The White Book of ELI Nuclear Physics Bucharest-Magurele, Romania

Total Page:16

File Type:pdf, Size:1020Kb

The White Book of ELI Nuclear Physics Bucharest-Magurele, Romania The White Book of ELI Nuclear Physics Bucharest-Magurele, Romania The ELI-Nuclear Physics working groups Contents 1 Foreword 4 2 Executive Summary 5 2.1 BasicObjectives ................................. ...... 5 2.2 The Scientific Case of ELI-Nuclear Physics . ............ 6 3 Conceptual Design Report for the multi-PW laser system at ELI Nuclear Physics Facility 11 3.1 Introduction.................................... ...... 11 3.2 Laser Architecture and Technical Layout . ............. 12 3.2.1 Currentstatus ................................. 12 3.2.2 Multi-PW laser approach implementation . .......... 13 3.2.3 FrontEnd ...................................... 14 3.2.4 HighrepratePWamplifiers . 18 3.2.5 Highenergyamplifiers . ..... 19 3.2.6 ELI-NP multi-PW laser system conceptual design . ........... 20 3.2.7 ELI-NPlaserbuildingsketch . ....... 21 3.3 PulseCompression ................................ ...... 22 3.4 Alignment and Diagnostics . ........ 24 3.5 Pulseshaping.................................... ..... 24 3.6 Control,supervisionsystem(C2S) . ........... 25 3.7 Coherentbeamcombining . ....... 25 3.8 LaserBeamTransportSystem . ....... 27 3.9 Furtherinfrastructure . ......... 27 References......................................... ..... 28 Glosary ............................................ 29 4 Infrastructure Producing High Intensity Gamma Rays for ELI Nuclear Physics Pillar 31 4.1 Introduction .................................... ..... 31 4.2 First stage warm linac in X-band RF plus 532nm laser . ............ 32 4.2.1 Description................................... 32 4.2.2 Specifications of the ELI-NP machine . ........ 38 4.2.3 Possibleupgradeinfuture. ....... 40 4.3 Second stage 100 mA Energy Recovery Linac . .......... 40 4.4 Conclusions ..................................... ..... 41 References......................................... ..... 42 Glosary ............................................ 43 5 The Scientific Case of ELI Nuclear Physic Pillar 47 5.1 Introduction to Envisioned Experiments at ELI Nuclear Physics Facility . 47 5.2 Experiments with the APOLLON-type Laser used stand-alone ............. 48 1 5.2.1 Production of Neutron-Rich Nuclei around the N = 126 Waiting Point of the r-Process via the Fission-Fusion Reaction Mechanism usingaLaser-AcceratedThBeam . 48 5.2.2 From Radiation Pressure Acceleration (RPA) and Laser-Driven Ion Pistons to Direct Laser Acceleration of Protons at Intensities up to 1024W/cm2 . 50 5.2.3 Deceleration of Very Dense Electron and Ion Beams . ........... 52 5.2.4 The development and application of ultra-short duration high brilliance gammaraysprobesfornuclearphysics . 54 5.2.5 A Relativistic Ultra-thin Electron Sheet used as a Relativistic Mirror for the Production of Brilliant, Intense Coherent γ-Rays............. 55 5.2.6 Nuclear Techniques for Characterization of Laser-Induced Radiations . 57 5.2.7 Modelling of High-Intensity Laser Interaction with Matter............ 61 5.2.8 Studies of enhanced decay of 26Al in hot plasma environments . 63 5.2.9 Nuclearphasesandsymmetries . ....... 65 5.3 APOLLON-Type Laser + γ/e− Beam........................... 68 5.3.1 Probing the Pair Creation from the Vacuum in the Focus of Strong Electrical Fields with a High Energy γ Beam .............. 68 5.3.2 The Real Part of the Index of Refraction of the Vacuum in High Fields: Vacuum Birefringence . 71 5.3.3 Cascades of e+e− Pairs and γ-Rays triggered by a Single Slow Electron in Strong Fields . 73 5.3.4 Compton Scattering and Radiation Reaction of a Single Electron at High Intensities . ...... 79 5.3.5 Nuclear Lifetime Measurements by Streaking Conversion ElectronswithaLaserField. 86 5.4 Stand-alone γ/e− Facility for Nuclear Spectroscopy . 89 5.4.1 Measuring Narrow Doorway States, embedded in Regions of High Level Density in the First Nuclear Minimum, which are identified by specific (γ,f), (γ, α), (γ,p), (γ,n) Reactions and allow to map out the NuclearPotentialLandscape . 89 5.4.2 Precision Tests of Fluctuating Quantities in Nuclear Physics of Highly Excited Nuclear Levels in Comparison to Random-Matrix-Theory and Quantum Chaos 90 208 5.4.3 Precision measurement of the dipole polarizability αD of Pb with high intensity, monoenergetic MeV γ-radiation for the evaluation of neutron skin and the enhancement of UNEDF theory . ..... 92 5.4.4 Use of high-resolution inelastic electron scattering to investigate deformed nuclear shapes and the scissors mode . ...... 94 ′ 5.4.5 Parity violation in a (e, e )process ......................... 96 5.4.6 Nuclear Transitions and Parity-violating Meson-Nucleon Coupling . 101 5.4.7 Study of pygmy and giant dipole resonances in lead isotopes by direct γ excitation103 5.4.8 Gamma scattering on nuclei The Pygmy Dipole Resonance (PDR) of deformed nuclei . 104 5.4.9 Fine-structure of Photo-response above the Particle Threshold: the (γ ,α), (γ,p) and (γ ,n)Reactions ....................... 109 5.4.10 Nuclear Resonance Fluorescence on Rare Isotopes and Isomers . 113 5.4.11 Multiple Nuclear Excitons . ........ 114 5.5 Stand-alone γ/e− Facility for Astrophysics . 116 5.5.1 Neutron Capture Cross Section of s-Process Branching Nuclei with Inverse Reactions ....................................... 116 5.5.2 Measurements of (γ,p) and (γ, α) Reaction Cross Sections for p-Process Nucle- osynthesis....................................... 118 5.6 Applications and Industry Relevant Developments at ELI-NP ............. 120 5.6.1 Industrial Applications for the Management of Nuclear Materials . 120 5.6.2 Radioscopy and Tomography . 125 2 5.6.3 High Resolution, high Intensity X-Ray Beam . .......... 127 5.6.4 Producing of medical isotopes via the (γ,n) reaction . 131 5.6.5 Medical Radioisotopes produced by γ Beams ................... 131 5.6.6 Extremely BRIlliant Neutron-Source produced via the (γ,n) Reaction without Moderation (BRIN)............................ 134 5.6.7 Neutron diffraction techniques for materials science ................ 135 5.6.8 Dual-range Instrumentation for Wide Applicability Neutron Techniques . 137 5.6.9 Intense BRIlliant Positron-Source produced via the (γ, e+e−) Reaction (BRIP) 139 5.6.10 Intense BRIlliant Positron-Source: Positrons in Applied Physics . 139 5.6.11 Positron-excited Auger Electron Spectroscopy (PAES).............. 140 5.6.12 Positron Annihilation Spectroscopy (PAS) . ............. 143 5.6.13 AGPAS technique with high energy gamma beams . ......... 146 5.6.14 Testing of radiation effects on commercial optical fibers ............. 147 5.6.15 Materials research in high intensity radiation fields................ 147 3 1 Foreword This report contains a comprehensive description of the new international research infrastructure, the Extreme Light Infrastructure - Nuclear Physics facility (ELI-NP), emphasizing the physics which can be addressed with it. The report has been prepared from contributions by many people from various laboratories throughout the world. Their contributions have be merged by a group of editors. This re- port at the same time demonstrates that ELI-NP can count on a large international user community. Here the extreme light infrastructure consisting of two components: a very high intensity laser system (10-30 PW) and a very brilliant, intense γ beam of up to 19 MeV, 0.1 % band width and 1013γ/s . With this report we demonstrate our deep conviction that this infrastructure will create a new Euro- pean laboratory with a broad range of science covering new nuclear physics, astrophysics, fundamental high field physics as well as applications in nuclear materials, radioactive waste management, material science and life sciences. For the realization of ELI-NP we envisage the design of the facility to allow a flexible layout of the experiments and the possibility for further upgrading according to the available resources. The ELI-NP facility will be built in such a way to accommodate its future growth, for example: • to include after 2016 new experiments and to upgrade the laser power and gamma beam intensity and energy • after 2020 to include the most ambitious and far reaching projects as well as the ones that are yet to be discovered. It may include an upgrade of the γ beam facility, using a superconducting energy recovery linac reaching to higher intensities of 1015γ/s and improved bandwidth 4 2 Executive Summary 2.1 Basic Objectives ELI will be the only European and International Centre for high-level research on ultra-high intensity laser, laser-matter interaction and secondary sources with unparalleled possibilities. Its pulse peak power and briefness will go beyond the current state-of-the-art by several orders of magnitude. Because of its unique properties, this multidisciplinary facility will provide magnificent new opportunities to study the fundamental processes unfolded during light-matter interaction. ELI will create a platform, where Extreme Light applications for the benefit of society will be dynam- ically promoted. In its mission ELI will practice a vigorous technology transfer to European SMEs and large firms. High on ELI agenda will be the training of aspiring scientists and engineers in the numerous disciplines associated with the Extreme Light. The ELI project, a collaboration of 13 European countries, will comprise four pillars: • High Energy Beam Science devoted to the development and usage of dedicated beam lines with ultra short pulses of high energy radiation and particles reaching almost the speed of light (100 GeV). This part of ELI will be realized in Prague (Czech Republic) • Attosecond Laser Science designed to conduct
Recommended publications
  • High Energy Density Physics Experiments at Los Alamos
    High Energy Density Dante-2 SXI Physics Experiments at Los Alamos FFLEX FABS & Hans Herrmann NBI FABS & 36B NBI 31B Dante-1 Plasma Physics Group (P-24) SXI In this photo, Norris Bradbury, Robert Oppenheimer, Richard Feynman, and Enrico Fermi attend an early Los Alamos weapons colloquium. OMEGA LaserU UserN C L A S SGroup I F I E D Rochester, NY April 29, 2011 Operated by Los Alamos National Security, LLC for NNSA LA-UR 11-02522 Los Alamos has a strong program in High Energy Density Physics aimed at National Applications as well as Basic Science Inertial Confinement Fusion (ICF) Radiation Hydrodynamics Hydrodynamics with Plasmas Material Dynamics Energetic Ion generation Dense Plasma Properties X-ray and Nuclear Diagnostic Development Petaflop performance to Exascale computing Magnetic Reconnection Magnetized Target Fusion High-Explosive Pulsed Power U N C L A S S I F I E D Operated by Los Alamos National Security, LLC for NNSA LANL is a multidisciplinary NNSA Lab. overseen by Los Alamos National Security (LANS) LLC. People 11,782 total employees: LANS, LLC 9,665; SOC Los Alamos (Guard Force) 477; Contractors 524; Students 1,116 Place Located 35 miles northwest of Santa Fe, New Mexico, on 36 square miles of DOE-owned property. > 2,000 individual facilities, 47 technical areas with 8 million square feet under roof, $5.9 B replacement value. Operating costs FY 2010: ~ $2 billion 51% NNSA weapons programs 8% Nonproliferation programs 6% Safeguards and Security 11% Environmental Management 4% DOE Office of Science 5% Energy and other programs 15% Work for Others Workforce Demographics (LANS & students only) 42% of employees live in Los Alamos, the rest commute from Santa Fe, Española, Taos, and Albuquerque.
    [Show full text]
  • The National Ignition Facility Diagnostic Set at the Completion of the National Ignition Campaign, September 2012
    Fusion Science and Technology ISSN: 1536-1055 (Print) 1943-7641 (Online) Journal homepage: http://www.tandfonline.com/loi/ufst20 The National Ignition Facility Diagnostic Set at the Completion of the National Ignition Campaign, September 2012 J. D. Kilkenny, P. M. Bell, D. K. Bradley, D. L. Bleuel, J. A. Caggiano, E. L. Dewald, W. W. Hsing, D. H. Kalantar, R. L. Kauffman, D. J. Larson, J. D. Moody, D. H. Schneider, M. B. Schneider, D. A. Shaughnessy, R. T. Shelton, W. Stoeffl, K. Widmann, C. B. Yeamans, S. H. Batha, G. P. Grim, H. W. Herrmann, F. E. Merrill, R. J. Leeper, J. A. Oertel, T. C. Sangster, D. H. Edgell, M. Hohenberger, V. Yu. Glebov, S. P. Regan, J. A. Frenje, M. Gatu-Johnson, R. D. Petrasso, H. G. Rinderknecht, A. B. Zylstra, G. W. Cooper & C. Ruizf To cite this article: J. D. Kilkenny, P. M. Bell, D. K. Bradley, D. L. Bleuel, J. A. Caggiano, E. L. Dewald, W. W. Hsing, D. H. Kalantar, R. L. Kauffman, D. J. Larson, J. D. Moody, D. H. Schneider, M. B. Schneider, D. A. Shaughnessy, R. T. Shelton, W. Stoeffl, K. Widmann, C. B. Yeamans, S. H. Batha, G. P. Grim, H. W. Herrmann, F. E. Merrill, R. J. Leeper, J. A. Oertel, T. C. Sangster, D. H. Edgell, M. Hohenberger, V. Yu. Glebov, S. P. Regan, J. A. Frenje, M. Gatu-Johnson, R. D. Petrasso, H. G. Rinderknecht, A. B. Zylstra, G. W. Cooper & C. Ruizf (2016) The National Ignition Facility Diagnostic Set at the Completion of the National Ignition Campaign, September 2012, Fusion Science and Technology, 69:1, 420-451, DOI: 10.13182/FST15-173 To link to this article: http://dx.doi.org/10.13182/FST15-173 Published online: 23 Mar 2017.
    [Show full text]
  • Plasma Interactions
    Home Search Collections Journals About Contact us My IOPscience New developments in energy transfer and transport studies in relativistic laser–plasma interactions This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2010 Plasma Phys. Control. Fusion 52 124046 (http://iopscience.iop.org/0741-3335/52/12/124046) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 130.183.90.175 The article was downloaded on 04/01/2011 at 10:43 Please note that terms and conditions apply. IOP PUBLISHING PLASMA PHYSICS AND CONTROLLED FUSION Plasma Phys. Control. Fusion 52 (2010) 124046 (7pp) doi:10.1088/0741-3335/52/12/124046 New developments in energy transfer and transport studies in relativistic laser–plasma interactions P A Norreys1,2,JSGreen1, K L Lancaster1,APLRobinson1, R H H Scott1,2, F Perez3, H-P Schlenvoight3, S Baton3, S Hulin4, B Vauzour4, J J Santos4, D J Adams5, K Markey5, B Ramakrishna5, M Zepf5, M N Quinn6,XHYuan6, P McKenna6, J Schreiber2,7, J R Davies8, D P Higginson9,10, F N Beg9, C Chen10,TMa10 and P Patel10 1 Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxon OX11 0QX, UK 2 Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BZ, UK 3 Laboratoire pour l’Utilisation des Lasers Intenses, Ecole´ Polytechnique, route de Saclay, 91128 Palaiseau Cedex, France 4 Centre Lasers Intenses et Applications, Universite´ Bordeaux 1-CNRS-CEA, Talence, France 5 School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN, UK 6 Departmnet of Physics, University of Strathclyde, John Anderson Building, 107 Rottenrow, Glasgow G4 0NG, UK 7 Max-Planck-Institut fur¨ Quantenoptik, Hans-Kopfermann-Str.
    [Show full text]
  • B O O K O F a B Stra C Ts
    Book of Abstracts Program Tuesday, June 25 11:00-13:00 Registration 12:00-13:50 Lunch 13:50-14:00 Welcome UHI 1 Chair : L. Yin 14:00-14:30 A. Kemp Kinetic particle-in-cell modeling of Petawatt laser plasma interaction relevant to HEDLP experiments 14:30-14:50 R. Shah Dynamics and Application of Relativistic Transparency 14:50-15:10 C. Ridgers QED effects at UI laser intensities 15:10-15:30 L. Cao Efficient Laser Absorption, Enhanced Electron Yields and Collimated Fast Electrons by the Nanolayered Structured Targets 15:30-16:00 Coffee break Laboratory Astrophysics 1 Chair : P. Drake 16:00-16:30 J. Bailey Laboratory opacity measurements at conditions approaching stellar interiors 16:30-16:50 A. Pak Radiative shock waves produced from implosion experiments at the National Ignition Facility 16:50-17:10 B. Albertazzi Modeling in the Laboratory Magnetized Astrophysical Jets: Simulations and Experiments 17:10-17:30 C. Kuranz Magnetized Plasma Flow Experiments at High-Energy-Density Facilities Wednesday, June 26 ( Joint with WDM ) ICF 1 Chair : A. Casner 09:00-09:40 N. Landen Status of the ignition campaign at the NIF 09:40-10:00 G. Huser Equation of state and mean ionization of Ge-doped CH ablator materials 10:00-10:20 B. Remington Hydrodynamic instabilities and mix in the ignition campaign on NIF: predictions, observations, and a path forward 10:20-10:40 M. Olazabal Laser imprint reduction using underdense foams and its consequences on the hydrodynamic instability growth 10:40-11:10 Coffee break XFEL Chair : B.
    [Show full text]
  • Book of Abstracts
    First LMJ-PETAL User Meeting October 4-5, 2018 Le Barp, France Book of Abstracts Program LMJ-PETAL User Meeting Thursday 4 October 2018 Schedule Duration Title Speaker Institution 8:00 AM 0:30 Accueil ILP 8:30 AM 0:30 Welcome Plenary session-1 : LMJ-PETAL performance Chairman : JL. Miquel CEA/DAM CEA/DAM, 9:00 AM 0:25 LMJ Facility: Status and Performance P. Delmas France CEA/DAM, 9:25 AM 0:25 PETAL laser performance N. Blanchot France CEA/DAM, 9:50 AM 0:25 Status on LMJ-PETAL plasma diagnostics R. Wrobel France Preliminary results from the qualification experiments of the PETAL+ 10:15 AM 0:25 D. Batani CELIA, France diagnostics 10:40 AM 0:20 Break Plenary session-2: Next user experiments Chairman : D. Batani CELIA Effect of hot electrons on strong shock generation in the context of shock 11:00 AM 0:25 S. Baton LULI, France ignition 11:25 AM 0:25 Investigating magnetic reconnection in ICF conditions S. Bolanos LULI, France Efficient Creation of High-Energy-Density-State with Laser-Produced Strong S. Fujioka ILE, Osaka U., 11:50 AM 0:25 Magnetic Field or K. Matsuo Japan 12:15 PM 2:00 Lunch / Posters session 2:15 PM 1:30 Round table -1 Targets Chairman: M. Manuel General Atomic CEA/DAM, 0:20 Target laboratory on LMJ Facility O. Henry France Review of General Atomics Target Fabrication : Facilities, Capabilities and General Atomic, 0:20 M. Manuel Notable Recent Developments USA Diagnostics Chairman: W.Theobald LLE Omega ILE, Osaka U., 0:20 Visualization of fast heated plasma by X-ray fresnel phase zone plate K.
    [Show full text]
  • Topical Review: Relativistic Laser-Plasma Interactions
    INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS D: APPLIED PHYSICS J. Phys. D: Appl. Phys. 36 (2003) R151–R165 PII: S0022-3727(03)26928-X TOPICAL REVIEW Relativistic laser–plasma interactions Donald Umstadter Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, MI 48109, USA E-mail: [email protected] Received 19 November 2002 Published 2 April 2003 Online at stacks.iop.org/JPhysD/36/R151 Abstract By focusing petawatt peak power laser light to intensities up to 1021 Wcm−2, highly relativistic plasmas can now be studied. The force exerted by light pulses with this extreme intensity has been used to accelerate beams of electrons and protons to energies of a million volts in distances of only microns. This acceleration gradient is a thousand times greater than in radio-frequency-based accelerators. Such novel compact laser-based radiation sources have been demonstrated to have parameters that are useful for research in medicine, physics and engineering. They might also someday be used to ignite controlled thermonuclear fusion. Ultrashort pulse duration particles and x-rays that are produced can resolve chemical, biological or physical reactions on ultrafast (femtosecond) timescales and on atomic spatial scales. These energetic beams have produced an array of nuclear reactions, resulting in neutrons, positrons and radioactive isotopes. As laser intensities increase further and laser-accelerated protons become relativistic, exotic plasmas, such as dense electron–positron plasmas, which are of astrophysical interest, can be created in the laboratory. This paper reviews many of the recent advances in relativistic laser–plasma interactions. 1. Introduction in this regime on the light intensity, resulting in nonlinear effects analogous to those studied with conventional nonlinear Ever since lasers were invented, their peak power and focus optics—self-focusing, self-modulation, harmonic generation, ability have steadily increased.
    [Show full text]
  • Advanced Approaches to High Intensity Laser-Driven Ion Acceleration
    Advanced Approaches to High Intensity Laser-Driven Ion Acceleration Andreas Henig M¨unchen2010 Advanced Approaches to High Intensity Laser-Driven Ion Acceleration Andreas Henig Dissertation an der Fakult¨atf¨urPhysik der Ludwig{Maximilians{Universit¨at M¨unchen vorgelegt von Andreas Henig aus W¨urzburg M¨unchen, den 18. M¨arz2010 Erstgutachter: Prof. Dr. Dietrich Habs Zweitgutachter: Prof. Dr. Toshiki Tajima Tag der m¨undlichen Pr¨ufung:26. April 2010 Contents Contentsv List of Figures ix Abstract xiii Zusammenfassung xv 1 Introduction1 1.1 History and Previous Achievements...................1 1.2 Envisioned Applications.........................3 1.3 Thesis Outline...............................5 2 Theoretical Background9 2.1 Ionization.................................9 2.2 Relativistic Single Electron Dynamics.................. 14 2.2.1 Electron Trajectory in a Linearly Polarized Plane Wave.... 15 2.2.2 Electron Trajectory in a Circularly Polarized Plane Wave... 17 2.2.3 Electron Ejection from a Focussed Laser Beam......... 18 2.3 Laser Propagation in a Plasma..................... 18 2.4 Laser Absorption in Overdense Plasmas................. 20 2.4.1 Collisional Absorption...................... 20 2.4.2 Collisionless Absorption..................... 21 2.5 Ion Acceleration.............................. 22 2.5.1 Target Normal Sheath Acceleration (TNSA).......... 22 2.5.2 Shock Acceleration........................ 26 2.5.3 Radiation Pressure Acceleration / Light Sail / Laser Piston. 27 3 Experimental Methods I - High Intensity Laser Systems 33 3.1 Fundamentals of Ultrashort High Intensity Pulse Generation..... 33 vi CONTENTS 3.1.1 The Concept of Mode-Locking.................. 33 3.1.2 Time-Bandwidth Product.................... 37 3.1.3 Chirped Pulse Amplification................... 39 3.1.4 Optical Parametric Amplification (OPA)............ 40 3.2 Laser Systems Utilized for Ion Acceleration Studies.........
    [Show full text]
  • With Short Pulse • About 7% Coupling Significantly Less Than the Osaka Experiment
    Electron/proton generation from solid targets and applications Farhat Beg University of California, San Diego This work was performed under the auspices of the U.S. DOE under contracts No.DE-FG02-05ER54834, DE-FC0204ER54789 and DE-AC52-07NA27344. We greatly acknowledge support of Institute for Laser Science Applications, LLNL. Committee on Atomic, Molecular and Optical Sciences Meeting The National Academy of Sciences Washington DC, April 5, 2011 1 Summary ü Short pulse high intensity laser solid interactions create matter under extreme conditions and generate a variety of energetic particles. ü There are a number of applications from fusion to low energy nuclear reactions. 10 ns ü Fast Ignition Inertial Confinement Fusion is one application that promises high gain fusion. ü Experiments have been encouraging but point towards complex issues than previously anticipated. ü Recent, short pulse high intensity laser matter experiments show that low coupling could be due to: - prepulse - electron source divergence. ü Experiments on fast ignition show proton focusing spot is adequate for FI. However, conversion efficiency has to be increased. 2 Outline § Short Pulse High Intensity Laser Solid Interaction - New Frontiers § Extreme conditions with a short pulse laser § Applications § Fast Ignition - Progress - Current status § Summary Progress in laser technology 10 9 2000 Relativistic ions 8 Nonlinearity of 10 Vacuum ) Multi-GeV elecs. V 7 1990 Fast Ignition e 10 ( e +e- Production y 6 Weapons Physics g 10 Nuclear reactions r e 5 Relativistic
    [Show full text]
  • Nuclear Weapons Journal PO Box 1663 Mail Stop A142 Los Alamos, NM 87545 WEAPONS Issue 2 • 2009 Journal
    Presorted Standard U.S. Postage Paid Albuquerque, NM nuclear Permit No. 532 Nuclear Weapons Journal PO Box 1663 Mail Stop A142 Los Alamos, NM 87545 WEAPONS Issue 2 • 2009 journal Issue 2 2009 LALP-10-001 Nuclear Weapons Journal highlights ongoing work in the nuclear weapons programs at Los Alamos National Laboratory. NWJ is an unclassified publication funded by the Weapons Programs Directorate. Managing Editor-Science Writer Editorial Advisor Send inquiries, comments, subscription requests, Margaret Burgess Jonathan Ventura or address changes to [email protected] or to the Designer-Illustrator Technical Advisor Nuclear Weapons Journal Jean Butterworth Sieg Shalles Los Alamos National Laboratory Mail Stop A142 Science Writers Printing Coordinator Los Alamos, NM 87545 Brian Fishbine Lupe Archuleta Octavio Ramos Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy under contract DE-AC52-06NA25396. This publication was prepared as an account of work sponsored by an agency of the US Government. Neither Los Alamos National Security, LLC, the US Government nor any agency thereof, nor any of their employees make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by Los Alamos National Security, LLC, the US Government, or any agency thereof.
    [Show full text]
  • Ion Acceleration Driven by High-Intensity Laser Pulses
    Ion Acceleration driven by High-Intensity Laser Pulses Dissertation der FakultÄatfÄurPhysik der Ludwig-Maximilians-UniversitÄatMÄunchen vorgelegt von JÄorgSchreiber aus Suhl MÄunchen, den 03.07.2006 1. Gutachter: Prof. Dr. Dietrich Habs 2. Gutachter: Prof. Dr. Ferenc Krausz Tag der mÄundlichen PrÄufung:6. September 2006 Zusammenfassung Die vorliegende Arbeit befa¼t sich mit der Ionenbeschleunigung von Hochinten- sitÄatslaser-bestrahlten Folien. MÄogliche Anwendungen dieser neuartigen Ionen- strahlen reichen von kompakten Injektoren fÄurkonventionelle Partikelbeschleu- niger Äuber die schnelle ZÄundungprekomprimierter Fusionstargets bis zur Onkologie und Radiotherapie mit Ionen. DarÄuber hinaus wird Protonenradiography schon heute zum Studium der Dynamik Lasererzeugter Plasmen mit ps-Zeitaufl¨osung eingesetzt. Im Rahmen dieser Arbeit wurde ein analytisches Modell entwickelt, basierend auf der Oberfl¨achenladung, die durch die auf der FolienrÄuckseite austretenden laserbeschleunigten Elektronen erzeugt wird. Dieses Feld wird fÄurdie Dauer des Laserimpulses ¿L aufrechterhalten, ionisiert Atome an der FolienrÄuckseite und beschleunigt die Ionen. Die vorhergesagten Maximalenergien der Ionen Em stim- men gut mit den experimentellen Resultaten dieser Arbeit und verschiedenener Gruppen weltweit Äuberein (Abb. 1). Neben Protonen, die aus Kohlenwassersto®verunreinigungen auf den Folien- oberfl¨achen stammen, werden auch schwerere Ionen, wie zum Beispiel Kohlen- sto®, beschleunigt. Mit der Schneidenmethode konnten neben der Veri¯kation der aus zahlreichen Messungen bekannten QuellgrÄo¼envon Protonen auch die QuellgrÄo¼ender verschiedenen Kohlensto²adungszustÄandebestimmt werden. Aus der UnterdrÄuckung hoher LadungszustÄandeweit entfernt vom Zentrum der Emis- sionszone konnte die radiale Feldverteilung des Beschleunigungsfeldes abgeleitet werden (Abb. 2), dessen radiale Ausdehnung die GrÄo¼edes Laserfokus um zwei 1.2 Figure 1: Ver- 2 / 1.0 1 gleich experimenteller ) Ergebnisse mit dem ¥ , i 0.8 E analytischen Modell / NOVAPW m (Kurve).
    [Show full text]
  • FY 2010 Volume 1
    DOE/CF-035 Volume 1 FY 2010 Congressional Budget Request National Nuclear Security Administration Office of the Administrator Weapons Activities Defense Nuclear Nonproliferation Naval Reactors Office of Chief Financial Officer May 2009 Volume 1 DOE/CF-035 Volume 1 FY 2010 Congressional Budget Request National Nuclear Security Administration Office of the Administrator Weapons Activities Defense Nuclear Nonproliferation Naval Reactors Office of Chief Financial Officer May 2009 Volume 1 Printed with soy ink on recycled paper Office of the Administrator Weapons Activities Defense Nuclear Nonproliferation Naval Reactors Office of the Administrator Weapons Activities Defense Nuclear Nonproliferation Naval Reactors Volume 1 Table of Contents Page Appropriation Account Summary.............................................................................................................3 NNSA Overview.......................................................................................................................................5 Office of the Administrator.....................................................................................................................25 Weapons Activities .................................................................................................................................47 Defense Nuclear Nonproliferation........................................................................................................345 Naval Reactors......................................................................................................................................461
    [Show full text]
  • Proposal Project
    PROPOSAL PROJECT DEREP “Characterization and DEvelopment of a stable and REproducible scheme for laser-driven Proton sources” Principal Investigator: Dr. Luca Volpe Scientific coordinator: Prof. Dario Giove ISTITUTO NAZIONALE DI FISICA NUCLEARE Concorso per il Finanziamento di n. 1 progetto per giovani ricercatrici/ricercatori nell’ambito delle Linee di ricerca della Commissione Scientifica Nazionale 5 Abstract In this project we propose to study possible stable configurations for producing laser-driven proton beams with a maximum energy around 40-50 MeV by using well established national and international laser facilities of reasonable complexity, cost and size and also to design a “micro” transport line for collimation and energy selection of the proton beam . This could represent the first scheme for a future prototype of laser-driven proton beam system for medical applications. The Europen project ELIMED seems to be the natural framework in which the proposal can be developed DEREP 1. Project objectives Interest in laser driven proton acceleration continues to be strong since 2000, with a potentially wide range of applications among which the most important are that related to medical applications. The importance of laser and target advancements for source optimization has been made clear by many laser- plasma interaction experiments done in laboratories around the world. The development of suitable instrumentation and beam lines that can exploit the unique features of laser- accelerated proton emission is critical and timely. Since
    [Show full text]