Understanding the Formation of CO2 and Its Degassing Behaviours in Coffee

Total Page:16

File Type:pdf, Size:1020Kb

Understanding the Formation of CO2 and Its Degassing Behaviours in Coffee Understanding the Formation of CO2 and Its Degassing Behaviours in Coffee by Xiuju Wang A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Food Science Guelph, Ontario, Canada © Xiuju Wang, May, 2014 ABSTRACT UNDERSTANDING THE FORMATION OF CO2 AND ITS DEGASSING BEHAVIOURS IN COFFEE Xiuju Wang Advisor: University of Guelph, 2014 Professor Loong-Tak Lim In the present study, the effect of roasting temperature-time conditions on residual CO2 content and its degassing behaviours in roasted coffee was investigated. The results show that the residual CO2 content in the roasted coffee beans was only dependent on the degree of roast and independent on the roasting temperature applied. However, CO2 degassing was shown significantly faster (p<0.05) in roasted coffee processed with high- temperature-short-time (HTST) than those roasted with low-temperature-long-time (LTLT) process. Moreover, the CO2 degassing rate increased with the degree of roast. CO2 degassing in ground coffee was significantly faster than in whole beans with the rate highly dependent on the grind size and roasting temperature, but less dependent on the degree of roast. CO2 degassing rate increased with the increasing of environmental temperature and relative humidity. Although CO2 degassing has been a challenging problem in the coffee industry for decades, there is still no clear understanding of precursors of CO2. In the present study, the hypothesis of “chlorogenic acid (CGA) is the principal precursor of CO2” was tested. Although strong negative linear correlation (R2>0.9) between total CGA and residual CO2 content during coffee roasting was detected, and vanishing of IR bands of the C=O group in caffeic acid and quinic acid moieties during heating of pure CGA at coffee roasting temperature was observed, the quantification analysis of CO2 generation from pure CGA heating indicated only ~ 8% yields at 230°C, which led us to conclude that CGA was one of the CO2 precursors but not the principal one. Accordingly, an alternate idea was put forward, hypothesizing that Maillard reaction could account for the CO2 formed. Roasting studies of glycine-sucrose simple models showed that large amount of CO2 was formed from Maillard reaction under coffee roasting conditions, confirming the importance of Maillard reaction in CO2 formation in roasted coffee. The isolation and roasting studies of green coffee fractions showed that CO2 was generated from various green coffee components, including water insoluble proteins and polysaccharides. Around 50% of CO2 was formed from lower molecular weight compounds with this fraction representing ~25% of green coffee by weight. Acknowledgements Firstly I would like to express my profound gratitude to my advisor, Dr. Loong-Tak Lim for giving me the opportunity to conduct this project. Besides, I also appreciate his encouragements, patience, guidance, and support during the entire project. My appreciation goes to all my advisory committee members - Drs. Amar Mohanty, Lisa Duizer, Massimo Marcone, Robert Lencki, and Yukio Kakuda for providing their sound advice, constructive comments on my research, and continuous support. This research could not been conducted without the assistance of all the staff and researchers in food science department. Thanks all the staff in the Main office for all their help in various aspects. Many thanks to Dr. Sandy Smith for her friendly support and help during the entire research. I also want to express my appreciation to Drs. John Craven and Robert Lencki for letting me use the GC in their lab, and Dr. Yukio Kakuda for the help with HPLC works. I convey my special thanks to my entire lab family members in the packaging and biomaterial group: Ana Cristina Vega Lugo, Ruyan Dai, Solmaz Alborzi, Suramya Minhindukulasuriya, Roc Chan, Khalid Moomand, Alex Jenson, Niya Wang, and Yucheng Fu for giving me the support in various aspects and making the whole study process a sweet memory. Moreover, I would like to express my deepest gratefulness to my parents and my husband for their infinite love, care and support. Last but not least, financial support provided by NSERC and Mother Parkers Tea & Coffee Inc. is also greatly appreciated. iv Table of Contents Acknowledgements............................................................................................................. iv Table of Contents ................................................................................................................. v List of Tables ................................................................................................................... viii List of Figures ...................................................................................................................... x List of Abbreviation ........................................................................................................... xv Nomenclature ................................................................................................................... xvii CHAPTER 1 : LITERATURE REVIEW ............................................................................ 1 1.1 Coffee ......................................................................................................................... 1 1.1.1 Coffee plant ......................................................................................................... 1 1.1.2 Green coffee bean processing.............................................................................. 3 1.1.3 Chemical composition of green coffee beans...................................................... 7 1.2 Coffee roasting ......................................................................................................... 15 1.2.1 Main aspects of roasting process ....................................................................... 15 1.2.2 Physiochemical changes during roasting .......................................................... 17 1.2.3 Roasters ............................................................................................................. 25 1.2.4 Degree of roast .................................................................................................. 28 1.2.5 Maillard reaction ............................................................................................... 31 1.2.6 Volatile aroma compounds in roasted coffee .................................................... 33 1.3 Mass transfer mechanism in porous media .............................................................. 36 1.3.1 Molecular diffusion ........................................................................................... 37 1.3.2 Knudsen diffusion ............................................................................................. 38 1.3.3 Surface diffusion ............................................................................................... 39 1.3.4 Convective flow of gases due to gas pressure ................................................... 40 CHAPTER 2 : RESEARCH OBJECTIVES ..................................................................... 42 CHAPTER 3 : EFFECT OF ROASTING TEMPERATURE-TIME CONDITIONS ON CO2 FORMATION AND PHYSIO-CHEMICAL PROPERTIES OF ROASTED COFFEE BEANS-A KINETICS STUDY......................................................................... 45 3.1 Introduction .............................................................................................................. 45 3.2 Material and Methods .............................................................................................. 47 3.2.1 Roasting procedure and sample preparation ..................................................... 48 3.2.2 Color measurement............................................................................................ 49 3.2.3 Roast loss ........................................................................................................... 50 3.2.4 Residual CO2 content ........................................................................................ 50 3.2.5 Volatile compounds analysis ............................................................................. 51 3.2.6 Model fitting ...................................................................................................... 52 v 3.3 Results and Discussion ............................................................................................ 53 3.3.1 Kinetics of color changes .................................................................................. 53 3.3.2 Kinetics of roast loss ......................................................................................... 60 3.3.3 Changes in residual CO2 content ....................................................................... 64 3.3.4 Evolution of volatile compounds ...................................................................... 67 3.4 Conclusions .............................................................................................................. 72 CHAPTER 4 : EFFECT OF ROASTING TEMPERATURE-TIME CONDITIONS ON CO2 DEGASSING BEHAVIOUR IN ROASTED COFFEE ............................................ 73 4.1 Introduction .............................................................................................................. 73 4.2 Materials and Methods ............................................................................................. 75 4.2.1 Roasting procedure and sample preparation ....................................................
Recommended publications
  • Multi-Element Stable Isotope Analysis of Alkylpyrazines and Pyridine from Roast Coffee
    Multi-element Stable Isotope Analysis of Alkylpyrazines and Pyridine from Roast Coffee Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Julius-Maximilians-Universität Würzburg vorgelegt von Christina Preston aus Aalen Würzburg 2008 Eingereicht am: 26. September 2008 bei der Fakultät für Chemie und Pharmazie 1. Gutachter: Prof. Dr. P. Schreier 2. Gutachter: Prof. Dr. H.-U. Humpf der Dissertation 1. Prüfer: Prof. Dr. P. Schreier 2. Prüfer: Prof. Dr. H.-U. Humpf 3. Prüfer: Prof. Dr. C. Sotriffer des öffentlichen Promotionskolloquiums Tag des öffentlichen Promotionskolloquiums: 21. Januar 2009 Doktorurkunde ausgehändigt am: ……………………………… Acknowledgements The following research was conducted at the chair of food chemistry, University of Würzburg, from January 2004 to May 2007, under the guidance of Professor Dr. Peter Schreier. Professor Dr. Peter Schreier I thank for the isotopic-topic, the scientific support, the interesting discussions, not always strictly work-related, and the freedom of researching independently. Furthermore, I thank Dr. Thorsten König, from Givaudan (formerly Quest Inter- national), for providing samples and Dr. Elke Richling, Dr. Dominique Kavvadias, as well as the student workers Christopher Heppel and Silvia Hummel, for the pre-work conducted on this research topic. Special thanks go to the ‘F-Praktikanten’ Kathrin Kahle, Helena Bader, Stefanie Kohlhepp, Ina Kleinsteuber, Magdalena Müller, Karin Thomas, Christof Madinger and Tanja Welsch as well as to the ‘C-Praktikanten’ Daniela Trost and Fabian Oberle, who all supported me courageously during their advanced practical courses. They all contributed substantially to the success of this work, with their never-tiring energy, their good ideas and friendly relationships. Dr. Frank Heckel and Dr.
    [Show full text]
  • University of Florida Thesis Or Dissertation Formatting
    COFFEE ROASTING: COLOR AND AROMA-ACTIVE SULFUR COMPOUNDS By ALBERTO MONTEIRO CORDEIRO DE AZEREDO A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2011 1 © 2011 Alberto Monteiro Cordeiro de Azeredo 2 To God, for giving me the most caring wife, the most precious daughter, and the most supportive parents and family, who helped me in achieving this honorable milestone 3 ACKNOWLEDGMENTS I would like to give my deepest thanks to my advisors Dr. Balaban and Dr. Marshall for giving me this opportunity to pursue my PhD degree, and for their support, advice and friendship throughout this experience. Thanks to Dr. Rouseff for his invaluable help, assistance and time for my research, thanks for letting me be part of his lab. I also want to thank my other committee members, Dr. Sims and Dr. Welt, for all their expertise and help. I acknowledge all the assistance provided to me from the University of Florida, the Institute of Food and Agricultural Sciences, and the department of Food Science and Human Nutrition. I would also like to give my special thanks to Dr. Susan Percival for her continuous encouragement to pursue a PhD. I would like to thank Mr. Washington Rodrigues and Mr. Edgard Bressani from Ipanema Coffees, located in southern Minas Gerais, Brazil, for kindly providing green coffee beans for this research. I would like to thank my lab mates Milena and Maria for all their help and suggestions, and would like to extend my special thanks to Dr.
    [Show full text]
  • Brochure (PDF)
    COFFEE ROASTERS & TEA BLENDERS INTRODUCTION Tudor Tea & Coffee Ltd was established in 1984 as a Tea Company. Introducing the facility to roast its ‘own’ coffee just 6 years later, it now boasts a ‘State of the Art’ Coffee Roasting plant. Being one of the few companies today employing its ‘own’ team of fully trained engineers, it is able to produce a product and offer a service to the people in the UK Food Service Market that other companies strive to emulate! Tudor Tea & Coffee Ltd achieved awards from the Tea Council for barista training can be carried out. Tudor Coffee, on behalf of INDEX the consistent high quality Tea that is produced and maintained. the client, can create their own coffee blend, and roast and Coffee Roasting Page 3 Tudor import, blend and produce Leaf Tea and Tea bags of personalise the product and can be tasted from our Sample Single Origin Coffee Page 4 various sizes for the UK Food Service Market. A complete range Roaster (by prior arrangement). Coffee Bean Pricing Page 5 of superior products such as the Masterpiece range of pure Tudor Tea & Coffee Ltd has over many years established an Tudor Tea Page 6 specialist string and tagged teabags to offer a comprehensive enviable reputation within the Food Service Industry, with all Tudor Tea Catering Range Page 7 and highly successful product range, guaranteed by our own of its engineers being fully employed by the company and we experienced tea tasters. Rainforest Alliance Product Range Page 8 ensure all are fully trained by the manufacturers directly.
    [Show full text]
  • Application Note 160
    APPLICATION NOTE 160 Degas Options for Sample Preparation Introduction A degas study was conducted to determine the effectiveness 1. Inert environment – shift from of flow versus vacuum degas. An amorphous silica- adsorbed phase to inert. alumina and a microporous zeolite were prepared by both techniques and then nitrogen isotherms were collected 2. Heat – increase the rate. for both materials. The resulting isotherms established equivalence between vacuum versus flow degas. Vacuum versus Flowing Degas Methods In the present study we accept that temperature may be controlled by various methods and that commercial temperature controllers provide repeatable performance. Rather than studying temperature control, this document will evaluate the topic of vacuum versus flowing degas. 1. Vacuum degas utilizes mass action as the only method for shifting the chemical equilibrium. An adsorbed molecule has a concentration on the surface, C and a negligible pressure, P=0 in the vapor phase. The pressure is maintained near zero since the sample is in a vacuum. Heating the sample increases the rate of transfer from the adsorbed molecules to the inert environment. 2. Flowing degas also utilizes mass action Theory by constant inert purge. The desorbed molecules are swept from the system Typical degas options include vacuum or flowing degas. The via the continuous inert gas flow and the basic concept of degas is quite simple. The sample material partial pressure of the desorbed molecules is placed in an inert environment. This inert environment in an inert stream approaches zero in a exploits chemical potential and creates a favorable state for manner similar to the vacuum technique.
    [Show full text]
  • Coffea Liberica Click on Images to Enlarge
    Species information Abo ut Reso urces Hom e A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Coffea liberica Click on images to enlarge Family Rubiaceae Scientific Name Coffea liberica W.Bull ex Hiern Hiern, W.P. (1876) Transactions Linnean Society 2 i: 171. Type: Sierra Leone, cultivated on Mr Effenhausens farm, Daniell s.n. Lectotype: BM, fide Bridson (1985). Leaves and Flowers. Copyright CSIRO Common name Liberian Coffee; Coffee, Liberian Weed * Stem Attains the dimensions of a tree but also flowers and fruits as a shrub. Leaves Flower. Copyright CSIRO Leaf blades about 14-25 x 5-9 cm, petioles about 1-2.5 cm long. Domatia are foveoles with backward pointing orifices partly obstructed with hairs. Foveoles also visible as humps on the upper surface of the leaf blade. Stipules triangular, about 3-4 mm long. Flowers Flowers borne in almost sessile clusters in the leaf axils. Flowers about 30-40 mm diam. Calyx lobes small and inconspicuous. Corolla tube about 10-12 mm long, lobes 7-8, about 6 mm long, glabrous. Stamens about 7-8. Ovules 1 per locule. Fruit Scale bar 10mm. Copyright CSIRO Fruits subglobose, about 18-30 mm long. Seeds two or three per fruit, each seed enclosed in a hard endocarp about 13-15 x 4-8 mm. Testa thin and papery. Endosperm with a longitudinal fold. Radicle not as wide as but much longer than the cotyledons. Seedlings Cotyledons orbicular to +/- reniform, about 30-50 mm diam., stipules present.
    [Show full text]
  • Barista Training Classes
    Sept - Oct 2018 (click for larger image) Latte Art Barista Training Classes Increasingly in cafes around the world, Latte Art has In Depth - Hands On become more than a frilly add-on; it has become the Coffee Roaster | Coffee Roasting signature of a properly constructed, delicious handcrafted Tues Sept 11, 7 pm Latte Art coffee. A coffee that looks as good as it tastes, a coffee Thurs Sept 13, Noon Barista Level 1 that keeps the customer coming back, a coffee that deserves a premium price, a coffee that fills the tip jar, a Tues Sept 18, 7 pm Barista Level 1 coffee that cannot be created by the large chains. The Thurs Sept 20, Noon Latte Art benefits do not end there: the pursuit of the perfect pour Tues Sept 25, 7 pm Latte Art engages baristas in their craft, creating positive energy Wed Sept 26, Noon Preventative Maintenance customers notice and enjoy. Thurs Aug 27, Noon Cupping Average class length 2 hours, first class free for folks Tues Oct 2, 7 pm Pour Over Brewing in the trade or those looking to get started, $40 per Thurs Oct, 4 Noon Nitro Cold Brew - Cold Press class or $120 per 6 month unlimited pass otherwise. Tuesday Oct 9, 7 pm Barista Level 1 Please, call or email us to reserve your seat or Thursday Oct 9, Noon Barista Level 1 schedule a private class. [email protected] Barista Level 1- intro to green coffee, intro to roasting, espresso extraction in depth, micro-foam in depth, make a complete drink.
    [Show full text]
  • Koa Coffee Plantation Selected As Kona's Finest Coffee
    Contact: Current Events (808)326-7820 FAX (808)326-5634 [email protected] FOR IMMEDIATE RELEASE KOA COFFEE PLANTATION SELECTED AS KONA'S FINEST COFFEE KONA, HAWAII'S BIG ISLAND - Marin and Cathy Artukovich Koa Coffee Plantation won the coveted Gevalia Kona Coffee Cupping Competition today. The five-year old family run Kona coffee farm is located in Captain Cook at the 2,700 foot elevation. Cupping judge John King of Harold King and Co. described the winning coffee as "a typical medium mellow bodied Kona coffee with a delicate acidity." Second place went to Sugai Kona Coffee and third place to Wood Captain Cook Estate. Over sixty Kona coffee farmers submitted entries into this year's Gevalia Kona Coffee Cupping Competition. The blind-taste competition, held Wednesday and Thursday at the Ohana Keauhou Beach Resort, was sponsored by Gevalia Kaffe of Sweden, and fourteen entries advanced to Thursday's final round. The guest judge of honor, international master cupper Willy Pettersson of Gevalia Kaffe, was welcomed back to Kona. Manabu Fujita of UCC Ueshima Coffee Company, the largest coffee roaster in Japan, served on the judge's panel with John King of Harold King and Co. and Michael Therrien, an international coffee expert, maintaining the high standards for the competition. Each farm submitted a 50-pound sample from which five pounds were actually entered into the cupping competition. To be eligible, the coffee submitted must have been harvested in Kona. The cupping competition is a blind tasting, once the entry is accepted it is simply assigned a number to protect its anonymity.
    [Show full text]
  • Statistical Reports (ICC-102-10)
    ICC 102‐10 E RULES RULES ON STATISTICS STATISTICAL REPORTS APPROVED BY THE INTERNATIONAL COFFEE COUNCIL ON 28 MARCH 2011 May 2011 London, United Kingdom FOREWORD The Rules on Statistics – Statistical Reports of the International Coffee Organization contained in this document were formally approved by the International Coffee Council at its 106th Session on 28 March 2011, following the entry into force of the International Coffee Agreement 2007 on 2 February 2011. They supersede the Rules on Statistics – Statistical Reports contained in document EB‐3830/02. CONTENTS Page Definitions ................................................................................................................................... 1 Instructions for monthly reports ................................................................................................ 4 Instructions for quarterly and annual reports ............................................................................ 6 Annex Exporting Members: I‐A Report on provisional exports, prices to growers and retail/wholesale prices I‐B Monthly report: exports by destination I‐C Monthly report: imports by origin I‐D Quarterly and annual reports: production estimate; crop distribution; gross closing stocks; and area under coffee Importing Members: II‐A Monthly report: imports by origin II‐B Monthly report: re‐exports by destination II‐C Monthly, quarterly and annual reports: retail and wholesale prices; roastings; and inventories Exporting and importing countries: III List of destinations in alphabetical order showing ICO, EU and ISO codes RULES ON STATISTICS STATISTICAL REPORTS Definitions Types of coffee means the two most important species of coffee in economic terms: Arabica coffee (Coffea arabica) and Robusta coffee (Coffea canephora). Two other species grown on a much smaller scale are Liberica coffee (Coffea liberica) and Excelsa coffee (Coffea dewevrei). For statistical purposes, the two types considered will be Arabica and Robusta, since the demand for the others is not commercially significant.
    [Show full text]
  • Gathering Gis Data to Inform Development and Planning in the Rainforest and Protect Natural and Historic Features
    ABSTRACT SUSTAINABLE COFFEE FARMING IN HAWAI’I: GATHERING GIS DATA TO INFORM DEVELOPMENT AND PLANNING IN THE RAINFOREST AND PROTECT NATURAL AND HISTORIC FEATURES by Connor Evan O’Hearn Abstract: This report describes the internship experience in Kona, Hawai’i working with Monarch Coffee. This involved the collection of 81 soil samples, and geospatial data on the locations of natural and human made features. This data collection and analysis was for the purpose of building a Map Book. The 122 acres of land were sectioned into 27 individual rectangular segments to make the gathering of data more uniform. Soil samples and other spatial information was taken throughout each section. Due to the size of the property, it was important to divide it into more manageable focus areas that would allow for a high level of detail in the analysis. Ultimately, the resulting maps will help in sustainable and efficient land development while conserving the natural landmarks and ecosystem. This project took place in the summer of 2020 during the COVID-19 pandemic. This limited the data collection team to one person and has caused various delays in the economy and industry in Hawai’i. Additionally, the spread of Coffee Leaf Rust to the state of Hawai’i and the Big Island in 2020 raises new concerns about the coffee industry and the plans for the development of this property. SUSTAINABLE COFFEE FARMING IN HAWAI’I: GATHERING GIS DATA TO INFORM DEVELOPMENT AND PLANNING IN THE RAINFOREST AND PROTECT NATURAL AND HISTORIC FEATURES An Internship Report Submitted to the Faculty of Miami University in partial fulfillment of the requirements for the degree of Master of Arts by Connor Evan O’Hearn Miami University Oxford, Ohio 2021 Advisor: Dr.
    [Show full text]
  • Coffee, Tea, Or Caffeine-Free?
    SPECIAL REPORT: Coffee, Tea, or Caffeine-Free? Copyright 2016 by David L. Meinz, MS, RDN, FAND, CSP www.DavidMeinz.com Americans drink a whopping 500 million cups of coffee every day. That comes to over six billion gallons a year. That’s more than any other country in the world. It’s been our national drink ever since the Boston Tea Party. Coffee accounts for about 75% of the caffeine we take in and about nine out of ten Americans take caffeine in everyday in one form or another. The average American coffee drinker says they take in about 3 ½ cups per day. And the surprising good news about coffee is that there is very little bad news. The coffee bean, like all plants, contains many different naturally occuring compounds and chemicals. Some of those are the good antioxidants that help our body protect itself from damage. As a matter of fact, a recent study found that coffee is the number one source of antioxidants in the U.S; not necessarily because it’s such a good source, but simply because Americans just drink so much of it. It you really want lots of antioxidants, instead of drinking more coffee, start eating more fruit. Blueberries, dates, and red grapes are especially high in antioxidants. Of course the real issue in most peoples minds is the caffeine content of this beverage. There’s no denying that caffeine can improve your mood and help fight fatigue. It can also act as a mild stimulant to improve physical and mental performance especially on monotonous tasks that you do over and over every day.
    [Show full text]
  • Degas Backfill Gas Selection for Micromeritics Gas Adsorption Instruments
    Application Note 73 Degas Backfill Gas Selection for Micromeritics Gas Adsorption Instruments Introduction adsorbed gas is one type of contaminant that you Specific surface areas and pore volume distribu- wish to remove during degassing, using nitrogen tions are often determined using gas adsorption as the backfill gas partially defeats the purpose of techniques. Prior to analysis, any adsorbed gas or degassing. Obviously, nitrogen is not a true inert vapor phase (such as water or other volatiles) gas when it comes to microporous materials. should be removed from the sample. This process is often referred to as degassing the sample. Therefore, for materials which tend to adsorb nitrogen, helium is a better choice as the backfill Degassing usually involves either heating the gas. Helium adsorption at room temperature is sample or flowing an inert gas across the sample negligible, even in the high energy pores of most during evacuation. In either case, molecules being microporous samples. desorbed from the surface of the sample are removed from the sample tube. After degassing, There are some highly microporous materials in the sample tube can be sealed and removed in one which helium (if used as the backfill gas) is ex- of the following conditions: tremely difficult to remove due to diffusion. Complete removal requires great care as well as • Under vacuum using the TranSealTM, an appa- time-consuming tasks. Otherwise its presence can ratus which is inserted into the sample tube. It severely distort an adsorption isotherm. is designed to close when removed from the degassing port and open automatically when For samples where neither nitrogen nor helium are installed on the sample port, maintaining a ideal, a vacuum-sealed transfer is the most vacuum-tight seal.
    [Show full text]
  • Computer Simulation Applied to Studying Continuous Spirit Distillation and Product Quality Control
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Food Control 22 (2011) 1592e1603 Contents lists available at ScienceDirect Food Control journal homepage: www.elsevier.com/locate/foodcont Computer simulation applied to studying continuous spirit distillation and product quality control Fabio R.M. Batista, Antonio J.A. Meirelles* Laboratory EXTRAE, Department of Food Engineering, Faculty of Food Engineering, University of Campinas e UNICAMP, Campinas, Brazil article info abstract Article history: This work aims to study continuous spirit distillation by computational simulation, presenting some Received 7 June 2010 strategies of process control to regulate the volatile content. The commercial simulator Aspen (Plus and Received in revised form dynamics) was selected. A standard solution containing ethanol, water and 10 minor components rep- 2 March 2011 resented the wine to be distilled. A careful investigation of the vaporeliquid equilibrium was performed Accepted 8 March 2011 for the simulation of two different industrial plants. The simulation procedure was validated against experimental results collected from an industrial plant for bioethanol distillation. The simulations were Keywords: conducted with and without the presence of a degassing system, in order to evaluate the efficiency of Spirits fi Distillation this system in the control of the volatile content. To improve the ef ciency of the degassing system, fl Simulation a control loop based on a feedback controller was developed. The results showed that re ux ratio and Aspen Plus product flow rate have an important influence on the spirit composition. High reflux ratios and spirit Degassing flow rates allow for better control of spirit contamination.
    [Show full text]