors to give readers additional information about their work. Downloaded From: https://jamanetwork.com/ on 10/02/2021 Supplemental Material Table of Contents 1 Study Design and Data Processing ......................................................................................................... 3 2 Table of 1130 Proteins Measured .......................................................................................................... 4 3 Variable Selection and Statistical Modeling ........................................................................................ -
Salivary Protein Panel to Diagnose Systolic Heart Failure
biomolecules Article Salivary Protein Panel to Diagnose Systolic Heart Failure Xi Zhang 1 , Daniel Broszczak 2, Karam Kostner 3, Kristyan B Guppy-Coles 4, John J Atherton 4 and Chamindie Punyadeera 1,* 1 Saliva and Liquid Biopsy Translational Research Team, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland 4059, Australia; [email protected] 2 School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland 4059, Australia; [email protected] 3 Department of Cardiology, Mater Adult Hospital, Brisbane, Queensland 4101, Australia; [email protected] 4 Cardiology Department, Royal Brisbane and Women’s Hospital and University of Queensland School of Medicine, Brisbane, Queensland 4029, Australia; [email protected] (K.B.G.-C.); [email protected] (J.J.A.) * Correspondence: [email protected]; Tel.: +61-7-3138-0830 Received: 22 October 2019; Accepted: 19 November 2019; Published: 22 November 2019 Abstract: Screening for systolic heart failure (SHF) has been problematic. Heart failure management guidelines suggest screening for structural heart disease and SHF prevention strategies should be a top priority. We developed a multi-protein biomarker panel using saliva as a diagnostic medium to discriminate SHF patients and healthy controls. We collected saliva samples from healthy controls (n = 88) and from SHF patients (n = 100). We developed enzyme linked immunosorbent assays to quantify three specific proteins/peptide (Kallikrein-1, Protein S100-A7, and Cathelicidin antimicrobial peptide) in saliva samples. The analytical and clinical performances and predictive value of the proteins were evaluated.