1 Carbon dioxide degassing at the groundwater-stream-atmosphere interface: 2 isotopic equilibration and hydrological mass balance in a sandy watershed 3 4 Loris Deirmendjian1 and Gwenaël Abril1, 2, * 5 6 1Laboratoire Environnements et Paléoenvironnements Océaniques et Continentaux 7 (EPOC), CNRS, Université de Bordeaux, Allée Geoffroy Saint-Hilaire, 33615 Pessac 8 Cedex France. 9 2Departamento de Geoquímica, Universidade Federal Fluminense, Outeiro São João 10 Batista s/n, 24020015, Niterói, RJ, Brazil. 11 *Now also at Laboratoire d’Océanographie et du Climat, Expérimentations et 12 Approches Numériques (LOCEAN), Centre IRD France-Nord, 32, Avenue Henri 13 Varagnat, F-93143 Bondy, France 14 15 Correspondence to Gwenaël Abril (
[email protected]) 16 17 18 Abstract 19 Streams and rivers emit significant amounts of CO2 and constitute a preferential 20 pathway of carbon from terrestrial ecosystems to the atmosphere. However, the 21 estimation of CO2 degassing based on water-air CO2 gradient, gas transfer velocity 22 and streams surface area, is subject to large uncertainties. Furthermore, the isotopic 23 signature of DIC in streams is strongly impacted by gas exchange, which makes it a 24 useful tracer of CO2 degassing, under some specific conditions. For this study, we 25 characterize annual transfers of dissolved inorganic carbon (DIC) along the 26 groundwater-stream-river continuum based on DIC concentrations, isotopic 27 composition and measurements of stream discharges. We selected as a study site a 28 homogeneous, forested and sandy lowland watershed (Leyre River), where 29 hydrology occurs almost exclusively through drainage of groundwater (no surface 30 runoff). We observed a first general spatial pattern of pCO2 and DIC decrease and 31 δ13C-DIC increase from groundwater to stream orders 1 and 2, which was due to a 32 faster degassing of groundwater 12C-DIC compared to 13C-DIC, as verified 33 experimentally.