Block Ciphers Block Ciphers and Stream Ciphers
Block Ciphers and Stream Ciphers In practical ciphers the plaintext M is divided into fixed-length blocks M = M1M2 : : : MN . Then, each block Mi is encrypted to the ciphertext block Ci = EK(Mi), and the results are concatenated to the ciphertext C = C1C2 : : : CN . There are two major kind of ciphers, which differ in the way the plaintexts are encrypted: Block Ciphers c Eli Biham - May 3, 2005 83 Block Ciphers (4) c Eli Biham - May 3, 2005 84 Block Ciphers (4) y Stream Ciphers Block Ciphers The blocks are encrypted sequentially, each block is encrypted by a distinct All the blocks are encrypted in the same way, under exactly the same transfor- transformation, which might depend on mation (no memory): C1 = E(M1), C2 = E(M2), etc. Encryption transformation should not be vulnerable to known plaintext attacks. 1. the previous encrypted blocks, Attacker should not be able to collect (almost) all the plaintext/ciphertext blocks pairs, keep the transformation table T (M) = C, and use it to en- 2. the previous transformation, crypt/decrypt if they do not know the mathematical formulation of the trans- 3. the block number, formation (and in particular the key). Thus, the block size should be large, and the number of distinct possible 4. the key. values in a plaintext block should be larger than the minimal allowed complexity of an attack. This information from one block is kept in memory between the encryption In the past blocks of 64 bits were used, which have 264 possibilities, whose of this block and the succeeding block, for use during the encryption of the 64 succeeding block.
[Show full text]