Physics of Sound and Music I Week 9 Pitch and Timbre
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Chronicle of Sound: Establishing Community | by Anna Zimmerman | Published by Sapphire Leadership Group, LLC Table of Contents
Copyright © 2020 AnnA Zimmerman All rights reserved. No part of this publication may be reproduced or used in any manner without written permission of the copyright owner, except for the use of brief quotations in reviews and certain other non-commercial uses permitted by copyright law. The ideas and opinions expressed in this publication are those of the author and are not intended to represent Sapphire Leadership Group, LLC. First Edition: April 2020 Published by Sapphire Leadership Group, LLC www.theslg.com All further inquiries may be directed to AnnA Zimmerman at: [email protected] A Chronicle of Sound: Establishing Community | by AnnA Zimmerman | Published by Sapphire Leadership Group, LLC Table of Contents Introduction.............................................................................. 4 Elements of Music and Sound ...............................................5 Pythagoras and Ratios ...............................................................................................................................................................................6 Ancient Instruments ...................................................................................................................................................................................9 Physics of Sound ...........................................................................................................................................................................................9 Healing Frequency Streams ................................................................................................................................................................12 -
Virtual Pitch and Pitch Shifts in Church Bells
Open Journal of Acoustics, 2017, 7, 52-68 http://www.scirp.org/journal/oja ISSN Online: 2162-5794 ISSN Print: 2162-5786 Virtual Pitch and Pitch Shifts in Church Bells William A. Hibbert, Shahram Taherzadeh, David B. Sharp School of Engineering and Innovation, Open University, Milton Keynes, UK How to cite this paper: Hibbert, W.A., Abstract Taherzadeh, S. and Sharp, D.B. (2017) Virtual Pitch and Pitch Shifts in Church It is well established that musical sounds comprising multiple partials with Bells. Open Journal of Acoustics, 7, 52-68. frequencies approximately in the ratio of small integers give rise to a strong https://doi.org/10.4236/oja.2017.73006 sensation of pitch even if the lowest or fundamental partial is missing—the so-called virtual pitch effect. Experiments on thirty test subjects demonstrate Received: August 3, 2017 Accepted: September 5, 2017 that this virtual pitch is shifted significantly by changes in the spacing of the Published: September 8, 2017 constituent partials. The experiments measured pitch by comparison of sounds of similar timbre and were automated so that they could be performed Copyright © 2017 by authors and remotely across the Internet. Analysis of the test sounds used shows that the Scientific Research Publishing Inc. This work is licensed under the Creative pitch shifts are not predicted by Terhardt’s classic model of virtual pitch. The Commons Attribution International test sounds used were modelled on the sounds of church bells, but a further License (CC BY 4.0). experiment on seventeen test subjects showed that changes in partial ampli- http://creativecommons.org/licenses/by/4.0/ tude only had a minor effect on the pitch shifts observed, and that a pitch shift Open Access was still observed when two of the lowest frequency partials were removed, so that the effects reported are of general interest. -
Frequency-And-Music-1.34.Pdf
Frequency and Music By: Douglas L. Jones Catherine Schmidt-Jones Frequency and Music By: Douglas L. Jones Catherine Schmidt-Jones Online: < http://cnx.org/content/col10338/1.1/ > This selection and arrangement of content as a collection is copyrighted by Douglas L. Jones, Catherine Schmidt-Jones. It is licensed under the Creative Commons Attribution License 2.0 (http://creativecommons.org/licenses/by/2.0/). Collection structure revised: February 21, 2006 PDF generated: August 7, 2020 For copyright and attribution information for the modules contained in this collection, see p. 51. Table of Contents 1 Acoustics for Music Theory ......................................................................1 2 Standing Waves and Musical Instruments ......................................................7 3 Harmonic Series ..................................................................................17 4 Octaves and the Major-Minor Tonal System ..................................................29 5 Tuning Systems ..................................................................................37 Index ................................................................................................49 Attributions .........................................................................................51 iv Available for free at Connexions <http://cnx.org/content/col10338/1.1> Chapter 1 Acoustics for Music Theory1 1.1 Music is Organized Sound Waves Music is sound that's organized by people on purpose, to dance to, to tell a story, to make other people -
(Autumn 2004) Pitch Perception: Place Theory, Temporal Theory, and Beyond
EE 391 Special Report (Autumn 2004) Pitch Perception: Place Theory, Temporal Theory, and Beyond Advisor: Professor Julius Smith Kyogu Lee Center for Computer Research in Music and Acoustics (CCRMA) Music Department, Stanford University [email protected] Abstract to explain are easily explained by a temporal theory, and vice versa. Hence it would be fairer to call them complementary than competing, which may be proved by later hybrid models. Two competing theories on pitch perception are reviewed with brief history and several significant works that contributed to building such theories. Fundamental concepts behind these 2 Place Theory two theories - place theory and temporal theory - are briefly described, and the further steps their successors took are pre- The place theory has a long history which may hark back sented, followed by possible future directions. to the days of Helmholtz (von Helmholtz 1954) although most ideas can be traced back far beyond him.(de Cheveigne´ 2004). According to his resonance-place theory of hearing, the inner 1 Introduction ear acts like a frequency analyzer, and the stimulus reach- ing our ear is decomposed into many sinusoidal components, Pitch is one of the most important attributes of audio sig- each of which excites different places along the basilar mem- nals such as speech and music. In speech, pitch can greatly brane, where hair cells with distinct characteristic frequencies improve speech intelligibility and thus can be very useful are linked with neurones. He also suggested that the pitch of in speech recognition systems. Sound source separation is a stimulus is related to the pattern of the excitation produced another application where pitch information is critical espe- by the stimulus along the basilar membrane. -
Pitch Notation
Pitch Notation Collection Editor: Mark A. Lackey Pitch Notation Collection Editor: Mark A. Lackey Authors: Terry B. Ewell Catherine Schmidt-Jones Online: < http://cnx.org/content/col11353/1.3/ > CONNEXIONS Rice University, Houston, Texas This selection and arrangement of content as a collection is copyrighted by Mark A. Lackey. It is licensed under the Creative Commons Attribution 3.0 license (http://creativecommons.org/licenses/by/3.0/). Collection structure revised: August 20, 2011 PDF generated: February 15, 2013 For copyright and attribution information for the modules contained in this collection, see p. 58. Table of Contents 1 The Sta ...........................................................................................1 2 The Notes on the Sta ...........................................................................5 3 Pitch: Sharp, Flat, and Natural Notes .........................................................11 4 Half Steps and Whole Steps ....................................................................15 5 Intervals ...........................................................................................21 6 Octaves and the Major-Minor Tonal System ..................................................37 7 Harmonic Series ..................................................................................45 Index ................................................................................................56 Attributions .........................................................................................58 iv Available -
Application of Virtual Pitch Theory in Music Analysis
Application of virtual pitch theory in music analysis Llorenç Balsach Abstract In the course of this article a model of harmonic analysis is worked out based on certain properties of the auditory system, which I think will shed new light on the study of cadences and local harmonic resolutions. This model consists basically of extracting the two main fundamentals (roots) which are to be found in 93.3% of chords of less than 6 notes. To do this I apply the basic concepts of virtual pitch but taking into account only those harmonics which are in a prime position in the first seven, which in our thesis include the rest of the harmonics as far as the human auditory is concerned. With this model we found new information about the "internal" harmonic tension which is created by every single note and the tendencies of chords towards resolutions. I compare and discuss other models which apply the theory of virtual pitch in harmonic analysis. Introduction E. Terhardt's concept of "virtual pitch" is used in psycho-acoustics as a method of extracting pitch(es) from (harmonic) complex tone signals (see Terhardt, Stoll & Seewann (1982b, 1982c), Meddis & Hewitt (1991), van Immerseel & Martens (1992), Leman (1995)). The concept could be briefly described as the pitch which the auditory system perceives from a sound or group of sounds. There have been some attempts to bring the acoustic concept of virtual pitch into musical theory. Terhardt himself (1982a) applied his theory to extract the root(s) of a chord. R. Parncutt (1988) saw that the results obtained from Terhardt's model did not fit in sufficiently with conventional musical theory; he worked out a revised version of the model, producing significantly different results from Terhardt's original. -
A Biological Rationale for Musical Consonance Daniel L
PERSPECTIVE PERSPECTIVE A biological rationale for musical consonance Daniel L. Bowlinga,1 and Dale Purvesb,1 aDepartment of Cognitive Biology, University of Vienna, 1090 Vienna, Austria; and bDuke Institute for Brain Sciences, Duke University, Durham, NC 27708 Edited by Solomon H. Snyder, Johns Hopkins University School of Medicine, Baltimore, MD, and approved June 25, 2015 (received for review March 25, 2015) The basis of musical consonance has been debated for centuries without resolution. Three interpretations have been considered: (i) that consonance derives from the mathematical simplicity of small integer ratios; (ii) that consonance derives from the physical absence of interference between harmonic spectra; and (iii) that consonance derives from the advantages of recognizing biological vocalization and human vocalization in particular. Whereas the mathematical and physical explanations are at odds with the evidence that has now accumu- lated, biology provides a plausible explanation for this central issue in music and audition. consonance | biology | music | audition | vocalization Why we humans hear some tone combina- perfect fifth (3:2), and the perfect fourth revolution in the 17th century, which in- tions as relatively attractive (consonance) (4:3), ratios that all had spiritual and cos- troduced a physical understanding of musi- and others as less attractive (dissonance) has mological significance in Pythagorean phi- cal tones. The science of sound attracted been debated for over 2,000 years (1–4). losophy (9, 10). many scholars of that era, including Vincenzo These perceptual differences form the basis The mathematical range of Pythagorean and Galileo Galilei, Renee Descartes, and of melody when tones are played sequen- consonance was extended in the Renaissance later Daniel Bernoulli and Leonard Euler. -
The True Scientific Musical Tuning
The True Scientific Musical Tuning The following discussion took place on the New very principle of democracy on which European civili- Paradigm for Mankind show of June 17 on LaRouche zation is supposedly based. PAC TV. Another aspect of this issue is the decarbonizing Jason Ross: One of the main issues confronting us campaign that was promoted by the G7 in their idyllic today is what the nature of the human species is. This is meeting in the German mountains, where they put for- being seen in such situations as Greece where the Troika ward the goal of decarbonizing the world by 2100. How is trying to force Greece to make incredible cuts to its thoughtful of 10% of the world’s population to say what social welfare programs to the population, in order to 100% of the world will do over the coming decades. pay debts which they simply can’t pay. Greece has re- And this is also being pushed in the promotion of the sponded that of course they won’t give in, and that the Vatican’s weighing-in on this, pushing on a decarbon- principle of democracy is at stake—that the govern- ization policy. This is not based on any science about ment of Greece was elected based on the notion that actual climate change, global warming, anything of the they aren’t going to give in to these demands. So how sort. could the government do that? It would be violating the The intent of these policies is to prevent human EIRNS/Joanne McAndrews The Schiller Institute Chorus, joined by singers and an orchestra largely comprised of musicians from the New England area, presented Mozart’s Requiem (at C=256) in commemoration of President John Kennedy, on January 19, 2014. -
Factors Affecting Pitch Judgments As a Function of Spectral Composition
Perception & Psychophysics 1987, 42 (6), 511-514 Factors affecting pitch judgments as a function of spectral composition E.TERHARDTandA.GRUBERT Institute for Electroacoustics, Technical University Munchen, Munich, West Germany Stimulated by a recent paper by Platt and Racine (1985), we discuss the factors that probably are involved in certain inconsistencies observed in pitch judgments of tones with different spec tral composition. Typically, discrepancies reported in the literature are of the order of 10 cents in magnitude. We point out that measurement of such small pitch effects is heavily dependent on systematic individual differences, and that, when individual differences are averaged out (as is essentially the case in Platt and Racine's experiments), verification ofthe actual auditory stimu lus sound pressure level (SPL) within a few decibels is necessary. Utilizing the virtual-pitch the ory, we evaluate the effects of frequency, SPL, and earphone-frequency response. Furthermore, we present experimental and theoretical data on pitch of piano tones relevant to the problem. The study elucidates that, taking into account the factors mentioned, agreement between the various data considered, as well as theoretical understanding, actually is much better than would be apparent at first sight. .Recently, Platt and Racine (1985) provided further ex spectral components. To evaluate pitch deviations of com perimental data on small, but systematic, differences in plex tones of the type reported by Platt and Racine, it is the judgment of the pitch of tones having different spec thus appropriate to begin by considering the following in tral composition (see the literature listed by Platt and Ra fluences on the pitch of individual pure tones. -
Binaural Localization of Musical Pitch Using Interaural Time Differences in Congenital Amusia
RESEARCH ARTICLE Binaural localization of musical pitch using interaural time differences in congenital amusia I-Hui HsiehID*, Ssc-Chen Chen, Jia-Wei Liu Institute of Cognitive Neuroscience, National Central University, Jhongli County, Taoyuan City, Taiwan * [email protected] a1111111111 a1111111111 a1111111111 Abstract a1111111111 a1111111111 Naturally occurring sounds are routinely periodic. The ability to phase-lock to such periodicity facilitates pitch perception and interaural time differences (ITDs) determination in binaural localization. We examined whether deficient pitch processing in individuals with congenital amusia (tone deafness) is accompanied by impaired ability to lateralize musical pitch at audi- OPEN ACCESS tory periphery and memorize the location of pitch at the working memory level. If common Citation: Hsieh I-H, Chen S-C, Liu J-W (2018) mechanisms subserve processing of temporal-fine-structure based pitch and ITDs, then defi- Binaural localization of musical pitch using cient processing of one feature should impair performance on the other. Thus, we measured interaural time differences in congenital amusia. ITD discrimination thresholds using an adaptive-tracking procedure for lateralizing musical PLoS ONE 13(9): e0204397. https://doi.org/ 10.1371/journal.pone.0204397 tone pairs separated by different semitone intervals. Amusic individuals exhibited normal ITD thresholds comparable to those of matched controls, which were not affected by concurrent Editor: Ifat Yasin, University College London, UNITED KINGDOM pitch -
Music and the Brain
Music and the Brain Psyche Loui Department of Music, Center for Brain and Cognitive Health Northeastern University 360 Huntington Ave, Boston, MA 02115 [email protected] Alexander Belden Department of Biology, Center for Brain and Cognitive Health Northeastern University 360 Huntington Ave, Boston, MA 02115 [email protected] Teaser: Activity and connectivity throughout the human brain enable the complex experience of music Running Title: Music and the Brain Key Words: cognitive, neuroscience, neuropsychology, psychology, pitch, rhythm, harmony, melody, timbre, absolute pitch, amusia, tone deafness Technical Committee(s): Psychological and Physiological Acoustics; Music In recent years, the cognitive neuroscience of music has captured increasing interest from scientists, scholars, and the public alike. Part of this interest comes from methodological advancements to examine the living human brain. Another source of interest comes from increased awareness of the value of interdisciplinary research. Researchers come from diverse backgrounds, ranging from neurobiology to music education. This brings about a diversity of ideas. Finally, interest comes from the possibility that findings may translate towards better tools for music therapy, something that is being applied to an increasing variety of neurological and psychiatric disorders. Even for the healthy brain, there is a push towards using music to improve mood and cognition both in adulthood and in development. This article reviews recent advances in the cognitive neuroscience of music, with special attention to the cognitive neuroscience of pitch, rhythm, harmony, and melody. We begin with a brief introduction of the tools in use to examine musical functions in the brain with both spatial and temporal accuracy and precision. -
Tonality of Low-Frequency Synthesized Piano Tones
Tonality of Low-Frequency Synthesized Piano Tones Lola L. Cuddy Queen’s University Frank A. Russo Ryerson University Alexander Galembo Russian Academy of Sciences digital.library.ryerson.ca/object/153 Please Cite: Cuddy, L. L., Russo, F. A., & Galembo, A. (2014). Tonality of low-frequency synthesized piano tones. Archives of Acoustics, 32(3), 541-550. library.ryerson.ca ARCHIVES OF ACOUSTICS 32, 3, 541–550 (2007) TONALITY OF LOW-FREQUENCY SYNTHESIZED PIANO TONES Lola L. CUDDY(1), Frank A. RUSSO(2), Alexander GALEMBO(3) (1)Queen’s University Department of Psychology, Kingston, Canada e-mail: [email protected] (2)Ryerson University Department of Psychology, Toronto, Canada e-mail: [email protected] (3)Russian Academy of Sciences Setchenov Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, Russia (received May 15, 2007; accepted June 6, 2007) The influences of inharmonicity and bandwidth on sensitivity to tonality in the low- frequency range (A0 to G#1) were tested in a listening experiment. Participants were presented a key-defining context (do-mi-do-so) and were asked to rate the goodness of fit of probe tones to the context. Probe tones were the 12 tones of the chromatic scale beginning on do. The set of 12 ratings, called the probe-tone profile, was compared to an established standardized pro- file for the Western tonal hierarchy. Prior research employing this method with real (sampled) piano tones has suggested that sensitivity to tonality is influenced by inharmonicity, partic- ularly in the lowest octaves of the piano where inharmonicity levels are substantially above the detection threshold.