Scale Vs. Conformal Invariance in the Ads/CFT Correspondence

Total Page:16

File Type:pdf, Size:1020Kb

Scale Vs. Conformal Invariance in the Ads/CFT Correspondence View metadata, citation and similarScale papers Vs. at core.ac.uk Conformal Invariance in the AdS/CFT Correspondence brought to you by CORE provided by CERN Document Server Adel M. Awad] and Clifford V. Johnson\ ]Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506, U.S.A. and Department of Physics, Faculty of Science, Ain Shams University, Cairo 11566, Egypt \Centre for Particle Theory, Department of Mathematical Sciences, University of Durham, Durham, DH1 3LE, U.K. [email protected], [email protected] (June 2000) We present two examples of non–trivial field theories which are scale invariant, but not confor- mally invariant. This is done by placing certain field theories, which are conformally invariant in flat space, onto curved backgrounds of a specific type. We define this using the AdS/CFT corre- spondence, which relates the physics of gravity in asymptotically Anti–de Sitter (AdS) spacetimes to that of a conformal field theory (CFT) in one dimension fewer. The AdS rotating (Kerr) black holes in five and seven dimensions provide us with the examples, since by the correspondence we are able to define and compute the action and stress tensor of four and six dimensional field theories residing on rotating Einstein universes, using the “boundary counterterm” method. The rotation breaks conformal but not scale invariance. The AdS/CFT framework is therefore a natural arena for generating such examples of non–trivial scale invariant theories which are not conformally invariant. There is an often quoted piece of folklore in the sub- vanish, while the types B and D anomalies do. In this a ject that states that any non–trivial example of a field case, there will be an irremovable anomaly Ta , for which a theory which is scale invariant is automatically confor- Ta = 0, showing that scale invariance is preserved. mally invariant. Proofs of this statement only exist in S b In short, we must find a way to place a conformally certain specific situations, and in fact it is known to be R invariantb theory on a spacetime for which the Euler den- not generally applicable. Some early discussion can be sity is non–vanishing, but which is topologically trivial, found in refs. [1,2]. The focus in those cases is on finding so that the integral vanishes. Our spacetime must also field theory examples in flat space. Another way to vi- be conformally flat, thus not contributing to the Type B olate conformal invariance is of course to place the field anomaly, which would break scale invariance too. In this theory on a spacetime with non–zero curvature. Then letter, we show how to do this, and in this way find a there are conformal anomalies, and the non–vanishing new class of counterexamples to the folklore. trace of the stress–energy tensor, Tab, can be written in terms of various local curvature invariants of the back- New tools have appeared on the market for defining ground spacetime. The general formb of the anomaly in and studying conformally invariant field theories in in- dimension n (which is even, since we only have conformal teresting situations, often even at strong coupling. One anomalies in those cases) is given by (see e.g. ref. [3]): of these, the “AdS/CFT correspondence”, relates an (n+1)–dimensional theory of gravity on anti–de Sitter T a =c E + c I + J a . (1) a 0 n i i ∇a (AdS) spacetime (times a compact manifold) to a con- i X formal field theory (CFT) in n dimensions. This duality b Here, the c’s are constants, En is the Euler density, Ii are first arose as a result of investigating [4] N parallel D3– terms constructed from the Weyl tensor and its deriva- branes (reviewed in refs. [5]) in the context of the low tives, and the last term is a collection of total derivative energy, classical limit of type IIB superstring theory, — terms. The first type of term is called “type A”, the the supergravity limit— on five dimensional anti–de Sit- 5 next “type B”, and the last “type D”. It is important to ter spacetime times a five sphere (AdS5 S ). The dual note that the coefficients of all terms are regularisation CFT in this case is the four dimensional × =4 supersym- scheme independent except the type D anomaly. These metric SU(N) Yang–Mills theory for largeN N. For other latter terms can be removed by a suitable addition of lo- dimensions, the dual theories exist, but are less well un- cal counterterms to the action. The type A anomaly is derstood. For example eleven dimensional supergravity 4 only locally a total derivative, in general. on AdS7 S is dual to a six dimensional “(0,2)” CFT, In order to construct a non–trivial example of a scale the notation× denoting the number and chirality of the six invariant theory which is not conformally invariant, we dimensional supercharges. (See ref. [6] for a review.) A can simply place a conformally invariant theory on a precise statement of the AdS/CFT correspondence [7,8] spacetime for which the type A anomaly does not equates the partition functions: S 1 2 δI ZAdS(φi)=ZCFT(φ0;i) . (2) T ab = . (5) √ h δhab From the gravity–on–AdS point of view, φi is a bulk field − constrained to the values φ0;i on the AdS boundary, while For orientation, a metric on AdSn+1, in global coordi- from the CFT point of view, φ0;i are sources for pointlike nates is: operators, i, in the theory. In the low energy limit of O 2 2 the theory one can use the classical gravitational action 2 r 2 dr 2 2 ds = 1+ dt + + r dΩn 1 , (6) to calculate the partition function of the CFT “on the − l2 (1 + r2/l2) − boundary”. This action has the form [9], 2 n 1 where dΩn 1 is the metric on a round S − . Equation (5) − 1 n+1 n(n 1) gives a definition of the action and stress–tensor on any Ibulk + Isurf = d x√ g R + − − 16πG − l2 region (radius r in the coordinates that we will choose ZM 1 later) bounding the interior of AdS . The AdS/CFT dnx√ hK. (3) n+1 relation equates these quantities to a dual conformal field − 8πG @ − Z M theory residing “on the boundary” at (r ). →∞ The first term is the Einstein–Hilbert action with nega- As stated before, the metric restricted to the boundary, tive cosmological constant (Λ= n(n 1)/2l2). The sec- − − hab, diverges due to an infinite conformal factor, which ond term is the Gibbons–Hawking boundary term. Here, is r2/l2. We take the background metric upon which the hab is the boundary metric and K isthetraceofthe dual field theory resides as extrinsic curvature Kab of the boundary. The theory on the boundary can be seen to obtain l2 its conformal invariance properties from two (related) γab = lim hab . (7) r r2 sources: First, the metric on the boundary of the the- →∞ ory is not uniquely defined, since the AdS metric has a and so the field theory’s stress–tensor, T ab, is related to double pole there. It is instead only defined up to a con- the one in (5) by the rescaling [19]: formal class of metrics. The double pole divergence of b the metric is precisely what allows the theory to inherit bc bc √ γγabT = lim √ hhabT . (8) r the properties of a conformal field theory, since the pole − →∞ − shows up as the correct behaviour of the operator prod- b ab uct expansion in the CFT [7]. Second, the SO(n+1, 2) This amounts to multiplying all expressions for T dis- n 2 played later by (r/l) − before taking the limit r . isometry of the AdSn+1 spacetime descends to the local →∞ conformal group of the field theory on the boundary [4]. For the AdSn+1 example (6), the n dimensional bound- The AdS/CFT correspondence is therefore a powerful ary upon which the theory resides is the Einstein uni- 2 2 2 2 way of studying properties of the dual conformal field verse, with metric ds = dt + l dΩn 1.Inthecaseof − − theory, by relating them to properties of the gravity the- n=4, the field theory stress tensor computed using the ory. Here, we will compute the action and stress tensor above methods [11] can be written (as for other n)inthe for certain gravity solutions and relate them to properties standard perfect fluid form [19] (ua=(1, 0, 0, 0)): of their dual field theories. To deal with the divergences 1 N 2 which appear in the gravitational action (arising from in- Tab = (4uaub + γab)= (4uaub + γab) . (9) tegrating over the infinite volume of spacetime), we shall 64πlG 32π2l4 use the “counterterm subtraction” method [11], which Hereb we used the dictionary [4] between gravity and regulates the action by the addition of certain boundary field theory quantities, G=l3π/2N 2. The total energy, counterterms which depend upon the geometrical prop- E= d3xT =3N 2/16l, is in fact [11] the Casimir energy erties of the boundary of the spacetime. They are chosen 00 of the =4 supersymmetric SU(N) Yang–Mills theory to diverge at the boundary in such a way as to cancel the on theR NS3. (See also ref. [20].) The conformal invari- bulk divergences [11,13] (see also refs. [14–18]): b a ance of the theory is evident in the fact that Ta =0. It is worth stressing that there should be no confusion about 1 n (n 1) l Ict = d x√ h − R + the fact that the theory is conformal while inb a box, S3, 8πG @ − " l − 2(n 2) Z M − which has a scale, l.
Recommended publications
  • Characterization of a Subclass of Tweedie Distributions by a Property
    Characterization of a subclass of Tweedie distributions by a property of generalized stability Lev B. Klebanov ∗, Grigory Temnov † December 21, 2017 Abstract We introduce a class of distributions originating from an exponential family and having a property related to the strict stability property. Specifically, for two densities pθ and p linked by the relation θx pθ(x)= e c(θ)p(x), we assume that their characteristic functions fθ and f satisfy α(θ) fθ(t)= f (β(θ)t) t R, θ [a,b] , with a and b s.t. a 0 b . ∀ ∈ ∈ ≤ ≤ A characteristic function representation for this family is obtained and its properties are investigated. The proposed class relates to stable distributions and includes Inverse Gaussian distribution and Levy distribution as special cases. Due to its origin, the proposed distribution has a sufficient statistic. Besides, it combines stability property at lower scales with an exponential decay of the distri- bution’s tail and has an additional flexibility due to the convenient parametrization. Apart from the basic model, certain generalizations are considered, including the one related to geometric stable distributions. Key Words: Natural exponential families, stability-under-addition, characteristic func- tions. 1 Introduction Random variables with the property of stability-under-addition (usually called just stabil- ity) are of particular importance in applied probability theory and statistics. The signifi- arXiv:1006.2070v1 [stat.ME] 10 Jun 2010 cance of stable laws and related distributions is due to their major role in the Central limit problem and their link with applied stochastic models used in e.g. physics and financial mathematics.
    [Show full text]
  • Notes on Statistical Field Theory
    Lecture Notes on Statistical Field Theory Kevin Zhou [email protected] These notes cover statistical field theory and the renormalization group. The primary sources were: • Kardar, Statistical Physics of Fields. A concise and logically tight presentation of the subject, with good problems. Possibly a bit too terse unless paired with the 8.334 video lectures. • David Tong's Statistical Field Theory lecture notes. A readable, easygoing introduction covering the core material of Kardar's book, written to seamlessly pair with a standard course in quantum field theory. • Goldenfeld, Lectures on Phase Transitions and the Renormalization Group. Covers similar material to Kardar's book with a conversational tone, focusing on the conceptual basis for phase transitions and motivation for the renormalization group. The notes are structured around the MIT course based on Kardar's textbook, and were revised to include material from Part III Statistical Field Theory as lectured in 2017. Sections containing this additional material are marked with stars. The most recent version is here; please report any errors found to [email protected]. 2 Contents Contents 1 Introduction 3 1.1 Phonons...........................................3 1.2 Phase Transitions......................................6 1.3 Critical Behavior......................................8 2 Landau Theory 12 2.1 Landau{Ginzburg Hamiltonian.............................. 12 2.2 Mean Field Theory..................................... 13 2.3 Symmetry Breaking.................................... 16 3 Fluctuations 19 3.1 Scattering and Fluctuations................................ 19 3.2 Position Space Fluctuations................................ 20 3.3 Saddle Point Fluctuations................................. 23 3.4 ∗ Path Integral Methods.................................. 24 4 The Scaling Hypothesis 29 4.1 The Homogeneity Assumption............................... 29 4.2 Correlation Lengths.................................... 30 4.3 Renormalization Group (Conceptual)..........................
    [Show full text]
  • Scale Transformations of Fields and Correlation Functions
    H. Kleinert and V. Schulte-Frohlinde, Critical Properties of φ4-Theories August 28, 2011 ( /home/kleinert/kleinert/books/kleischu/scaleinv.tex) 7 Scale Transformations of Fields and Correlation Functions We now turn to the properties of φ4-field theories which form the mathematical basis of the phenomena observed in second-order phase transitions. These phenomena are a consequence of a nontrivial behavior of fields and correlation functions under scale transformations, to be discussed in this chapter. 7.1 Free Massless Fields Consider first a free massless scalar field theory, with an energy functional in D-dimensions: D 1 2 E0[φ]= d x [∂φ(x)] , (7.1) Z 2 This is invariant under scale transformations, which change the coordinates by a scale factor x → x′ = eαx, (7.2) and transform the fields simultaneously as follows: ′ 0 dφα α φ(x) → φα(x)= e φ(e x). (7.3) 0 From the point of view of representation theory of Lie groups, the prefactor dφ of the parameter α plays the role of a generator of the scale transformations on the field φ. Its value is D d0 = − 1. (7.4) φ 2 Under the scale transformations (7.2) and (7.3), the energy (7.1) is invariant: ′ 1 ′ 0 1 ′ 1 ′ ′ D 2 D 2dφ α α 2 D 2 E0[φα]= d x [∂φα(x)] = d x e [∂φ(e x)] = d x [∂ φ(x )] = E0[φ]. (7.5) Z 2 Z 2 Z 2 0 The number dφ is called the field dimension of the free field φ(x).
    [Show full text]
  • Discrete Scale Invariance and Its Logarithmic Extension
    Nuclear Physics B 655 [FS] (2003) 342–352 www.elsevier.com/locate/npe Discrete scale invariance and its logarithmic extension N. Abed-Pour a, A. Aghamohammadi b,d,M.Khorramic,d, M. Reza Rahimi Tabar d,e,f,1 a Department of Physics, IUST, P.O. Box 16844, Tehran, Iran b Department of Physics, Alzahra University, Tehran 19834, Iran c Institute for Advanced Studies in Basic Sciences, P.O. Box 159, Zanjan 45195, Iran d Institute for Applied Physics, P.O. Box 5878, Tehran 15875, Iran e CNRS UMR 6529, Observatoire de la Côte d’Azur, BP 4229, 06304 Nice cedex 4, France f Department of Physics, Sharif University of Technology, P.O. Box 9161, Tehran 11365, Iran Received 28 August 2002; received in revised form 27 January 2003; accepted 4 February 2003 Abstract It is known that discrete scale invariance leads to log-periodic corrections to scaling. We investigate the correlations of a system with discrete scale symmetry, discuss in detail possible extension of this symmetry such as translation and inversion, and find general forms for correlation functions. 2003 Published by Elsevier Science B.V. PACS: 11.10.-z; 11.25.Hf 1. Introduction Log-periodicity is a signature of discrete scale invariance (DSI) [1]. DSI is a symmetry weaker than (continuous) scale invariance. This latter symmetry manifests itself as the invariance of a correlator O(x) as a function of the control parameter x, under the scaling x → eµx for arbitrary µ. This means, there exists a number f(µ)such that O(x) = f(µ)O eµx .
    [Show full text]
  • A Higher Derivative Fermion Model
    Alma Mater Studiorum · Universita` di Bologna Scuola di Scienze Dipartimento di Fisica e Astronomia Corso di Laurea Magistrale in Fisica A higher derivative fermion model Relatore: Presentata da: Prof. Fiorenzo Bastianelli Riccardo Reho Anno Accademico 2018/2019 Sommario Nel presente elaborato studiamo un modello fermionico libero ed invariante di scala con derivate di ordine elevato. In particolare, controlliamo che la simmetria di scala sia estendibile all'intero gruppo conforme. Essendoci derivate di ordine pi`ualto il modello non `eunitario, ma costituisce un nuovo esempio di teoria conforme libera. Nelle prime sezioni riguardiamo la teoria generale del bosone libero, partendo dapprima con modelli semplici con derivate di ordine basso, per poi estenderci a dimensioni arbitrarie e derivate pi`ualte. In questo modo illustriamo la tecnica che ci permette di ottenere un modello conforme da un modello invariante di scala, attraverso l'accoppiamento con la gravit`ae richiedendo l'ulteriore invarianza di Weyl. Se questo `e possibile, il modello originale ammette certamente l'intera simmetria conforme, che emerge come generata dai vettori di Killing conformi. Nel modello scalare l'accoppiamento con la gravit`a necessita di nuovi termini nell'azione, indispensabili affinch`ela teoria sia appunto invariante di Weyl. La costruzione di questi nuovi termini viene ripetuta per un particolare modello fermionico, con azione contenente l'operatore di Dirac al cubo (r= 3), per il quale dimostriamo l'invarianza conforme. Tale modello descrive equazioni del moto con derivate al terzo ordine. Dal momento che l'invarianza di Weyl garantisce anche l'invarianza conforme, ci si aspetta che il tensore energia-impulso corrispondente sia a traccia nulla.
    [Show full text]
  • Arxiv:1901.04741V2 [Hep-Th] 15 Feb 2019 2
    Quantum scale symmetry C. Wetterich [email protected] Universität Heidelberg, Institut für Theoretische Physik, Philosophenweg 16, D-69120 Heidelberg Quantum scale symmetry is the realization of scale invariance in a quantum field theory. No parameters with dimension of length or mass are present in the quantum effective action. Quantum scale symmetry is generated by quantum fluctuations via the presence of fixed points for running couplings. As for any global symmetry, the ground state or cosmological state may be scale invariant or not. Spontaneous breaking of scale symmetry leads to massive particles and predicts a massless Goldstone boson. A massless particle spectrum follows from scale symmetry of the effective action only if the ground state is scale symmetric. Approximate scale symmetry close to a fixed point leads to important predictions for observations in various areas of fundamental physics. We review consequences of scale symmetry for particle physics, quantum gravity and cosmology. For particle physics, scale symmetry is closely linked to the tiny ratio between the Fermi scale of weak interactions and the Planck scale for gravity. For quantum gravity, scale symmetry is associated to the ultraviolet fixed point which allows for a non-perturbatively renormalizable quantum field theory for all known interactions. The interplay between gravity and particle physics at this fixed point permits to predict couplings of the standard model or other “effective low energy models” for momenta below the Planck mass. In particular, quantum gravity determines the ratio of Higgs boson mass and top quark mass. In cosmology, approximate scale symmetry explains the almost scale-invariant primordial fluctuation spectrum which is at the origin of all structures in the universe.
    [Show full text]
  • A Model of Interval Timing by Neural Integration
    9238 • The Journal of Neuroscience, June 22, 2011 • 31(25):9238–9253 Behavioral/Systems/Cognitive A Model of Interval Timing by Neural Integration Patrick Simen, Fuat Balci, Laura deSouza, Jonathan D. Cohen, and Philip Holmes Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544 We show that simple assumptions about neural processing lead to a model of interval timing as a temporal integration process, in which a noisy firing-rate representation of time rises linearly on average toward a response threshold over the course of an interval. Our assumptions include: that neural spike trains are approximately independent Poisson processes, that correlations among them can be largely cancelled by balancing excitation and inhibition, that neural populations can act as integrators, and that the objective of timed behaviorismaximalaccuracyandminimalvariance.Themodelaccountsforavarietyofphysiologicalandbehavioralfindingsinrodents, monkeys, and humans, including ramping firing rates between the onset of reward-predicting cues and the receipt of delayed rewards, and universally scale-invariant response time distributions in interval timing tasks. It furthermore makes specific, well-supported predictions about the skewness of these distributions, a feature of timing data that is usually ignored. The model also incorporates a rapid (potentially one-shot) duration-learning procedure. Human behavioral data support the learning rule’s predictions regarding learning speed in sequences of timed responses. These results suggest that simple, integration-based models should play as prominent a role in interval timing theory as they do in theories of perceptual decision making, and that a common neural mechanism may underlie both types of behavior. Introduction the ramp rate, is tuned so that integrator activity hits a fixed Diffusion models can approximate neural population activity threshold level at the right time.
    [Show full text]
  • Statistical Field Theory University of Cambridge Part III Mathematical Tripos
    Preprint typeset in JHEP style - HYPER VERSION Michaelmas Term, 2017 Statistical Field Theory University of Cambridge Part III Mathematical Tripos David Tong Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, CB3 OBA, UK http://www.damtp.cam.ac.uk/user/tong/sft.html [email protected] { 1 { Recommended Books and Resources There are a large number of books which cover the material in these lectures, although often from very different perspectives. They have titles like \Critical Phenomena", \Phase Transitions", \Renormalisation Group" or, less helpfully, \Advanced Statistical Mechanics". Here are some that I particularly like • Nigel Goldenfeld, Phase Transitions and the Renormalization Group A great book, covering the basic material that we'll need and delving deeper in places. • Mehran Kardar, Statistical Physics of Fields The second of two volumes on statistical mechanics. It cuts a concise path through the subject, at the expense of being a little telegraphic in places. It is based on lecture notes which you can find on the web; a link is given on the course website. • John Cardy, Scaling and Renormalisation in Statistical Physics A beautiful little book from one of the masters of conformal field theory. It covers the material from a slightly different perspective than these lectures, with more focus on renormalisation in real space. • Chaikin and Lubensky, Principles of Condensed Matter Physics • Shankar, Quantum Field Theory and Condensed Matter Both of these are more all-round condensed matter books, but with substantial sections on critical phenomena and the renormalisation group. Chaikin and Lubensky is more traditional, and packed full of content.
    [Show full text]
  • Scale Invariance and Conformal Invariance in Quantum Field Theory
    Motivations Scale and conformal invariance Weyl consistency conditions Discussion and conclusion Scale Invariance and Conformal Invariance in Quantum Field Theory Jean-Fran¸coisFortin D´epartement de Physique, de G´eniePhysique et d'Optique Universit´eLaval, Qu´ebec, QC G1V 0A6, Canada June 15-June 19, 2015 2015 CAP Congress mostly based on arXiv:1208.3674 [hep-th] with Benjam´ınGrinstein and Andreas Stergiou Motivations Scale and conformal invariance Weyl consistency conditions Discussion and conclusion The big picture Theory space Renormalization group (RG) flow Quantum field theory (QFT) Scale field theory (SFT) fixed point limit cycle Conformal field theory (CFT) Weyl consistency conditions fixed point c-theorem gradient flow fixed point Motivations Scale and conformal invariance Weyl consistency conditions Discussion and conclusion Why is it interesting ? QFT phases Infrared (IR) free - With mass gap ) Exponentially-decaying correlation functions (e.g. Higgs phase) - Without mass gap ) Trivial power-law correlation functions (e.g. Abelian Coulomb phase) IR interacting - CFTs ) Power-law correlation functions (e.g. non-Abelian Coulomb phase) - SFTs ) ? Possible types of RG flows Strong coupling Weak coupling - Fixed points (e.g. Banks-Zaks fixed point Banks, Zaks (1982)) - Recurrent behaviors (e.g. limit cycles or ergodic behaviors) Motivations Scale and conformal invariance Weyl consistency conditions Discussion and conclusion Outline 1 Motivations 2 Scale and conformal invariance Preliminaries Scale invariance and recurrent behaviors 3 Weyl
    [Show full text]
  • A Mathematical Basis for Taylor's Power Law, 1/F Noise, and Multifractalit
    University of Southern Denmark Tweedie convergence: a mathematical basis for Taylor’s power law, 1/f noise, and multifractality Kendal, Wayne S.; Jørgensen, Bent Published in: Physical Review E DOI: 10.1103/PhysRevE.84.066120 Publication date: 2011 Document version: Submitted manuscript Citation for pulished version (APA): Kendal, W. S., & Jørgensen, B. (2011). Tweedie convergence: a mathematical basis for Taylor’s power law, 1/f noise, and multifractality. Physical Review E, 84(6), 066120-1-066120-10. https://doi.org/10.1103/PhysRevE.84.066120 Go to publication entry in University of Southern Denmark's Research Portal Terms of use This work is brought to you by the University of Southern Denmark. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply: • You may download this work for personal use only. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying this open access version If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to [email protected] Download date: 26. Sep. 2021 PHYSICAL REVIEW E 84, 066120 (2011) Tweedie convergence: A mathematical basis for Taylor’s power law, 1/ f noise, and multifractality Wayne S. Kendal1,* and Bent Jørgensen2,† 1Division of Radiation Oncology, University of Ottawa, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6 2Department of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark (Received 15 July 2011; revised manuscript received 18 November 2011; published 27 December 2011) Plants and animals of a given species tend to cluster within their habitats in accordance with a power function between their mean density and the variance.
    [Show full text]
  • Lectures on Conformal Field Theory Arxiv:1511.04074V2 [Hep-Th] 19
    Prepared for submission to JHEP Lectures on Conformal Field Theory Joshua D. Quallsa aDepartment of Physics, National Taiwan University, Taipei, Taiwan E-mail: [email protected] Abstract: These lectures notes are based on courses given at National Taiwan University, National Chiao-Tung University, and National Tsing Hua University in the spring term of 2015. Although the course was offered primarily for graduate students, these lecture notes have been prepared for a more general audience. They are intended as an introduction to conformal field theories in various dimensions working toward current research topics in conformal field theory. We assume the reader to be familiar with quantum field theory. Familiarity with string theory is not a prerequisite for this lectures, although it can only help. These notes include over 80 homework problems and over 45 longer exercises for students. arXiv:1511.04074v2 [hep-th] 19 May 2016 Contents 1 Lecture 1: Introduction and Motivation2 1.1 Introduction and outline2 1.2 Conformal invariance: What?5 1.3 Examples of classical conformal invariance7 1.4 Conformal invariance: Why?8 1.4.1 CFTs in critical phenomena8 1.4.2 Renormalization group 12 1.5 A preview for future courses 16 1.6 Conformal quantum mechanics 17 2 Lecture 2: CFT in d ≥ 3 22 2.1 Conformal transformations for d ≥ 3 22 2.2 Infinitesimal conformal transformations for d ≥ 3 24 2.3 Special conformal transformations and conformal algebra 26 2.4 Conformal group 28 2.5 Representations of the conformal group 29 2.6 Constraints of Conformal
    [Show full text]
  • Quantum Scale Symmetry in Particle Physics, Gravity and Cosmology
    Quantum scale symmetry in particle physics, gravity and cosmology Quantum scale symmetry No parameter with dimension of length or mass is present in the quantum effective action. Then invariance under dilatations or global scale transformations is realized. Continuous global symmetry Scale symmetry in cosmology ? Almost scale invariant primordial fluctuation spectrum scales are present in cosmology Scale symmetry in elementary particle physics ? proton mass , electron mass Scales are present in particle physics, but very small as compared to Planck mass High momentum scattering almost scale invariant Quantum scale symmetry Quantum fluctuations induce running couplings violation of scale symmetry well known in QCD or standard model Quantum scale symmetry quantum fluctuations violate scale symmetry running dimensionless couplings at fixed points , scale symmetry is exact ! quantum fluctuations can generate scale symmetry ! Functional renormalization : flowing action Wikipedia Ultraviolet fixed point UV fixed point Wikipedia Quantum scale symmetry Exactly on fixed point: No parameter with dimension of length or mass is present in the quantum effective action. Then invariance under dilatations or global scale transformations is realized as a quantum symmetry. Continuous global symmetry Two scale symmetries Gravity scale symmetry: includes transformation of metric and scalar singlet Particle scale symmetry: metric and scalar singlet kept fixed relative scaling of momenta with respect to Planck mass Gravity scale symmetry Gravity scale
    [Show full text]