1 L Aboratory- 9 Directed Evelopment°$

Total Page:16

File Type:pdf, Size:1020Kb

1 L Aboratory- 9 Directed Evelopment°$ LA-13278-PR Progress Report 1 L ABORATORY- 9 DIRECTED EVELOPMENT°$ Los Alamos NATIONAL LABORATORY Los Alamos Laboratory is operated the Unive States Department of Energy unde ontract W- ABSTRACT This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects' princi- pal investigators. Projects are grouped by their LDRD component: Indi- vidual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geo- science, space science, and astrophysics, (8) nuclear and particle physics, and (9) biosciences. FRONT COVER The background graphic is an atomic force microscope image of the slip bonds on a stressed iron- silicon-boron magnetic ribbon (M. Haw ley, "Scanning Probe Microscopy Competency Develop- ment"). The superimposed upper- left image shows the trajectory of a single deuterium-tritium fusion alpha particle through a magne- tized target plasma (R. Kirkpatrick, "Generation and Compression of a Target Plasma for Magnetized Target Fusion"). To the right are two scattered-light images showing the effect of a low-density plasma on a high-intensity laser probe (J. Cobble, "High-Intensity Matter Interaction Physics"). The equa- tion describes the transport of vorticity in turbulent fluid flow in two-dimensional Cartesian space. UC-900 Issued: May 1997 1 L ABORATORY- 9 D IRECTED 9 R ESEARCH AND 6 D EVELOPMENT '••>•'-s€;*" ,>, '<i '" •. FY1996 PROGRESS REPORT COMPILED BY JOHN VIGIL AND JUDY PRONO DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsi- bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Refer- ence herein to any specific commercial product, process, or service by trade name, trademark, MASTER manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom- mendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED Los Alamos Los Alamos, New Mexico 87545 Published by Los Alamos National Laboratory Laboratory Director: Sig Hecker Director for Science and Technology Base Programs: Al Sattelberger Office Leader for Laboratory-Directed Research and Development: Ed Heighway Scientific Editor: John Vigil LDRD Office Team: Shelly Cross, Jo McCarthy, and Leonard Salazar Managing Editor: Judy Prono (CIC-I) Editors: Deborah Bacon, lleana Buican, Marty DeLanoy, Anne Garnett, Jennifer Graham, Sheila Molony, Kathleen Park, Amy Reeves, and James Russell (CIC-I) Editorial Support: Eileen Patterson (CIC-I) Cover Design:Susan Carlson (CIC-I) Layout, Composition,and Production: Wendy Burditt (CIC-I) Printing Coordination: CIC-I 7 Printing Team The previous reports in this unclassified series are LA-12680-PR, LA-12880-PR, and LA-131 10-PR. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither The Regents of the University of California, the United States Government nor any agency thereof, nor any of their employ- ees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, complete- ness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by The Regents of the University of California, the United States Government, or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of The Regents of the University of California, the United States Government, or any agency thereof. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness. iv Los Alamos FY1996 LDRD Progress Report DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document* Contents LDRD Program Overview—FY 1996 Individual Projects Materials Science 9 Origin of Radiation Damage in Potassium Titanyl 16 Innovative Composites through Reinforcement Phosphate Morphology Design—A Bone-Shaped Short-Fiber Composite 10 Development of a Fundamental Understanding of Chemical Bonding and Electronic Structure in 18 New Deposition Processes for the Growth of Oxide Spinel Compounds and Nitride Thin Films 11 Phase Stability of Transition Metals and Alloys 18 Texture Characterization for HE Design 12 Theoretical and Experimental Investigation on the 19 Interfacial Charge Transport in Organic Electronic Low-Temperature Properties of the NbCr2 Laves Materials: The Key to a New Electronics Phase Technology 14 Nanostructured Materials: Growth and Patterning 19 Thermodynamic and Electrodynamic Studies of Using Hyperthermal Materials Chemistry Unusual Narrow-Gap Semiconductors 14 Inorganic-Organic Composite Nanoengineered Films 20 A Molecular Architectural Approach to Novel Using Self-Assembled Monolayers for Directed Electrooptical Materials Zeolite Film Growth 21 Characterization and Manipulation of Broken- 15 Rigid Molecular Foams Symmetry Materials at Phase Boundaries 15 Materials Research for Optical Refrigeration Engineering and Base Technologies 23 Development of New and Efficient Hard-Rock 25 The Development of Fullerene-Based Hydrogen Mining Methods Using Pulsed-Laser Excavation Storage Systems 23 Virtual Reality and Telepresence Control of Robots 25 Optical Imaging through Turbid Media Using a Used in Hazardous Environments Degenerate, Four-Wave, Mixing Correlation Time Gate 24 Nuclear Magnetic Resonance Imaging with Hyperpolarized Noble Gases 26 High-Average-Power, Intense Ion Beam for Materials Modification and Other Applications Contents Individual Projects (cont.) Engineering and Base Technologies (cont.) 27 Multichip Module Technology Development 32 Application of Intense Surface Discharge VUV Light Sources to Photoresist Ashing in 27 Magnetic Resonance Force Microscope Semiconductor Manufacturing Development 33 All-Solid-State Four-Color Laser 28 Femtosecond Scanning Tunneling Microscope 34 Material Processing for Self-Assembling Machine 29 Exploration of Technologies for Improving Civil Systems Security 34 Diode Laser Development for Quantum 30 Fiber-Optic Communications Using Solitons Computation (FOCUS) 35 Designing a Micromechanical Transistor 30 New Applications for Zeeman Interferometry 35 High-Sensitivity, Solid-State Carbon Monoxide 31 A Comprehensive Monitoring System for Damage Sensor Development Identification and Location in Large Structural and Mechanical Systems 35 Acoustic Resonance Spectroscopy 31 Quantum Cryptography for Secure 36 Liquid-Metal, Focused-Ion-Beam Etch Communications to Low-Earth-Orbit Satellites Sensitization and Related Data Transmission Processes 36 Experimental Validation of Superconducting Quantum Interference Device Sensors Plasmas, Fluids, and Particle Beams 37 High-Power, High-Frequency, Annular-Beam Free- 41 Turbulence and Turbulence Spectra in Complex Electron Maser Fluid Flows 38 Determination of Optical Field-Ionization 41 A Water-Filled, Radio-Frequency Accelerating Dynamics in Plasmas through Direct Measurement Cavity of the Optical-Phase Change 42 A Target Plasma Experiment for Magnetized Target 39 Delta-f and Hydrodynamic Methods for Fusion Semiconductor Transport 43 Developing Electron-Beam Bunching Technology 40 A Compact Compton-Backscattering X-Ray at Subpicosecond Pulse Lengths for Improving Source for Mammography and Coronary Photon Sources Angiography 44 High-Intensity Laser-Matter Interaction Physics 40 Equation of State of Dense Plasmas vi Los Alamos FY1996 LDRD Progress Report Individual Projects (cont.) Chemistry 45 New Fullerene-Based Mixed Materials: Synthesis 54 Binding of Hydrocarbons and Other Extremely and Characterization Weak Ligands to Transition-Metal Complexes that Coordinate Hydrogen: Investigation of Cis- 46 Uses of Novel Selenium-Containing Chiral Interactions and Delocalized Bonding Involving Derivatizing Agents: Potential Catalysis for the Sigma Bonds Chiral Oxidation of Simple Alkenes and Chiral- Promoted Aldol Reactions 55 Asymmetric Catalysis in Organic Synthesis 47 Metal-Ligand "Multiple" Bonding: Revelations in 56 Temperatures and Vibrational Frequencies of the Electronic Structure of Complexes of High- Liquid N2/O2 and CO/O2 Mixtures Shock- Valent f-Elements Compressed to 10 GPa and 2000 K 48 Chemistry and Catalysis in Supercritical
Recommended publications
  • High Energy Density Physics Experiments at Los Alamos
    High Energy Density Dante-2 SXI Physics Experiments at Los Alamos FFLEX FABS & Hans Herrmann NBI FABS & 36B NBI 31B Dante-1 Plasma Physics Group (P-24) SXI In this photo, Norris Bradbury, Robert Oppenheimer, Richard Feynman, and Enrico Fermi attend an early Los Alamos weapons colloquium. OMEGA LaserU UserN C L A S SGroup I F I E D Rochester, NY April 29, 2011 Operated by Los Alamos National Security, LLC for NNSA LA-UR 11-02522 Los Alamos has a strong program in High Energy Density Physics aimed at National Applications as well as Basic Science Inertial Confinement Fusion (ICF) Radiation Hydrodynamics Hydrodynamics with Plasmas Material Dynamics Energetic Ion generation Dense Plasma Properties X-ray and Nuclear Diagnostic Development Petaflop performance to Exascale computing Magnetic Reconnection Magnetized Target Fusion High-Explosive Pulsed Power U N C L A S S I F I E D Operated by Los Alamos National Security, LLC for NNSA LANL is a multidisciplinary NNSA Lab. overseen by Los Alamos National Security (LANS) LLC. People 11,782 total employees: LANS, LLC 9,665; SOC Los Alamos (Guard Force) 477; Contractors 524; Students 1,116 Place Located 35 miles northwest of Santa Fe, New Mexico, on 36 square miles of DOE-owned property. > 2,000 individual facilities, 47 technical areas with 8 million square feet under roof, $5.9 B replacement value. Operating costs FY 2010: ~ $2 billion 51% NNSA weapons programs 8% Nonproliferation programs 6% Safeguards and Security 11% Environmental Management 4% DOE Office of Science 5% Energy and other programs 15% Work for Others Workforce Demographics (LANS & students only) 42% of employees live in Los Alamos, the rest commute from Santa Fe, Española, Taos, and Albuquerque.
    [Show full text]
  • The National Ignition Facility Diagnostic Set at the Completion of the National Ignition Campaign, September 2012
    Fusion Science and Technology ISSN: 1536-1055 (Print) 1943-7641 (Online) Journal homepage: http://www.tandfonline.com/loi/ufst20 The National Ignition Facility Diagnostic Set at the Completion of the National Ignition Campaign, September 2012 J. D. Kilkenny, P. M. Bell, D. K. Bradley, D. L. Bleuel, J. A. Caggiano, E. L. Dewald, W. W. Hsing, D. H. Kalantar, R. L. Kauffman, D. J. Larson, J. D. Moody, D. H. Schneider, M. B. Schneider, D. A. Shaughnessy, R. T. Shelton, W. Stoeffl, K. Widmann, C. B. Yeamans, S. H. Batha, G. P. Grim, H. W. Herrmann, F. E. Merrill, R. J. Leeper, J. A. Oertel, T. C. Sangster, D. H. Edgell, M. Hohenberger, V. Yu. Glebov, S. P. Regan, J. A. Frenje, M. Gatu-Johnson, R. D. Petrasso, H. G. Rinderknecht, A. B. Zylstra, G. W. Cooper & C. Ruizf To cite this article: J. D. Kilkenny, P. M. Bell, D. K. Bradley, D. L. Bleuel, J. A. Caggiano, E. L. Dewald, W. W. Hsing, D. H. Kalantar, R. L. Kauffman, D. J. Larson, J. D. Moody, D. H. Schneider, M. B. Schneider, D. A. Shaughnessy, R. T. Shelton, W. Stoeffl, K. Widmann, C. B. Yeamans, S. H. Batha, G. P. Grim, H. W. Herrmann, F. E. Merrill, R. J. Leeper, J. A. Oertel, T. C. Sangster, D. H. Edgell, M. Hohenberger, V. Yu. Glebov, S. P. Regan, J. A. Frenje, M. Gatu-Johnson, R. D. Petrasso, H. G. Rinderknecht, A. B. Zylstra, G. W. Cooper & C. Ruizf (2016) The National Ignition Facility Diagnostic Set at the Completion of the National Ignition Campaign, September 2012, Fusion Science and Technology, 69:1, 420-451, DOI: 10.13182/FST15-173 To link to this article: http://dx.doi.org/10.13182/FST15-173 Published online: 23 Mar 2017.
    [Show full text]
  • Plasma Interactions
    Home Search Collections Journals About Contact us My IOPscience New developments in energy transfer and transport studies in relativistic laser–plasma interactions This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2010 Plasma Phys. Control. Fusion 52 124046 (http://iopscience.iop.org/0741-3335/52/12/124046) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 130.183.90.175 The article was downloaded on 04/01/2011 at 10:43 Please note that terms and conditions apply. IOP PUBLISHING PLASMA PHYSICS AND CONTROLLED FUSION Plasma Phys. Control. Fusion 52 (2010) 124046 (7pp) doi:10.1088/0741-3335/52/12/124046 New developments in energy transfer and transport studies in relativistic laser–plasma interactions P A Norreys1,2,JSGreen1, K L Lancaster1,APLRobinson1, R H H Scott1,2, F Perez3, H-P Schlenvoight3, S Baton3, S Hulin4, B Vauzour4, J J Santos4, D J Adams5, K Markey5, B Ramakrishna5, M Zepf5, M N Quinn6,XHYuan6, P McKenna6, J Schreiber2,7, J R Davies8, D P Higginson9,10, F N Beg9, C Chen10,TMa10 and P Patel10 1 Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxon OX11 0QX, UK 2 Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BZ, UK 3 Laboratoire pour l’Utilisation des Lasers Intenses, Ecole´ Polytechnique, route de Saclay, 91128 Palaiseau Cedex, France 4 Centre Lasers Intenses et Applications, Universite´ Bordeaux 1-CNRS-CEA, Talence, France 5 School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN, UK 6 Departmnet of Physics, University of Strathclyde, John Anderson Building, 107 Rottenrow, Glasgow G4 0NG, UK 7 Max-Planck-Institut fur¨ Quantenoptik, Hans-Kopfermann-Str.
    [Show full text]
  • B O O K O F a B Stra C Ts
    Book of Abstracts Program Tuesday, June 25 11:00-13:00 Registration 12:00-13:50 Lunch 13:50-14:00 Welcome UHI 1 Chair : L. Yin 14:00-14:30 A. Kemp Kinetic particle-in-cell modeling of Petawatt laser plasma interaction relevant to HEDLP experiments 14:30-14:50 R. Shah Dynamics and Application of Relativistic Transparency 14:50-15:10 C. Ridgers QED effects at UI laser intensities 15:10-15:30 L. Cao Efficient Laser Absorption, Enhanced Electron Yields and Collimated Fast Electrons by the Nanolayered Structured Targets 15:30-16:00 Coffee break Laboratory Astrophysics 1 Chair : P. Drake 16:00-16:30 J. Bailey Laboratory opacity measurements at conditions approaching stellar interiors 16:30-16:50 A. Pak Radiative shock waves produced from implosion experiments at the National Ignition Facility 16:50-17:10 B. Albertazzi Modeling in the Laboratory Magnetized Astrophysical Jets: Simulations and Experiments 17:10-17:30 C. Kuranz Magnetized Plasma Flow Experiments at High-Energy-Density Facilities Wednesday, June 26 ( Joint with WDM ) ICF 1 Chair : A. Casner 09:00-09:40 N. Landen Status of the ignition campaign at the NIF 09:40-10:00 G. Huser Equation of state and mean ionization of Ge-doped CH ablator materials 10:00-10:20 B. Remington Hydrodynamic instabilities and mix in the ignition campaign on NIF: predictions, observations, and a path forward 10:20-10:40 M. Olazabal Laser imprint reduction using underdense foams and its consequences on the hydrodynamic instability growth 10:40-11:10 Coffee break XFEL Chair : B.
    [Show full text]
  • Book of Abstracts
    First LMJ-PETAL User Meeting October 4-5, 2018 Le Barp, France Book of Abstracts Program LMJ-PETAL User Meeting Thursday 4 October 2018 Schedule Duration Title Speaker Institution 8:00 AM 0:30 Accueil ILP 8:30 AM 0:30 Welcome Plenary session-1 : LMJ-PETAL performance Chairman : JL. Miquel CEA/DAM CEA/DAM, 9:00 AM 0:25 LMJ Facility: Status and Performance P. Delmas France CEA/DAM, 9:25 AM 0:25 PETAL laser performance N. Blanchot France CEA/DAM, 9:50 AM 0:25 Status on LMJ-PETAL plasma diagnostics R. Wrobel France Preliminary results from the qualification experiments of the PETAL+ 10:15 AM 0:25 D. Batani CELIA, France diagnostics 10:40 AM 0:20 Break Plenary session-2: Next user experiments Chairman : D. Batani CELIA Effect of hot electrons on strong shock generation in the context of shock 11:00 AM 0:25 S. Baton LULI, France ignition 11:25 AM 0:25 Investigating magnetic reconnection in ICF conditions S. Bolanos LULI, France Efficient Creation of High-Energy-Density-State with Laser-Produced Strong S. Fujioka ILE, Osaka U., 11:50 AM 0:25 Magnetic Field or K. Matsuo Japan 12:15 PM 2:00 Lunch / Posters session 2:15 PM 1:30 Round table -1 Targets Chairman: M. Manuel General Atomic CEA/DAM, 0:20 Target laboratory on LMJ Facility O. Henry France Review of General Atomics Target Fabrication : Facilities, Capabilities and General Atomic, 0:20 M. Manuel Notable Recent Developments USA Diagnostics Chairman: W.Theobald LLE Omega ILE, Osaka U., 0:20 Visualization of fast heated plasma by X-ray fresnel phase zone plate K.
    [Show full text]
  • Topical Review: Relativistic Laser-Plasma Interactions
    INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS D: APPLIED PHYSICS J. Phys. D: Appl. Phys. 36 (2003) R151–R165 PII: S0022-3727(03)26928-X TOPICAL REVIEW Relativistic laser–plasma interactions Donald Umstadter Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, MI 48109, USA E-mail: [email protected] Received 19 November 2002 Published 2 April 2003 Online at stacks.iop.org/JPhysD/36/R151 Abstract By focusing petawatt peak power laser light to intensities up to 1021 Wcm−2, highly relativistic plasmas can now be studied. The force exerted by light pulses with this extreme intensity has been used to accelerate beams of electrons and protons to energies of a million volts in distances of only microns. This acceleration gradient is a thousand times greater than in radio-frequency-based accelerators. Such novel compact laser-based radiation sources have been demonstrated to have parameters that are useful for research in medicine, physics and engineering. They might also someday be used to ignite controlled thermonuclear fusion. Ultrashort pulse duration particles and x-rays that are produced can resolve chemical, biological or physical reactions on ultrafast (femtosecond) timescales and on atomic spatial scales. These energetic beams have produced an array of nuclear reactions, resulting in neutrons, positrons and radioactive isotopes. As laser intensities increase further and laser-accelerated protons become relativistic, exotic plasmas, such as dense electron–positron plasmas, which are of astrophysical interest, can be created in the laboratory. This paper reviews many of the recent advances in relativistic laser–plasma interactions. 1. Introduction in this regime on the light intensity, resulting in nonlinear effects analogous to those studied with conventional nonlinear Ever since lasers were invented, their peak power and focus optics—self-focusing, self-modulation, harmonic generation, ability have steadily increased.
    [Show full text]
  • Advanced Approaches to High Intensity Laser-Driven Ion Acceleration
    Advanced Approaches to High Intensity Laser-Driven Ion Acceleration Andreas Henig M¨unchen2010 Advanced Approaches to High Intensity Laser-Driven Ion Acceleration Andreas Henig Dissertation an der Fakult¨atf¨urPhysik der Ludwig{Maximilians{Universit¨at M¨unchen vorgelegt von Andreas Henig aus W¨urzburg M¨unchen, den 18. M¨arz2010 Erstgutachter: Prof. Dr. Dietrich Habs Zweitgutachter: Prof. Dr. Toshiki Tajima Tag der m¨undlichen Pr¨ufung:26. April 2010 Contents Contentsv List of Figures ix Abstract xiii Zusammenfassung xv 1 Introduction1 1.1 History and Previous Achievements...................1 1.2 Envisioned Applications.........................3 1.3 Thesis Outline...............................5 2 Theoretical Background9 2.1 Ionization.................................9 2.2 Relativistic Single Electron Dynamics.................. 14 2.2.1 Electron Trajectory in a Linearly Polarized Plane Wave.... 15 2.2.2 Electron Trajectory in a Circularly Polarized Plane Wave... 17 2.2.3 Electron Ejection from a Focussed Laser Beam......... 18 2.3 Laser Propagation in a Plasma..................... 18 2.4 Laser Absorption in Overdense Plasmas................. 20 2.4.1 Collisional Absorption...................... 20 2.4.2 Collisionless Absorption..................... 21 2.5 Ion Acceleration.............................. 22 2.5.1 Target Normal Sheath Acceleration (TNSA).......... 22 2.5.2 Shock Acceleration........................ 26 2.5.3 Radiation Pressure Acceleration / Light Sail / Laser Piston. 27 3 Experimental Methods I - High Intensity Laser Systems 33 3.1 Fundamentals of Ultrashort High Intensity Pulse Generation..... 33 vi CONTENTS 3.1.1 The Concept of Mode-Locking.................. 33 3.1.2 Time-Bandwidth Product.................... 37 3.1.3 Chirped Pulse Amplification................... 39 3.1.4 Optical Parametric Amplification (OPA)............ 40 3.2 Laser Systems Utilized for Ion Acceleration Studies.........
    [Show full text]
  • With Short Pulse • About 7% Coupling Significantly Less Than the Osaka Experiment
    Electron/proton generation from solid targets and applications Farhat Beg University of California, San Diego This work was performed under the auspices of the U.S. DOE under contracts No.DE-FG02-05ER54834, DE-FC0204ER54789 and DE-AC52-07NA27344. We greatly acknowledge support of Institute for Laser Science Applications, LLNL. Committee on Atomic, Molecular and Optical Sciences Meeting The National Academy of Sciences Washington DC, April 5, 2011 1 Summary ü Short pulse high intensity laser solid interactions create matter under extreme conditions and generate a variety of energetic particles. ü There are a number of applications from fusion to low energy nuclear reactions. 10 ns ü Fast Ignition Inertial Confinement Fusion is one application that promises high gain fusion. ü Experiments have been encouraging but point towards complex issues than previously anticipated. ü Recent, short pulse high intensity laser matter experiments show that low coupling could be due to: - prepulse - electron source divergence. ü Experiments on fast ignition show proton focusing spot is adequate for FI. However, conversion efficiency has to be increased. 2 Outline § Short Pulse High Intensity Laser Solid Interaction - New Frontiers § Extreme conditions with a short pulse laser § Applications § Fast Ignition - Progress - Current status § Summary Progress in laser technology 10 9 2000 Relativistic ions 8 Nonlinearity of 10 Vacuum ) Multi-GeV elecs. V 7 1990 Fast Ignition e 10 ( e +e- Production y 6 Weapons Physics g 10 Nuclear reactions r e 5 Relativistic
    [Show full text]
  • Nuclear Weapons Journal PO Box 1663 Mail Stop A142 Los Alamos, NM 87545 WEAPONS Issue 2 • 2009 Journal
    Presorted Standard U.S. Postage Paid Albuquerque, NM nuclear Permit No. 532 Nuclear Weapons Journal PO Box 1663 Mail Stop A142 Los Alamos, NM 87545 WEAPONS Issue 2 • 2009 journal Issue 2 2009 LALP-10-001 Nuclear Weapons Journal highlights ongoing work in the nuclear weapons programs at Los Alamos National Laboratory. NWJ is an unclassified publication funded by the Weapons Programs Directorate. Managing Editor-Science Writer Editorial Advisor Send inquiries, comments, subscription requests, Margaret Burgess Jonathan Ventura or address changes to [email protected] or to the Designer-Illustrator Technical Advisor Nuclear Weapons Journal Jean Butterworth Sieg Shalles Los Alamos National Laboratory Mail Stop A142 Science Writers Printing Coordinator Los Alamos, NM 87545 Brian Fishbine Lupe Archuleta Octavio Ramos Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy under contract DE-AC52-06NA25396. This publication was prepared as an account of work sponsored by an agency of the US Government. Neither Los Alamos National Security, LLC, the US Government nor any agency thereof, nor any of their employees make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by Los Alamos National Security, LLC, the US Government, or any agency thereof.
    [Show full text]
  • Ion Acceleration Driven by High-Intensity Laser Pulses
    Ion Acceleration driven by High-Intensity Laser Pulses Dissertation der FakultÄatfÄurPhysik der Ludwig-Maximilians-UniversitÄatMÄunchen vorgelegt von JÄorgSchreiber aus Suhl MÄunchen, den 03.07.2006 1. Gutachter: Prof. Dr. Dietrich Habs 2. Gutachter: Prof. Dr. Ferenc Krausz Tag der mÄundlichen PrÄufung:6. September 2006 Zusammenfassung Die vorliegende Arbeit befa¼t sich mit der Ionenbeschleunigung von Hochinten- sitÄatslaser-bestrahlten Folien. MÄogliche Anwendungen dieser neuartigen Ionen- strahlen reichen von kompakten Injektoren fÄurkonventionelle Partikelbeschleu- niger Äuber die schnelle ZÄundungprekomprimierter Fusionstargets bis zur Onkologie und Radiotherapie mit Ionen. DarÄuber hinaus wird Protonenradiography schon heute zum Studium der Dynamik Lasererzeugter Plasmen mit ps-Zeitaufl¨osung eingesetzt. Im Rahmen dieser Arbeit wurde ein analytisches Modell entwickelt, basierend auf der Oberfl¨achenladung, die durch die auf der FolienrÄuckseite austretenden laserbeschleunigten Elektronen erzeugt wird. Dieses Feld wird fÄurdie Dauer des Laserimpulses ¿L aufrechterhalten, ionisiert Atome an der FolienrÄuckseite und beschleunigt die Ionen. Die vorhergesagten Maximalenergien der Ionen Em stim- men gut mit den experimentellen Resultaten dieser Arbeit und verschiedenener Gruppen weltweit Äuberein (Abb. 1). Neben Protonen, die aus Kohlenwassersto®verunreinigungen auf den Folien- oberfl¨achen stammen, werden auch schwerere Ionen, wie zum Beispiel Kohlen- sto®, beschleunigt. Mit der Schneidenmethode konnten neben der Veri¯kation der aus zahlreichen Messungen bekannten QuellgrÄo¼envon Protonen auch die QuellgrÄo¼ender verschiedenen Kohlensto²adungszustÄandebestimmt werden. Aus der UnterdrÄuckung hoher LadungszustÄandeweit entfernt vom Zentrum der Emis- sionszone konnte die radiale Feldverteilung des Beschleunigungsfeldes abgeleitet werden (Abb. 2), dessen radiale Ausdehnung die GrÄo¼edes Laserfokus um zwei 1.2 Figure 1: Ver- 2 / 1.0 1 gleich experimenteller ) Ergebnisse mit dem ¥ , i 0.8 E analytischen Modell / NOVAPW m (Kurve).
    [Show full text]
  • FY 2010 Volume 1
    DOE/CF-035 Volume 1 FY 2010 Congressional Budget Request National Nuclear Security Administration Office of the Administrator Weapons Activities Defense Nuclear Nonproliferation Naval Reactors Office of Chief Financial Officer May 2009 Volume 1 DOE/CF-035 Volume 1 FY 2010 Congressional Budget Request National Nuclear Security Administration Office of the Administrator Weapons Activities Defense Nuclear Nonproliferation Naval Reactors Office of Chief Financial Officer May 2009 Volume 1 Printed with soy ink on recycled paper Office of the Administrator Weapons Activities Defense Nuclear Nonproliferation Naval Reactors Office of the Administrator Weapons Activities Defense Nuclear Nonproliferation Naval Reactors Volume 1 Table of Contents Page Appropriation Account Summary.............................................................................................................3 NNSA Overview.......................................................................................................................................5 Office of the Administrator.....................................................................................................................25 Weapons Activities .................................................................................................................................47 Defense Nuclear Nonproliferation........................................................................................................345 Naval Reactors......................................................................................................................................461
    [Show full text]
  • Proposal Project
    PROPOSAL PROJECT DEREP “Characterization and DEvelopment of a stable and REproducible scheme for laser-driven Proton sources” Principal Investigator: Dr. Luca Volpe Scientific coordinator: Prof. Dario Giove ISTITUTO NAZIONALE DI FISICA NUCLEARE Concorso per il Finanziamento di n. 1 progetto per giovani ricercatrici/ricercatori nell’ambito delle Linee di ricerca della Commissione Scientifica Nazionale 5 Abstract In this project we propose to study possible stable configurations for producing laser-driven proton beams with a maximum energy around 40-50 MeV by using well established national and international laser facilities of reasonable complexity, cost and size and also to design a “micro” transport line for collimation and energy selection of the proton beam . This could represent the first scheme for a future prototype of laser-driven proton beam system for medical applications. The Europen project ELIMED seems to be the natural framework in which the proposal can be developed DEREP 1. Project objectives Interest in laser driven proton acceleration continues to be strong since 2000, with a potentially wide range of applications among which the most important are that related to medical applications. The importance of laser and target advancements for source optimization has been made clear by many laser- plasma interaction experiments done in laboratories around the world. The development of suitable instrumentation and beam lines that can exploit the unique features of laser- accelerated proton emission is critical and timely. Since
    [Show full text]