A Morphological Study on the Venom Apparatus of Spider

Total Page:16

File Type:pdf, Size:1020Kb

A Morphological Study on the Venom Apparatus of Spider TurkJZool 29(2005)351-356 ©TÜB‹TAK AMorphologicalStudyontheVenomApparatusofSpider LarinioidesCornutus(Araneae,Araneidae) Külti¤inÇAVUfiO⁄LU,AbdullahBAYRAM,MeltemMARAfi K›r›kkaleUniversity,FacultyofScienceandArts,DepartmentofBiology,71450Yahflihan,K›r›kkale-TURKEY TalipKIRINDI K›r›kkaleUniversity,FacultyofScienceandArts,DepartmentofPhysics,71450Yahflihan,K›r›kkale-TURKEY KürflatÇAVUfiO⁄LU SüleymanDemirelUniversity,FacultyofScienceandArts,DepartmentofBiology,32260Çünür,Isparta-TURKEY Received:31.08.2004 Abstract: Themorphologicalstructureofthevenomapparatusof Larinioidescornutus wasstudiedusingascanningelectron microscope(SEM).TheVenomglandsaresituatedintheanteriorcephalicpartoftheprosoma,andeachglandconsistsofalong cylindricalpartandanadjoiningduct,whichterminatesatthetipofthecheliceralfang.Eachcheliceraconsistsof2parts: astout basalpartcoveredbyhair,andamovablefang.Thereareparallelgroovesonthedorsalsurfaceofthefang.Theventralsurfa ce hashollowslikesawteeth.Avenomporeissituatedonthesubterminalpartofthefang.Belowthefang,thereisacheliceralgroove betweentheteeth.Eachsideofthegrooveisarmedwithcuticularteeth.Venomglandsaresmallandsimilartoanaurberginei n shape.Eachglandissurroundedbycompletelystriatedmuscularfibers.Thevenomproducedinthevenomglandsisejectedintothe fangthroughtheductbycontractionofthesemuscularfibers. KeyWords: Larinioidescornutus,venomgland,,morphology,chelicerae,scanningelectronmicroscope(SEM) LarinioidesCornutus(Araneae,Araneidae) Örümce¤inin ZehirAyg›t›ÜzerineMorfolojikBirÇal›flma Özet: Buçal›flmada, Larinioidescornutus ’unzehirayg›t›n›nmorfolojikyap›s›taramal›electronmikroskobu(SEM)kullan›larak çal›fl›lm›flt›r.Zehirbezleri,prosomadabafl›nönk›sm›ndayerleflmifltirveherbirbez,silindrikk›s›mvebirkeliseraldiflinu cunda sonlananbitiflikbirkanaldanibarettir.Herbirkeliserk›llarlakapl›kal›nbirbazalk›s›mvehareketlibirzehirdifliolmak üzereiki k›s›mdanoluflur.Keliseraldiflindorsalyüzeyindeparalleloyuklaryeral›r.Ventralyüzeytesteredifligibioyuklarasahiptir. Zehir diflininaltk›sm›ndabirzehiraç›kl›¤›yerleflmifltir.Zehirdiflininhemenaltk›sm›ndakeliserdifllerininaras›ndabirkelisera lboflluk vard›r.Bofllu¤unherbirkenar›kutikulardifllerleçevrilidir.Zehirbezleriküçükveflekilbak›m›ndanpatl›can›and›rmaktad›r. Herbir zehir,tamamançizgilikaslifleriyleçevrelenmifltir.Zehirbezlerindeüretilenzehir,bukasliflerininkas›lmas›ylabirkanal vas›tas›yla zehirdiflinesal›nmaktad›r. AnahtarSözcükler: Larinioidescornutus,zehirbezi,morfoloji,keliser,taramal›electronmikroskobu(SEM) Introduction (Burcherrl,1969:SchenoneandSuarez,1978; Spidersarethelargestgroupofvenomousanimals, WassermanandAnderson,1984).Asaresult,especially representedbyabout4,.000speciesthroughoutthe ontheirvenomsandvenomapparatus,haveincreased world.Thirtyspiderspeciesareknowtobeharmfulto recently(Foelix,1982;Lucas,1985). humans(Schimidt,1973;Foelix,1982).Manyspiders Thevenomapparatusissituatedintheprosomaof aresynanthropic.Human-spiderencountersarenot spiders,andconsistsofapairofvenomglandsand infrequent,andbitesoccasionallyocur(Futrell,1992;Ori chelicerae.Venomisproducedinapairofvenomglands andIkeda,1998).However,bitingeventsareobservedin situatedintheanteriorportionoftheprosoma.Thesize humanpopulationsatahighrate,forinstanceby andshapeofthevenomglandvaryamongdifferent Loxoscelesintermedia becausethisspiderprefers species.Thevenomglandsof Loxoscelesintermedia, residentialareas.Thesespidersinfestclothingandshoes Loxoscelesreclusa,Heteropodavenatoria,Lycosa 351 AMorphologicalStudyontheVenomApparatusofSpider LarinioidesCornutus(Araneae,Araneidae) narbonensis,Lampanacylindrata and Agelenalimbata are withgoldby“Polaron500”sputtercoaterandexamined intheprosoma(Moon.1992;Lachlanetal.,2000; usingascanningelectronmicroscope(Jeol5600)(Hayat, Santosetal.,2000),whilethoseof Hognatarantula and 1981;Karnovsky,1985). Plesiophirctuscollinus areinthechelicerae(Russeletal., 1973;Gertsch,1979). Results Eachcheliceraconsistsof2parts:aswollenbasalpart andamovablevenomfang.Therearematuremusclesin ThevenomapparatusofLarinioidescornusconsistsof thebasalpartandvenomglandsinsomespecies.These apairofvenomglandsintheprosoma.In Larinioides musclesareinvolvedinmovingthefang.Ingeneral,the cornutus, Thevenomglandsarelikeanauberginein fangrestsinagrooveinthebasalsegmentliketheblade shape(Figure1).Thedorsalsurfacesoftheglandsare ofapocketknife.Whenthespiderbites,thefangmoves surroundedbystriatedmuscularfibersspirallyarranged outofitsgrooveandpenetratestheprey.Atthesame (Figure2).Theglandiscomposedofacylindricalstem time,thevenomisinjectedintothepreyfromatiny partandacanalconnectedtoit.Thecanalextendstothe openingatthetipofthefang.Bothsidesofthecheliceral anteriorpartofthechelicerae.Theglandswere groovearearmedwithcuticularteeth.Spidershaving determinedtobeonelobedandeachlobewasdivided teethinthegroovecanmashtheirprey;however,spiders intosmalllobes.Theaveragelengthoftheglandswas withoutteethcanonlysuckouttheirvictimsthroughthe 712mmandwidthwas258mm(Figure1). smallbiteholes(Foelix,1982).Thenumberandsizeof Eachchelicerawasobservedtohave2parts:astout cheliceralteethareimportantasdiagnosticcharacteristics basalpartandamovablevenomfang(Figures3,4).The fortaxonomists.Spidersusetheircheliceraefordefense, basalpartiscoveredbyslighthairs.Aporeforreleasing seizingprey,carryingeggcocoons,diggingsoiland thevenomislocatednearthetipofthefang(Figure5). makingnoise(Foelix,1982).Spidervenomisusedinthe Theuppersurfaceofthefangiscoveredbytinyparallel medicaltreatmentofdiseasessuchascardiacdisturbance glooves(Figure6).Thesubsurfaceishollowedlikeasaw andforproducingnewantibacterialreagents(Haeberliet (Figure7).Eachfangsitsinagrooveattheapicalpartof al.,2000;Bodeetal.,2001).Theaimofthisstudywas thechelicerae.Themarginsofthegroovesaresupported toinvestigatethemorphologicalstructureofthevenom bycheliceralteeth(Figure8).Theseteethareusedfor apparatusofLarinioidescornutus. holdingandcrushingtheprey. MaterialsandMethods DiscussionandConclusion Twenty Larinioidescornutus (Clerck,1757) Kaston(1978)statedthatthevenomglandsof specimenswerecollectedfromtheBarlaavillagein spidersaregenerallyfoundintheprosoma,andrarelyin E¤irdir(Isparta)inJune2003.Theywereanesthetized thechelicerae,exceptforthefamiliesUloboridaeand withetheratthelaboratoryofKırıkkaleUniversity,and Holarchaidae,whichlackvenomglandsentirely.Inthe theirvenomglandsweredissectedfromtheprosoma species Loxoscelesintermedia,Lycosaindagastrix, underastereomicroscope(nıkonSMZ10A).Thevenom Heteropodavenatoria , Loxoscelesreclusa , Cuppiennius glandsandcheliceraewerewashedwith0.2Msodium salai, Dolomedestenebrosus,Agelenalimbata , phosphatebuffer(pH7.2);thenthevenomglandswere Latrodectusmactans andLycosanarbonensis (Foiletal., fixedin3%gluteraldehydebufferat4 0Cfor2h.After 1979;RidlingandPhanuel,1986;Moon,1992; rinsinginsodiumphosphate(pH7.2)buffer3timesfor Gümüflo¤lu,2000;Santosetal.,2000)itwasreported 10minute,eachwasfixedin1%osmiumtetroxidewith 0 thatthevenomglandsareintheprosoma,andin thesamebufferat4 Cfor1h.Sampleswereleftinthe sodiumphosphatebuffertoremovetheosmium Plesiophirctuscallinus and Hognatarantula (Russellet tetroxide;thentheyweredehydratedinthefollowing al.,1973;Kaston,1978;Malietal.,2000)theyareinthe alcoholseriesfor10min:50%,60%,70%,80%,90%, chelicerae.Inthisstudy,thevenomglandof Larinioides 95%and99%.Afterthedehydrationstages,thesamples cornutus speciesissituatedintheprosomaandextends weretransferredtopetridishesanddriedinanovenat throughthecheliceraeviaapairofcanals. 400C.Driedsampleswereplacedonstubs,thencoated Differencesintheshapeandpositionoftheglandin 352 K.ÇAVUfiO⁄LU,A.BAYRAM,M.MARAfi,T.KIRINDI,K.ÇAVUfiO⁄LU Figure1.Thegeneralappearanceofthevenomgland(vg). Figure2. Theappearanceofnumerousstriatedmuscularfibers(m) surroundingthevenomglands. Figure3.Thegeneralappearanceofthechelicerae(c). Figure4.Theappearanceofthebasalpartandfang(vf). differentspeciesofspidershavebeendescribedby Loxoscelesreclusa (Foiletal.,1979)and Loxosceles Berkau(1891).Forexample,inthegenus Atypus the intermedia arebulbous(Santosetal.,2000);in glandsarecomposite(Berkay,1891),inFilistatatheyare Heteropodavenatoria (RidlingandPhanuel,1986), , multilobularand in Scytodes theyarebilobular(Kavoor Latrodectusmactans (SmithandRussell,1967)and andMunoz,2000;Santos,2000).Thevenomglandsof Lycosaindagastrix (RidlingandPhanuel,1986)theyare 353 AMorphologicalStudyontheVenomApparatusofSpider LarinioidesCornutus(Araneae,Araneidae) Figure5.Theappearanceofthepore(p)throughwhichvenomis Figure6.Theappearanceofgrooves(g)situatedonthesurfaceofthe releasedtotheoutside. fang. Figure7.Theappearanceofsaw-likegrooves(sg)situatedatthe Figure8.Theappearanceofthecheliceraeteeth(ct). subsurfaceofthefangandteethinthecheliceraegroove. cylindrical;in Ctnedusmedius theyarepurse-like(Brazil observedinLoxoscelesintermedia(Santos,2000),Lycosa andVellard,1925);in Plesiophirctuscollinus theyare indagastrix (RidlingandPhanuel,1986) ,Heteropoda carrot-like;andin Agelenalabyrinthica theyare venatoria (RidlingandPhanuel,1986),Loxoscelesreclusa aubergine-likeinshape(Çavuflo¤luetal.,2003).The (Foiletal.,1979), Cuppienniussalai , Dolomedes venomglandsofLarinioidescornutus areonelobeasalso tenebrosus,Agelenalimbata (Moon,1992), Latrodectus 354 K.ÇAVUfiO⁄LU,A.BAYRAM,M.MARAfi,T.KIRINDI,K.ÇAVUfiO⁄LU mactansand Lycosa narbonensis (Gümüflo¤lu,2000),and fangofLarinioidescornutus investigatedinthisstudywas theyarelikeaubergineinshape. observedthatitisnotsmallerthanbasalpart. Thesizeofthevenomglandisnotnecessarilyrelated Collatz(1982)reportedthatalthoughsomespiders tothesizeofthespider.Forexample,largetheraphosid havechelicerateeth,othersdonot.Forexample,inthe spidersandtarantulashaveverysmallglands,whereas
Recommended publications
  • A Cluster of Mesenchymal Cells at the Cumulus Produces Dpp Signals Received by Germ Disc Epithelial Cells
    Development 130, 1735-1747 1735 © 2003 The Company of Biologists Ltd doi:10.1242/dev.00390 Early patterning of the spider embryo: a cluster of mesenchymal cells at the cumulus produces Dpp signals received by germ disc epithelial cells Yasuko Akiyama-Oda*,†,‡ and Hiroki Oda* JT Biohistory Research Hall, 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan *Tsukita Cell Axis Project, ERATO, JST †PRESTO, JST ‡Author for correspondence (e-mail: [email protected]) Accepted 16 January 2003 SUMMARY In early embryogenesis of spiders, the cumulus is decapentaplegic (dpp), which encodes a secreted protein characteristically observed as a cellular thickening that that functions as a dorsal morphogen in the Drosophila arises from the center of the germ disc and moves embryo. Furthermore, the spider Dpp signal appeared to centrifugally. This cumulus movement breaks the radial induce graded levels of the phosphorylated Mothers against symmetry of the germ disc morphology, correlating with dpp (Mad) protein in the nuclei of germ disc epithelial the development of the dorsal region of the embryo. cells. Adding data from spider homologs of fork head, Classical experiments on spider embryos have shown that orthodenticle and caudal, we suggest that, in contrast to a cumulus has the capacity to induce a secondary axis when the Drosophila embryo, the progressive mesenchymal- transplanted ectopically. In this study, we have examined epithelial cell interactions involving the Dpp-Mad signaling the house spider, Achaearanea tepidariorum, on the basis of cascade generate dorsoventral polarity in accordance with knowledge from Drosophila to characterize the cumulus at the anteroposterior axis formation in the spider embryo.
    [Show full text]
  • Araneae, Araneidae)
    A peer-reviewed open-access journal ZooKeys 207:A 79–84 new (2012)combination expands the range of the African araneid spider Singafrotypa... 79 doi: 10.3897/zookeys.207.3522 SHORT COMMUNICATION www.zookeys.org Launched to accelerate biodiversity research A new combination expands the range of the African araneid spider Singafrotypa (Araneae, Araneidae) Anna Šestáková1,2, Mikhail M. Omelko3,4 1 Zoological Museum, University of Turku, FI-20014, Turku, Finland 2 Department of Zoology, Faculty of Natural Sciences, Comenius University, Mlynská dolina, 84215 Bratislava, Slovakia 3 Far Eastern Federal University, Sukhanova, 8, Vladivostok 690950 Russia 4 Gornotaezhnaya Station FEB RAS, Gornotaezhnoe Vil.,Ussuriyski Dist., Primorski Krai 692533 Russia Corresponding author: Anna Šestáková ([email protected]) Academic editor: Yuri Marusik | Received 13 June 2012 | Accepted 4 July 2012 | Published 11 July 2012 Citation: Šestáková A, Omelko MM (2012) A new combination expands the range of the African araneid spider Singafrotypa (Araneae, Araneidae). ZooKeys 207: 79–84. doi: 10.3897/zookeys.207.3522 Abstract Study of the syntype of Larinioides subinermis, a species known from Ethiopia only, revealed that it ac- tually belongs to Singafrotypa Benoit, 1962. We redescribe Singafrotypa subinermis (Caporiacco, 1940), comb. n., and provide a key to females of four species belonging to Singafrotypa. A distribution map for all species is provided. Keywords Larinioides subinermis, Singafrotypa, redescription, taxonomy, spider, Africa Introduction The small African orb-weaver genus Singafrotypa was found to be restricted to western, southern and central Africa (Fig. 14). It presently contains 3 species: S. acanthopus (Simon, 1907), S. mandela Kuntner & Hormiga, 2002 and S. okavango Kuntner & Hormiga, 2002 (Kuntner and Hormiga 2002).
    [Show full text]
  • Poecilia Wingei
    MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV BOTANIKY A ZOOLOGIE AKADEMIE VĚD ČR ÚSTAV BIOLOGIE OBRATLOVCŮ, V.V.I. Personality, reprodukční strategie a pohlavní výběr u vybraných taxonů ryb Disertační práce Radomil Řežucha ŠKOLITEL: doc. RNDr. MARTIN REICHARD, Ph.D. BRNO 2014 Bibliografický záznam Autor: Mgr. Radomil Řežucha Přírodovědecká fakulta, Masarykova univerzita Ústav botaniky a zoologie Název práce: Personality, reprodukční strategie a pohlavní výběr u vybraných taxonů ryb Studijní program: Biologie Studijní obor: Zoologie Školitel: doc. RNDr. Martin Reichard, Ph.D. Akademie věd ČR Ústav biologie obratlovců, v.v.i. Akademický rok: 2013/2014 Počet stran: 139 Klíčová slova: Pohlavní výběr, alternativní rozmnožovací takti- ky, osobnostní znaky, sociální prostředí, zkuše- nost, Rhodeus amarus, Poecilia wingei Bibliographic Entry Author: Mgr. Radomil Řežucha Faculty of Science, Masaryk University Department of Botany and Zoology Title of Dissertation: Personalities, reproductive tactics and sexual selection in fishes Degree Programme: Biology Field of Study: Zoology Supervisor doc. RNDr. Martin Reichard, Ph.D. Academy of Sciences of the Czech Republic Institute of Vertebrate Biology, v.v.i. Academic Year: 2013/2014 Number of pages: 139 Keywords: Sexual selection, alternative mating tactics, per- sonality traits, social environment, experience, Rhodeus amarus, Poecilia wingei Abstrakt Vliv osobnostních znaků na alternativní reprodukční taktiky (charakteris- tické typy reprodukčního chování) patří mezi zanedbávané oblasti studia po- hlavního výběru. Současně bývá opomíjen i vliv sociálního prostředí a zkuše- nosti na tyto taktiky, a studium schopnosti jedinců v průběhu námluv mas- kovat své morfologické nedostatky. Jako studovaný systém alternativních rozmnožovacích taktik byl zvolen v přírodě nejběžnější komplex – sneaker × guarder (courter) komplex, popisující teritoriální a neteritoriální role samců.
    [Show full text]
  • Zootaxa, Araneae, Agelenidae, Agelena
    Zootaxa 1021: 45–63 (2005) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 1021 Copyright © 2005 Magnolia Press ISSN 1175-5334 (online edition) On Agelena labyrinthica (Clerck, 1757) and some allied species, with descriptions of two new species of the genus Agelena from China (Araneae: Agelenidae) ZHI-SHENG ZHANG1,2*, MING-SHENG ZHU1** & DA-XIANG SONG1*** 1. College of Life Sciences, Hebei University, Baoding, Hebei 071002, P. R. China; 2. Baoding Teachers College, Baoding, Hebei 071051, P. R. China; *[email protected], **[email protected] (Corresponding author), ***[email protected] Abstract Seven allied species of the funnel-weaver spider genus Agelena Walckenaer, 1805, including the type species Agelena labyrinthica (Clerck, 1757), known to occur in Asia and Europe, are reviewed on the basis of the similarity of genital structures. Two new species are described: Agelena chayu sp. nov. and Agelena cuspidata sp. nov. The specific name A. silvatica Oliger, 1983 is revalidated. The female is newly described for A. injuria Fox, 1936. Two specific names are newly synony- mized: Agelena daoxianensis Peng, Gong et Kim, 1996 with A. silvatica Oliger, 1983, and A. sub- limbata Wang, 1991 with A. limbata Thorell, 1897. Some names are proposed for these species to represent some particular genital structures: conductor ventral apophysis, conductor median apo- physis, conductor distal apophysis and conductor dorsal apophysis for male palp and spermathecal head, spermathecal stalk, spermathecal base and spermathecal apophysis for female epigynum. Key words: genital structure, revalidation, synonym, review, taxonomy Introduction The funnel-weaver spider genus Agelena was erected by Walckenaer (1805) with the type species Araneus labyrinthicus Clerck, 1757.
    [Show full text]
  • Consequences of Evolutionary Transitions in Changing Photic Environments
    bs_bs_banner Austral Entomology (2017) 56,23–46 Review Consequences of evolutionary transitions in changing photic environments Simon M Tierney,1* Markus Friedrich,2,3 William F Humphreys,1,4,5 Therésa M Jones,6 Eric J Warrant7 and William T Wcislo8 1School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia. 2Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA. 3Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201, USA. 4Terrestrial Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, WA 6986, Australia. 5School of Animal Biology, University of Western Australia, Nedlands, WA 6907, Australia. 6Department of Zoology, The University of Melbourne, Melbourne, Vic. 3010, Australia. 7Department of Biology, Lund University, Sölvegatan 35, S-22362 Lund, Sweden. 8Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Republic of Panamá. Abstract Light represents one of the most reliable environmental cues in the biological world. In this review we focus on the evolutionary consequences to changes in organismal photic environments, with a specific focus on the class Insecta. Particular emphasis is placed on transitional forms that can be used to track the evolution from (1) diurnal to nocturnal (dim-light) or (2) surface to subterranean (aphotic) environments, as well as (3) the ecological encroachment of anthropomorphic light on nocturnal habitats (artificial light at night). We explore the influence of the light environment in an integrated manner, highlighting the connections between phenotypic adaptations (behaviour, morphology, neurology and endocrinology), molecular genetics and their combined influence on organismal fitness.
    [Show full text]
  • The Disposition and External Morphology of Trichobothria in Two Arachnids
    ACTA ARACHNOL., 36: 11-23, 1988 11 THE DISPOSITION AND EXTERNAL MORPHOLOGY OF TRICHOBOTHRIA IN TWO ARACHNIDS GEETHABALIand Sulochana D. MORo Neurophysiology Laboratory, Department of Zoology, Bangalore University, Bangalore--560056, India Synopsis GEETHABALIand Sulochana D. MoRo (Neurophysiology Laboratory, Depart- ment of Zoology, Bangalore University, Bangalore-560056, India) : The disposition and external morphology of trichobothria in two arachnids. Acta arachnol,, 36: 11-23 (1988). The distribution and external morphology of trichobothria in the whip scorpion, Thelyphonus indicus, and the scorpion, Heterometrus fulvipes, have been studied. While the whip scorpion has its trichobothria remarkably reduced in number to just 10 distributed on the tibiae of the legs, the scorpion has totally 96 trichobothria with 48 on each pedipalp. The sockets as well as hair shafts of the trichobothria on the antenniform legs of the whip scorpion differ widely in their appearance from those on the walking legs. The trichobothria of the scorpion resemble those on the antenniform legs of the whip scorpion, but differ due to the lamellated wall of the cup of the trichobothrium in the scorpion. The directions of mobilities of individual trichobothria in both the arachnids have also been mapped. Introduction The trichobothria of arachnids are very fine hair sensilla remarkably sensi- tive to air currents, articulated within and emerging from independent sockets in the cuticle. They were first discovered on the extremities in Araneae by DAHL (1883) who called them `Horhaare' (hairs of hearing). The sensitivity of trichobothria to air currents was demonstrated in a scorpion,. (HOFFMAN, 1967) and a spider (GORNER & ANDREWS, 1969). Since the number and arrangement of trichobothria remain constant within individuals of a species but vary from species to species, trichobothrial patterns are used in systematics and classification and in the study of development (WEY- 12 GEETHABALIand Sulochana D.
    [Show full text]
  • Common Kansas Spiders
    A Pocket Guide to Common Kansas Spiders By Hank Guarisco Photos by Hank Guarisco Funded by Westar Energy Green Team, American Arachnological Society and the Chickadee Checkoff Published by the Friends of the Great Plains Nature Center i Table of Contents Introduction • 2 Arachnophobia • 3 Spider Anatomy • 4 House Spiders • 5 Hunting Spiders • 5 Venomous Spiders • 6-7 Spider Webs • 8-9 Other Arachnids • 9-12 Species accounts • 13 Texas Brown Tarantula • 14 Brown Recluse • 15 Northern Black Widow • 16 Southern & Western Black Widows • 17-18 Woodlouse Spider • 19 Truncated Cellar Spider • 20 Elongated Cellar Spider • 21 Common Cellar Spider • 22 Checkered Cobweb Weaver • 23 Quasi-social Cobweb Spider • 24 Carolina Wolf Spider • 25 Striped Wolf Spider • 26 Dotted Wolf Spider • 27 Western Lance Spider • 28 Common Nurseryweb Spider • 29 Tufted Nurseryweb Spider • 30 Giant Fishing Spider • 31 Six-spotted Fishing Spider • 32 Garden Ghost Spider Cover Photo: Cherokee Star-bellied Orbweaver ii Eastern Funnelweb Spider • 33 Eastern and Western Parson Spiders • 34 Garden Ghost Spider • 35 Bark Crab Spider • 36 Prairie Crab Spider • 37 Texas Crab Spider • 38 Black-banded Crab Spider • 39 Ridge-faced Flower Spider • 40 Striped Lynx Spider • 41 Black-banded Common and Convict Zebra Spiders • 42 Crab Spider Dimorphic Jumping Spider • 43 Bold Jumping Spider • 44 Apache Jumping Spider • 45 Prairie Jumping Spider • 46 Emerald Jumping Spider • 47 Bark Jumping Spider • 48 Puritan Pirate Spider • 49 Eastern and Four-lined Pirate Spiders • 50 Orchard Spider • 51 Castleback Orbweaver • 52 Triangulate Orbweaver • 53 Common & Cherokee Star-bellied Orbweavers • 54 Black & Yellow Garden Spider • 55 Banded Garden Spider • 56 Marbled Orbweaver • 57 Eastern Arboreal Orbweaver • 58 Western Arboreal Orbweaver • 59 Furrow Orbweaver • 60 Eastern Labyrinth Orbweaver • 61 Giant Long-jawed Orbweaver • 62 Silver Long-jawed Orbweaver • 63 Bowl and Doily Spider • 64 Filmy Dome Spider • 66 References • 67 Pocket Guides • 68-69 1 Introduction This is a guide to the most common spiders found in Kansas.
    [Show full text]
  • Discrete Dragline Attachment Induces Aggregation in Spiderlings of a Solitary Species
    ANIMAL BEHAVIOUR, 2004, 67, 531e537 doi:10.1016/j.anbehav.2003.06.013 Discrete dragline attachment induces aggregation in spiderlings of a solitary species RAPHAEL JEANSON*, JEAN-LOUIS DENEUBOURG† &GUYTHERAULAZ* *Centre de Recherches sur la Cognition Animale, CNRS, Universite´ Paul Sabatier yCenter for Nonlinear Phenomena and Complex Systems, Universite´ Libre de Bruxelles (Received 17 June 2002; initial acceptance 30 July 2002; final acceptance 20 June 2003; MS. number: 7375R) In the early stages of their life, solitary spiders undergo a transient gregarious phase. We designed a series of experiments in which collective displacements were induced in groups of spiderlings of the solitary species Larinioides cornutus (Araneae: Araneidae). Spiderlings were given access to a bifurcated escape route (Y-choice set-up) from a container. Consecutive passages in the set-up led to an asymmetrical distribution of individuals between branches. Individual behaviours of spiderlings were quantified and then implemented into a model with which we simulated collective displacements. Comparison between the outcome of the model and the experimental data shows that the discrete pattern of silk dragline attachment is the key mechanism involved in this collective phenomenon. Our results show that the collective responses in spiderlings of a solitary species and in social spiders are similar, and that a simple mechanism independent of the presence of silk attraction can lead to aggregation. Ó 2004 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved. Coordinated displacements are among the most com- coordination (Deneubourg & Goss 1989; Bonabeau et al. mon collective behaviours in group-living animals (Dingle 1997; Camazine et al.
    [Show full text]
  • Araneae (Spider) Photos
    Araneae (Spider) Photos Araneae (Spiders) About Information on: Spider Photos of Links to WWW Spiders Spiders of North America Relationships Spider Groups Spider Resources -- An Identification Manual About Spiders As in the other arachnid orders, appendage specialization is very important in the evolution of spiders. In spiders the five pairs of appendages of the prosoma (one of the two main body sections) that follow the chelicerae are the pedipalps followed by four pairs of walking legs. The pedipalps are modified to serve as mating organs by mature male spiders. These modifications are often very complicated and differences in their structure are important characteristics used by araneologists in the classification of spiders. Pedipalps in female spiders are structurally much simpler and are used for sensing, manipulating food and sometimes in locomotion. It is relatively easy to tell mature or nearly mature males from female spiders (at least in most groups) by looking at the pedipalps -- in females they look like functional but small legs while in males the ends tend to be enlarged, often greatly so. In young spiders these differences are not evident. There are also appendages on the opisthosoma (the rear body section, the one with no walking legs) the best known being the spinnerets. In the first spiders there were four pairs of spinnerets. Living spiders may have four e.g., (liphistiomorph spiders) or three pairs (e.g., mygalomorph and ecribellate araneomorphs) or three paris of spinnerets and a silk spinning plate called a cribellum (the earliest and many extant araneomorph spiders). Spinnerets' history as appendages is suggested in part by their being projections away from the opisthosoma and the fact that they may retain muscles for movement Much of the success of spiders traces directly to their extensive use of silk and poison.
    [Show full text]
  • Guseinov, Marusik, Koponen.Pm6
    Arthropoda Selecta 14 (2): 153177 © ARTHROPODA SELECTA, 2005 Spiders (Arachnida: Aranei) of Azerbaijan. 5. Faunistic review of the funnel-web spiders (Agelenidae) with the description of new genus and species Ïàóêè (Arachnida: Aranei) Àçåðáàéäæàíà. 5. Ôàóíèñòè÷åñêèé îáçîð ïàóêîâ-âîðîíêîïðÿäîâ (Agelenidae) ñ îïèñàíèåì íîâîãî ðîäà è íîâûõ âèäîâ Elchin F. Guseinov1, Yuri M. Marusik2 & Seppo Koponen3 Ý.Ô. Ãóñåéíîâ1, Þ.Ì. Ìàðóñèê2 è Ñ. Êîïîíåí3 1Institute of Zoology, block 504, passage 1128, Baku 370073 Azerbaijan. Email: [email protected] Èíñòèòóò çîîëîãèè ÀÍ Àçåðáàéäæàíà, êâàðòàë 504, ïðîåçä 1128, Áàêó 370073 Àçåðáàéäæàí. 2Institute for Biological Problems of the North, Portovaya Str. 18, Magadan 685000 Russia. Email: [email protected] Èíñòèòóò áèîëîãè÷åñêèõ ïðîáëåì Ñåâåðà, ÄÂÎ ÐÀÍ, óë. Ïîðòîâàÿ 18, Ìàãàäàí 685000 Ðîññèÿ. 3 Zoological Museum, University of Turku, FI-20014 Turku Finland. Email: [email protected] KEY WORDS: Aranei, Agelenidae, funnel spiders, Caucasus, Azerbaijan, new records, new species, new genus, new combination. ÊËÞ×ÅÂÛÅ ÑËÎÂÀ: Aranei, Agelenidae, ïàóêè-âîðîíêîïðÿäû, Êàâêàç, Àçåðáàéäæàí, íîâûå íàõîäêè, íîâûå âèäû, íîâûé ðîä, íîâàÿ êîìáèíàöèÿ. ABSTRACT. One new genus Azerithonica gen.n. ed for the first time for the fauna of the former Soviet and 14 new species from Azerbaijan are described: Union. In addition to new species three other species Agelescape caucasica sp.n. ($), A. dunini sp.n. (# $), are illustrated: Agelena labyrinthica (Clerck, 1757) A. levyi sp.n. (#), A. talyshica sp.n. ($), Azerithonica (#), Malthonica lyncea (Brignoli, 1978) (# $), Tege- hyrcanica sp.n. (# $, generotype), Malthonica lehtineni naria domestica (Clerck, 1757) (# $). Revised fauna sp.n. (#), M. lenkoranica sp.n. (# $), M. nakhchivan- of Azerbaijan encompass 19 species from 5 genera.
    [Show full text]
  • Where Have All the Spiders Gone? Observations of a Dramatic
    insects Communication Where Have All the Spiders Gone? Observations of a Dramatic Population Density Decline in the Once Very Abundant Garden Spider, Araneus diadematus (Araneae: Araneidae), in the Swiss Midland Martin Nyffeler 1,* and Dries Bonte 2 1 Department of Environmental Sciences, Section of Conservation Biology, University of Basel, CH–4056 Basel, Switzerland 2 Department of Biology, Terrestrial Ecology Unit, Ghent University, 9000 Ghent, Belgium; [email protected] * Correspondence: martin.nyff[email protected] Received: 6 March 2020; Accepted: 10 April 2020; Published: 15 April 2020 Abstract: Aerial web-spinning spiders (including large orb-weavers), as a group, depend almost entirely on flying insects as a food source. The recent widespread loss of flying insects across large parts of western Europe, in terms of both diversity and biomass, can therefore be anticipated to have a drastic negative impact on the survival and abundance of this type of spider. To test the putative importance of such a hitherto neglected trophic cascade, a survey of population densities of the European garden spider Araneus diadematus—a large orb-weaving species—was conducted in the late summer of 2019 at twenty sites in the Swiss midland. The data from this survey were compared with published population densities for this species from the previous century. The study verified the above-mentioned hypothesis that this spider’s present-day overall mean population density has declined alarmingly to densities much lower than can be expected from normal population fluctuations (0.7% of the historical values). Review of other available records suggested that this pattern is widespread and not restricted to this region.
    [Show full text]
  • Greco Thesis.Pdf
    2 3 4 To all the teachers of my life 5 INDEX 1. Summary 2. List of publications 3. Introduction 3.1. The Bioinspired approach 3.1.1. To learn, not to copy 3.1.2. What can we learn from spiders? 3.1.3. Spider silks and their applications: the Bio-inspired approach 3.2. Spider Silks and Spider Webs: an overview 3.2.1. Spiders and Silks 3.2.2. The spider silk: major ampullate silk 3.2.3. The other spider silks 3.2.4. From spider silks to spider webs 3.3. Spider Silks and Humans 3.3.1. Spider silk in ancient Greece and Rome 3.3.2. Spider silk after the copyright 3.3.3. Spider silk in the modern world 3.4. The mechanical properties 3.4.1. The nanomechanics of spider silk 3.4.2. How to measure the mechanical properties of silk 3.4.3. Dragline 3.5. Spider silks applications 3.5.1. Biomedical technologies 3.5.2. The other applications 3.6. References 3.7. Content of the chapters 4. Characterization of different junctions in spider orb webs 4.1. Abstract 4.2. Introduction 4.3. Results 4.4. Discussion 4.5. Conclusion 4.6. Methods 4.6.1. Spiders care and web production 4.6.2. Sample preparation 4.6.3. Optical and SEM images 4.6.4. Mechanical characterization 4.7. References 6 5. Stronger and tougher silk for resilient attachment discs: the mechanical properties of the piriform silk 5.1. Abstract 5.2. Introduction 5.3.
    [Show full text]