Castration Resistance in Prostate Cancer Is Mediated by the Kinase NEK6 Atish D

Total Page:16

File Type:pdf, Size:1020Kb

Castration Resistance in Prostate Cancer Is Mediated by the Kinase NEK6 Atish D Published OnlineFirst November 29, 2016; DOI: 10.1158/0008-5472.CAN-16-0455 Cancer Tumor and Stem Cell Biology Research Castration Resistance in Prostate Cancer Is Mediated by the Kinase NEK6 Atish D. Choudhury1,2,3, Anna C. Schinzel1,3, Maura B. Cotter1, Rosina T. Lis1,4, Katherine Labella1, Ying Jie Lock1, Francesca Izzo1,3, Isil Guney1,2, Michaela Bowden1, Yvonne Y. Li1, Jinal Patel3, Emily Hartman3, Steven A. Carr3, Monica Schenone3, Jacob D. Jaffe3, Philip W. Kantoff1,2, Peter S. Hammerman1,2,3, and William C. Hahn1,2,3 Abstract In prostate cancer, the development of castration resistance castration in a mouse xenograft model system. Tumors in is pivotal in progression to aggressive disease. However, which castration resistance was conferred by NEK6 were understanding of the pathways involved remains incomplete. predominantly squamous in histology with no evidence of In this study, we performed a high-throughput genetic screen AR signaling. Gene expression profiling suggested that NEK6 to identify kinases that enable tumor formation by androgen- overexpression stimulated cytoskeletal, differentiation, and dependent prostate epithelial (LHSR-AR) cells under andro- immune signaling pathways and maintained gene expression gen-deprived conditions. In addition to the identification of patterns normally decreased by castration. Phosphoproteome known mediators of castration resistance, which served to profiling revealed the transcription factor FOXJ2 as a novel validate the screen, we identified a mitotic-related serine/ NEK6 substrate, with FOXJ2 phosphorylation associated with threonine kinase, NEK6, as a mediator of androgen-indepen- increased expression of newly identified NEK6 transcriptional dent tumor growth. NEK6 was overexpressed in a subset targets. Overall, our studies establish NEK6 signaling as a of human prostate cancers. Silencing NEK6 in castration- central mechanism mediating castration-resistant prostate cancer. resistant cancer cells was sufficient to restore sensitivity to Cancer Res; 77(3); 1–13. Ó2016 AACR. Introduction the SRC inhibitor dasatinib (6). Cabozantinib, a small-molecule inhibitor of MET and VEGFR2, exhibited clinical activity in Prostate cancer is the second most common cause of cancer metastatic CRPC (7) but a phase III trial failed to demonstrate death in men, and the majority of these deaths occur in patients improvement in overall survival (8). with metastatic castration-resistant prostate cancer (CRPC). Stud- Tumor samples from patients with CRPC show increased levels ies of metastatic tissue from these patients reveal that tumors can of tyrosine phosphorylation as compared with treatment-na€ve become resistant either through persistent activation of the andro- prostate cancer (9), and the analysis of serine/threonine and gen receptor (AR) pathway (1) or by progression to a state tyrosine phosphorylation events in metastatic CRPC demonstrat- described as androgen pathway–independent prostate cancer ed a number of kinases that are differentially expressed or acti- (APIPC; ref. 2) with or without evidence for neuroendocrine vated in prostate cancer metastases (10). However, there is limited transdifferentiation. evidence for activating kinase point mutations in CRPC (11), Constitutive activation of kinases such as ERBB2, MAPK, PI3K/ suggesting that kinase pathways are activated by other (structural Akt, and Src has been implicated in mediating resistance to genetic, epigenetic, microenvironmental) mechanisms. Kinase hormonal therapies through both AR-dependent and AR-inde- signaling has previously been implicated in treatment resistance pendent mechanisms (3). However, inhibitors of many of these in other cancer types through reactivation of the targeted signaling kinases have failed to demonstrate significant clinical benefitin pathway, activation of parallel signaling pathways and through unselected patient populations, such as in trials of the ERBB2 inducing transdifferentiation phenotypes (12); kinases conferring inhibitor lapatinib (4), the MTOR inhibitor everolimus (5), and resistance are obvious druggable targets for potential therapeutic intervention. Because kinase signaling pathways whose activation 1Dana-Farber Cancer Institute, Boston, Massachusetts. 2Harvard Medical School, could lead to castration resistance in patients with prostate cancer Boston, Massachusetts. 3Broad Institute of Harvard and MIT, Cambridge, Mas- have not been comprehensively catalogued, we have performed sachusetts. 4Brigham and Women's Hospital, Boston, Massachusetts. an in vivo functional genomic screen to identify novel pathways fi Note: Supplementary data for this article are available at Cancer Research that may be involved and identi ed NEK6 as a kinase that Online (http://cancerres.aacrjournals.org/). mediates androgen-independent tumor growth. Corresponding Author: William C. Hahn, Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Dana 1538, Boston, MA Materials and Methods 02215. Phone: 617-632-2641; Fax: 617-632-4005; E-mail: Cell lines and antibodies [email protected] LH, LHSR-AR, and LHMK-AR cells (13) were cultured in pros- doi: 10.1158/0008-5472.CAN-16-0455 tate epithelial basal medium (PrEBM) with prostate epithelial Ó2016 American Association for Cancer Research. growth medium (PrEGM) SingleQuot Kit Supplements & Growth www.aacrjournals.org OF1 Downloaded from cancerres.aacrjournals.org on September 28, 2021. © 2016 American Association for Cancer Research. Published OnlineFirst November 29, 2016; DOI: 10.1158/0008-5472.CAN-16-0455 Choudhury et al. Factors (Lonza). LNCaP, C4-2, CL-1, and DU145 were cultured neck; pellets were removed at the time of castration. For castration, in phenol red–free RPMI (Gibco) supplemented with 10% FBS, testes were ligated and removed through a lower abdominal 1 mmol/L sodium pyruvate, and 10 mmol/L HEPES. LAPC4 incision. Doxycycline diet at 625 ppm (Test Diet) was fed to mice cells were cultured in IMDM supplemented with 10% FBS and for target dose of 0.6 to 2 mg/kg. 1 nmol/L R1881. VCaP and PC-3 cells were cultured in DMEM: F12 (1:1) with L-glutamine (Hyclone) þ 10% FBS. RWPE-1 cells Tumor processing and gene expression analysis were cultured in keratinocyte-SFM þ EGF and bovine pituitary Tumors were harvested fresh and fragments were immediately extract (Gibco). fixed in 10% neutral-buffered formalin solution (Sigma) for Antibodies used for immunoblotting were: NEK6 (AbCam paraffin embedding or flash frozen in liquid nitrogen and stored ab76071 for Fig. 1C; Santa Cruz sc-134833 for Supplementary in À80C. Protein lysates were generated by mechanical disrup- Fig. S1A; AbCam ab133494 otherwise), AR (Santa Cruz, sc-7305), tion in RIPA buffer (Cell Signaling) and passaged through a Hsp90 (Cell Signaling 4875), b-actin (Santa Cruz sc-47778 HRP), QiaShredder column; RNA was isolated using the Qiagen RNeasy V5 (Invitrogen P/N 46-0708), FOXJ2 (LifeSpan LS-C31294), Purification Kit with passage through a QiaShredder column AKT1 (Cell Signaling 9272), RAF1 (BD Biosciences 610151), and on-column DNase digestion per manufacturer's protocol. p-T412-RPS6KB1 (Cell Signaling 9234), p-S727-STAT3 (GeneTex RNA-Seq, comparative marker selection using GENE-E software, 61050), cleaved PARP (Cell Signaling 9541), p53 (Cell Signaling and gene set enrichment analysis (GSEA) pre-ranked were per- 9282), and p21 (Santa Cruz sc-397). formed as described in the Supplementary Methods. Kinase library and androgen independence screen Immunohistochemistry LHSR-AR cells were infected with each virus from the previously Prostate cancer microarray slides immunostained for NEK6 described human kinase library (14) in 96-well format; cells from were scanned and scored by automated spectral imaging analysis 9 to 10 of these wells were pooled together to generate 61 total per the Supplementary Methods. Paraffin-embedded subcutane- pools. A total of 2 Â 106 cells from each pool in 200 ml 1:1 PBS: ous tumor sections were immunostained using anti-AR (Dako # Matrigel (Corning 354234) were implanted into each of 3 sub- M3562, dilution 1:200, 1-hour incubation, citrate and microwave cutaneous sites of a female BALB/C nude mouse (Charles River). retrieval, EnVision detection. BioGenex platform); anti–b-catenin DNA was isolated from tumors using the Qiagen Blood Spin Mini [Santa Cruz sc-1496, dilution 1:100, T3 H1(30), Leica platform], Kit. For tumor formation in male mice, mice were implanted with anti-KRT13 (GeneTex EPR3671), anti-NEK6 (as for TMAs but at testosterone pellet (Innovative Research NA-151) into the lateral 1:100 dilution). A B P = 0.034* 1,200 160 140 1,000 P = 0.001* a 120 ) ) Figure 1. 3 3 800 P = 0.005* 100 NEK6 confers androgen-independent tumor formation in a xenograft model 600 80 of androgen-dependent prostate cancer. A, Effects of NEK6 expression 60 on the rate of tumor formation at 60 400 Volume (mm Volume (mm 40 days in the indicated LHSR-AR cells in 200 female and castrated mice. Of note, if 20 the tumor denoted with "a" is excluded, the difference in rate of 0 0 tumor formation between parental LHSR-AR LHSR-AR +NEK6 +NEK6 LHMK-AR +NEK6 LHSR-AR cells and cells expressing female castrated female castrated female female NEK6 in castrated mice remains # Tumors 0/6 0/6 6/6 5/6 # Tumors 2/15 10/15 statistically significant (P ¼ 0.009). B, Effects of expressing NEK6 on the rate of tumor formation at 60 days for C LHSR-AR +NEK6 parental LHMK-AR cells and cells expressing NEK6 in female mice. 100 +dox –dox +dox –dox C, Left, Inducible expression of NEK6
Recommended publications
  • Down-Regulation of Stem Cell Genes, Including Those in a 200-Kb Gene Cluster at 12P13.31, Is Associated with in Vivo Differentiation of Human Male Germ Cell Tumors
    Research Article Down-Regulation of Stem Cell Genes, Including Those in a 200-kb Gene Cluster at 12p13.31, Is Associated with In vivo Differentiation of Human Male Germ Cell Tumors James E. Korkola,1 Jane Houldsworth,1,2 Rajendrakumar S.V. Chadalavada,1 Adam B. Olshen,3 Debbie Dobrzynski,2 Victor E. Reuter,4 George J. Bosl,2 and R.S.K. Chaganti1,2 1Cell Biology Program and Departments of 2Medicine, 3Epidemiology and Biostatistics, and 4Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York Abstract on the degree and type of differentiation (i.e., seminomas, which Adult male germ cell tumors (GCTs) comprise distinct groups: resemble undifferentiated primitive germ cells, and nonseminomas, seminomas and nonseminomas, which include pluripotent which show varying degrees of embryonic and extraembryonic embryonal carcinomas as well as other histologic subtypes patterns of differentiation; refs. 2, 3). Nonseminomatous GCTs are exhibiting various stages of differentiation. Almost all GCTs further subdivided into embryonal carcinomas, which show early show 12p gain, but the target genes have not been clearly zygotic or embryonal-like differentiation, yolk sac tumors and defined. To identify 12p target genes, we examined Affymetrix choriocarcinomas, which exhibit extraembryonal forms of differ- (Santa Clara, CA) U133A+B microarray (f83% coverage of 12p entiation, and teratomas, which show somatic differentiation along genes) expression profiles of 17 seminomas, 84 nonseminoma multiple lineages (3). Both seminomas and embryonal carcinoma GCTs, and 5 normal testis samples. Seventy-three genes on 12p are known to express stem cell markers, such as POU5F1 (4) and were significantly overexpressed, including GLUT3 and REA NANOG (5).
    [Show full text]
  • Mediator of DNA Damage Checkpoint 1 (MDC1) Is a Novel Estrogen Receptor Co-Regulator in Invasive 6 Lobular Carcinoma of the Breast 7 8 Evelyn K
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.16.423142; this version posted December 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Running Title: MDC1 co-regulates ER in ILC 2 3 Research article 4 5 Mediator of DNA damage checkpoint 1 (MDC1) is a novel estrogen receptor co-regulator in invasive 6 lobular carcinoma of the breast 7 8 Evelyn K. Bordeaux1+, Joseph L. Sottnik1+, Sanjana Mehrotra1, Sarah E. Ferrara2, Andrew E. Goodspeed2,3, James 9 C. Costello2,3, Matthew J. Sikora1 10 11 +EKB and JLS contributed equally to this project. 12 13 Affiliations 14 1Dept. of Pathology, University of Colorado Anschutz Medical Campus 15 2Biostatistics and Bioinformatics Shared Resource, University of Colorado Comprehensive Cancer Center 16 3Dept. of Pharmacology, University of Colorado Anschutz Medical Campus 17 18 Corresponding author 19 Matthew J. Sikora, PhD.; Mail Stop 8104, Research Complex 1 South, Room 5117, 12801 E. 17th Ave.; Aurora, 20 CO 80045. Tel: (303)724-4301; Fax: (303)724-3712; email: [email protected]. Twitter: 21 @mjsikora 22 23 Authors' contributions 24 MJS conceived of the project. MJS, EKB, and JLS designed and performed experiments. JLS developed models 25 for the project. EKB, JLS, SM, and AEG contributed to data analysis and interpretation. SEF, AEG, and JCC 26 developed and performed informatics analyses. MJS wrote the draft manuscript; all authors read and revised the 27 manuscript and have read and approved of this version of the manuscript.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplemental Materials ZNF281 Enhances Cardiac Reprogramming
    Supplemental Materials ZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expression Huanyu Zhou, Maria Gabriela Morales, Hisayuki Hashimoto, Matthew E. Dickson, Kunhua Song, Wenduo Ye, Min S. Kim, Hanspeter Niederstrasser, Zhaoning Wang, Beibei Chen, Bruce A. Posner, Rhonda Bassel-Duby and Eric N. Olson Supplemental Table 1; related to Figure 1. Supplemental Table 2; related to Figure 1. Supplemental Table 3; related to the “quantitative mRNA measurement” in Materials and Methods section. Supplemental Table 4; related to the “ChIP-seq, gene ontology and pathway analysis” and “RNA-seq” and gene ontology analysis” in Materials and Methods section. Supplemental Figure S1; related to Figure 1. Supplemental Figure S2; related to Figure 2. Supplemental Figure S3; related to Figure 3. Supplemental Figure S4; related to Figure 4. Supplemental Figure S5; related to Figure 6. Supplemental Table S1. Genes included in human retroviral ORF cDNA library. Gene Gene Gene Gene Gene Gene Gene Gene Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol AATF BMP8A CEBPE CTNNB1 ESR2 GDF3 HOXA5 IL17D ADIPOQ BRPF1 CEBPG CUX1 ESRRA GDF6 HOXA6 IL17F ADNP BRPF3 CERS1 CX3CL1 ETS1 GIN1 HOXA7 IL18 AEBP1 BUD31 CERS2 CXCL10 ETS2 GLIS3 HOXB1 IL19 AFF4 C17ORF77 CERS4 CXCL11 ETV3 GMEB1 HOXB13 IL1A AHR C1QTNF4 CFL2 CXCL12 ETV7 GPBP1 HOXB5 IL1B AIMP1 C21ORF66 CHIA CXCL13 FAM3B GPER HOXB6 IL1F3 ALS2CR8 CBFA2T2 CIR1 CXCL14 FAM3D GPI HOXB7 IL1F5 ALX1 CBFA2T3 CITED1 CXCL16 FASLG GREM1 HOXB9 IL1F6 ARGFX CBFB CITED2 CXCL3 FBLN1 GREM2 HOXC4 IL1F7
    [Show full text]
  • Supplementary Data
    SUPPLEMENTARY DATA A cyclin D1-dependent transcriptional program predicts clinical outcome in mantle cell lymphoma Santiago Demajo et al. 1 SUPPLEMENTARY DATA INDEX Supplementary Methods p. 3 Supplementary References p. 8 Supplementary Tables (S1 to S5) p. 9 Supplementary Figures (S1 to S15) p. 17 2 SUPPLEMENTARY METHODS Western blot, immunoprecipitation, and qRT-PCR Western blot (WB) analysis was performed as previously described (1), using cyclin D1 (Santa Cruz Biotechnology, sc-753, RRID:AB_2070433) and tubulin (Sigma-Aldrich, T5168, RRID:AB_477579) antibodies. Co-immunoprecipitation assays were performed as described before (2), using cyclin D1 antibody (Santa Cruz Biotechnology, sc-8396, RRID:AB_627344) or control IgG (Santa Cruz Biotechnology, sc-2025, RRID:AB_737182) followed by protein G- magnetic beads (Invitrogen) incubation and elution with Glycine 100mM pH=2.5. Co-IP experiments were performed within five weeks after cell thawing. Cyclin D1 (Santa Cruz Biotechnology, sc-753), E2F4 (Bethyl, A302-134A, RRID:AB_1720353), FOXM1 (Santa Cruz Biotechnology, sc-502, RRID:AB_631523), and CBP (Santa Cruz Biotechnology, sc-7300, RRID:AB_626817) antibodies were used for WB detection. In figure 1A and supplementary figure S2A, the same blot was probed with cyclin D1 and tubulin antibodies by cutting the membrane. In figure 2H, cyclin D1 and CBP blots correspond to the same membrane while E2F4 and FOXM1 blots correspond to an independent membrane. Image acquisition was performed with ImageQuant LAS 4000 mini (GE Healthcare). Image processing and quantification were performed with Multi Gauge software (Fujifilm). For qRT-PCR analysis, cDNA was generated from 1 µg RNA with qScript cDNA Synthesis kit (Quantabio). qRT–PCR reaction was performed using SYBR green (Roche).
    [Show full text]
  • The Tumor Suppressor Notch Inhibits Head and Neck Squamous Cell
    The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 12-2015 THE TUMOR SUPPRESSOR NOTCH INHIBITS HEAD AND NECK SQUAMOUS CELL CARCINOMA (HNSCC) TUMOR GROWTH AND PROGRESSION BY MODULATING PROTO-ONCOGENES AXL AND CTNNAL1 (α-CATULIN) Shhyam Moorthy Shhyam Moorthy Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Biochemistry, Biophysics, and Structural Biology Commons, Cancer Biology Commons, Cell Biology Commons, and the Medicine and Health Sciences Commons Recommended Citation Moorthy, Shhyam and Moorthy, Shhyam, "THE TUMOR SUPPRESSOR NOTCH INHIBITS HEAD AND NECK SQUAMOUS CELL CARCINOMA (HNSCC) TUMOR GROWTH AND PROGRESSION BY MODULATING PROTO-ONCOGENES AXL AND CTNNAL1 (α-CATULIN)" (2015). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 638. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/638 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. THE TUMOR SUPPRESSOR NOTCH INHIBITS HEAD AND NECK SQUAMOUS CELL CARCINOMA (HNSCC) TUMOR GROWTH AND PROGRESSION BY MODULATING PROTO-ONCOGENES AXL AND CTNNAL1 (α-CATULIN) by Shhyam Moorthy, B.S.
    [Show full text]
  • The Viral Oncoproteins Tax and HBZ Reprogram the Cellular Mrna Splicing Landscape
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.18.427104; this version posted January 18, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The viral oncoproteins Tax and HBZ reprogram the cellular mRNA splicing landscape Charlotte Vandermeulen1,2,3, Tina O’Grady3, Bartimee Galvan3, Majid Cherkaoui1, Alice Desbuleux1,2,4,5, Georges Coppin1,2,4,5, Julien Olivet1,2,4,5, Lamya Ben Ameur6, Keisuke Kataoka7, Seishi Ogawa7, Marc Thiry8, Franck Mortreux6, Michael A. Calderwood2,4,5, David E. Hill2,4,5, Johan Van Weyenbergh9, Benoit Charloteaux2,4,5,10, Marc Vidal2,4*, Franck Dequiedt3*, and Jean-Claude Twizere1,2,11* 1Laboratory of Viral Interactomes, GIGA Institute, University of Liege, Liege, Belgium.2Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.3Laboratory of Gene Expression and Cancer, GIGA Institute, University of Liege, Liege, Belgium.4Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA. 5Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.6Laboratory of Biology and Modeling of the Cell, CNRS UMR 5239, INSERM U1210, University of Lyon, Lyon, France.7Department of Pathology and Tumor Biology, Kyoto University, Japan.8Unit of Cell and Tissue Biology, GIGA Institute, University of Liege, Liege, Belgium.9Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Catholic University of Leuven, Leuven, Belgium.10Department of Human Genetics, CHU of Liege, University of Liege, Liege, Belgium.11Lead Contact. *Correspondence: [email protected]; [email protected]; [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2021.01.18.427104; this version posted January 18, 2021.
    [Show full text]
  • Mutational Landscape of ALL: Next-Generation Sequencing-Based Mutations Scanning Strategy
    Mutational Landscape of ALL: Next-Generation Sequencing-based Mutations Scanning Strategy 15 Mar 2019 Seung-Tae Lee Dept. of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea WHO 2016 classification B-lymphoblastic leukemia Key genetic subtypes of B-ALL Iacobucci et al. J Clin Oncol 2017 Philadelphia-like ALL • Adverse prognosis • Responsiveness to TKIs • Peak incidence in young adults Iacobucci et al. J Clin Oncol 2017 Common genetic features of Ph-like ALL • Cytokine receptor and tyrosine kinase signaling – CRLF2 mutation (~ 50%) – ABL-class tyrosine kinase gene rearrangement (12%) – JAK2 rearrangement (7%) – EPOR rearrangement (3~10%) – JAK-STAT activating mutation (11%) – Ras signaling (NRAS, KRAS, PTPN11, and NF1; 6%) – kinase alterations (FLT3, NTRK3, BLNK, TYK2, and PTK2B) • B-lymphoid transcription factor genes – IKZF1 deletion Kinase Gene Fusions Philadelphia-like ALL Roberts et al. New Eng J Med. 2014 CRLF2 deregulation • Mutation type – IGH-CRLF2 translocation – P2RY8-CRLF2 fusion (by focal deletion upstream of CRLF2) – CRLF2 point mutations (F232C) • Associated features – Common in Ph-like and Down syndrome–associated ALL – Additional alterations in JAK-STAT (JAK1, JAK2), Ras signaling genes, FLT3, IL7R, SH2B3 and TSLP – Poor prognosis (especially when with IKZF1 deletions) – Therapies targeting JAK-STAT, PI3K/mTOR, and BCL2 signaling show efficacy in preclincal models DUX4- and ERG-deregulated ALL • DUX4/IGH – DUX4 is not expressed in normal B cells – t(4;14)(q35;q32): truncated DUX4 is expressed when translocated to IGH – Truncated DUX4 interact with ERG and produce altered ERG • DUX4/ERG – Truncated ERG is expressed, which inhibits wild-type ERG transcriptional activity, and is transforming. – Favorable outcome, despite concomitant genetic alterations with poor outcomes (e.g.
    [Show full text]
  • NCOA5 Promotes Proliferation, Migration and Invasion of Colorectal Cancer Cells Via Activation of PI3K/AKT Pathway
    www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 64), pp: 107932-107946 Research Paper NCOA5 promotes proliferation, migration and invasion of colorectal cancer cells via activation of PI3K/AKT pathway Kailv Sun1,*, Sheng Wang1,*, Jun He1,*, Yufeng Xie2, Yang He3,4, Zhenxin Wang2 and Lei Qin1 1Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China 2Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China 3Ministry of Health Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China 4Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China *These authors have contributed equally to this work Correspondence to: Lei Qin, email: [email protected] Zhenxin Wang, email: [email protected] Yufeng Xie, email: [email protected] Keywords: nuclear receptor coactivator 5 (NCOA5); colorectal cancer (CRC); proliferation; metastasis; phosphatidylinositol 3 kinase/protein kinase B (PI3K/AKT) pathway Received: October 27, 2016 Accepted: July 25, 2017 Published: November 14, 2017 Copyright: Sun et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT The nuclear receptor coactivator 5 (NCOA5) displays both coactivator and corepressor functions. Previous studies showed that alteration of NCOA5 participates in carcinogenesis and progression. However, its roles in colorectal cancer (CRC) remain unknown. Herein, we demonstrated that expression of NCOA5 in human CRC tissues was notably higher than that in adjacent tissues, which significantly correlated with clinicopathological features such as length of tumor, regional lymph node staging and cancer staging.
    [Show full text]
  • Vascular Histone Deacetylation by Pharmacological HDAC Inhibition
    Downloaded from genome.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press Research Vascular histone deacetylation by pharmacological HDAC inhibition Haloom Rafehi,1,2 Aneta Balcerczyk,1,4 Sebastian Lunke,1,5 Antony Kaspi,1 Mark Ziemann,1 Harikrishnan KN,1 Jun Okabe,1,3 Ishant Khurana,1 Jenny Ooi,1 Abdul Waheed Khan,1 Xiao-Jun Du,1,3 Lisa Chang,1 Izhak Haviv,1,4 Samuel T. Keating,1 Tom C. Karagiannis,1 and Assam El-Osta1,2,3 1Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia; 2Department of Pathology, The University of Melbourne, Parkville, Victoria 3010, Australia; 3Faculty of Medicine, Monash University, Victoria 3800, Australia HDAC inhibitors can regulate gene expression by post-translational modification of histone as well as nonhistone pro- teins. Often studied at single loci, increased histone acetylation is the paradigmatic mechanism of action. However, little is known of the extent of genome-wide changes in cells stimulated by the hydroxamic acids, TSA and SAHA. In this article, we map vascular chromatin modifications including histone H3 acetylation of lysine 9 and 14 (H3K9/14ac) using chro- matin immunoprecipitation (ChIP) coupled with massive parallel sequencing (ChIP-seq). Since acetylation-mediated gene expression is often associated with modification of other lysine residues, we also examined H3K4me3 and H3K9me3 as well as changes in CpG methylation (CpG-seq). RNA sequencing indicates the differential expression of ~30% of genes, with almost equal numbers being up- and down-regulated. We observed broad deacetylation and gene expression changes conferred by TSA and SAHA mediated by the loss of EP300/CREBBP binding at multiple gene promoters.
    [Show full text]
  • The Forkhead Transcription Factor FOXM1 Promotes Endocrine
    Bergamaschi et al. Breast Cancer Research 2014, 16:436 http://breast-cancer-research.com/content/16/5/436 RESEARCH ARTICLE Open Access The forkhead transcription factor FOXM1 promotes endocrine resistance and invasiveness in estrogen receptor–positive breast cancer by expansion of stem-like cancer cells Anna Bergamaschi1, Zeynep Madak-Erdogan1, Yu Jin Kim2, Yoon-La Choi2,3, Hailing Lu1,4 and Benita S Katzenellenbogen1* Abstract Introduction: The forkhead transcription factor FOXM1 coordinates expression of cell cycle–related genes and plays a pivotal role in tumorigenesis and cancer progression. We previously showed that FOXM1 acts downstream of 14-3-3ζ signaling, the elevation of which correlates with a more aggressive tumor phenotype. However, the role that FOXM1 might play in engendering resistance to endocrine treatments in estrogen receptor–positive (ER+) patients when tumor FOXM1 is high has not been clearly defined yet. Methods: We analyzed FOXM1 protein expression by immunohistochemistry in 501 ER-positive breast cancers. We also mapped genome-wide FOXM1, extracellular signal-regulated kinase 2 and ERα binding events by chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) in hormone-sensitive and resistant breast cancer cells after tamoxifen treatment. These binding profiles were integrated with gene expression data derived from cells before and after FOXM1 knockdown to highlight specific FOXM1 transcriptional networks. We also modulated the levels of FOXM1 and newly discovered FOXM1-regulated genes and examined their impact on the cancer stem-like cell population and on cell invasiveness and resistance to endocrine treatments. Results: FOXM1 protein expression was high in 20% of the tumors, which correlated with significantly reduced survival in these patients (P = 0.003 by logrank Mantel-Cox test).
    [Show full text]
  • Grimme, Acadia.Pdf
    MECHANISM OF ACTION OF HISTONE DEACETYLASE INHIBITORS ON SURVIVAL MOTOR NEURON 2 PROMOTER by Acadia L. Grimme A thesis submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Bachelors of Science in Biological Sciences with Distinction Spring 2018 © 2018 Acadia Grimme All Rights Reserved MECHANISM OF ACTION OF HISTONE DEACETYLASE INHIBITORS ON SURVIVAL MOTOR NEURON 2 PROMOTER by Acadia L. Grimme Approved: __________________________________________________________ Matthew E. R. Butchbach, Ph.D. Professor in charge of thesis on behalf of the Advisory Committee Approved: __________________________________________________________ Deni S. Galileo, Ph.D. Professor in charge of thesis on behalf of the Advisory Committee Approved: __________________________________________________________ Carlton R. Cooper, Ph.D. Committee member from the Department of Biological Sciences Approved: __________________________________________________________ Gary H. Laverty, Ph.D. Committee member from the Board of Senior Thesis Readers Approved: __________________________________________________________ Michael Chajes, Ph.D. Chair of the University Committee on Student and Faculty Honors ACKNOWLEDGMENTS I would like to acknowledge my thesis director Dr. Butchbach for his wonderful guidance and patience as I worked through my project. He has been an excellent research mentor over the last two years and I am forever thankful that he welcomed me into his lab. His dedication to his work inspires me as an aspiring research scientist. His lessons will carry on with me as I pursue future research in graduate school and beyond. I would like to thank both current and former members of the Motor Neuron Disease Laboratory: Sambee Kanda, Kyle Hinkle, and Andrew Connell. Sambee and Andrew patiently taught me many of the techniques I utilized in my project, and without them it would not be what it is today.
    [Show full text]