Adsorption of Micropollutants on Ion Exchangers and Biosolids-Derived Biochar

Total Page:16

File Type:pdf, Size:1020Kb

Adsorption of Micropollutants on Ion Exchangers and Biosolids-Derived Biochar Marquette University e-Publications@Marquette Dissertations, Theses, and Professional Dissertations (1934 -) Projects Micropollutant-Free Nutrient Recovery: Adsorption of Micropollutants on Ion Exchangers and Biosolids-Derived Biochar Yiran Tong Marquette University Follow this and additional works at: https://epublications.marquette.edu/dissertations_mu Part of the Environmental Engineering Commons Recommended Citation Tong, Yiran, "Micropollutant-Free Nutrient Recovery: Adsorption of Micropollutants on Ion Exchangers and Biosolids-Derived Biochar" (2018). Dissertations (1934 -). 764. https://epublications.marquette.edu/dissertations_mu/764 MICROPOLLUTANT-FREE NUTRIENT RECOVERY: ADSORPTION OF MICROPOLLUTANTS ON ION EXCHANGERS AND BIOSOLIDS-DERIVED BIOCHAR By Yiran Tong A Dissertation submitted to the Faculty of the Graduate School, Marquette University, in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Milwaukee, Wisconsin May 2018 ABSTRACT MICROPOLLUTANT-FREE NUTRIENT RECOVERY: ADSORPTION OF MICROPOLLUTANTS ON ION EXCHANGERS AND BIOSOLIDS-DERIVED BIOCHAR Yiran Tong Marquette University, 2018 The presence of excessive nutrients in treated wastewater effluent is a growing concern in terms of water quality and ecological balance. Thus, removal of nutrients is of great interest. Moreover, the removed nutrients can be recovered in forms amenable for agricultural reuse, which yields a sustainable supply of nonrenewable phosphorus that can be used to support global food production. As nutrient recovery gains interest, it is essential that the products be free of harmful contaminants. One class of contaminants of great concern is organic micropollutants. To help address these issues, this study evaluated the fate and impact of micropollutants during nutrient recovery via an ion exchange-regeneration-precipitation process. The adsorptive behavior of the micropollutants was evaluated for the ion exchangers and for a sustainable biosolids- derived biochar that may be useful for separating micropollutants from nutrients prior to ion exchange. Bench-scale batch reactors were operated for ion exchange-regeneration and adsorption tests. The surface properties of ion exchangers and biochar were characterized to help assess the mechanisms of micropollutant adhesion on solid adsorbents. The presence of micropollutants in water reduced the kinetic rates of nutrient exchange onto ion exchangers. Micropollutants were adsorbed to the phosphate exchangers and were released with phosphate ions during ion exchange regeneration. To remove micropollutants from water prior to ion exchange, biosolids-derived biochar was used since micropollutants were adsorbed to the biochar, but ionic nutrients were not. Biochar produced at higher pyrolysis temperatures increased adsorption capacity, as did higher ambient temperatures for batch sorption experiments. Under multi-solute conditions, not all target micropollutants demonstrated suppressed adsorption. Biochar, ammonium, and phosphate exchangers were accordingly arranged in sequence in a flow- through system. The biochar column removed more than 80% of influent hydrophobic micropollutants and 50% of hydrophilic micropollutants, thereby reducing the presence of micropollutants in the nutrient removal/recovery process. Thermodynamic parameters indicated an endothermic adsorption reaction and heterogeneity in adsorption site distribution on the biochar surface. The binding energy and entropy change of adsorption were not affected by the presence or absence of other solutes in the matrix. The underlying binding mechanism for biosolids-derived biochar adsorption was potentially dominated by non-specific hydrophobic interaction and non-covalent interaction including hydrogen bonding and π-stacking. i ACKNOWLEDGMENTS Yiran Tong I would like to express greatest gratitude to my advisors, Dr. Mayer and Dr. McNamara for helping me successfully achieve my education and research goals at Marquette University. Not only did I learn specific scientific knowledge and experimental techniques through their knowledgeable guidance, but it was also rewarding to learn from their ways of critical thinking and communicating, which will benefit my future work. I received a lot of encouragement from them. I absolutely will conclude my four years at Marquette University as a fruitful and happy time, because I got lucky to have such good advisors. I thank Dr. Silva, Dr. Singer and Dr. Zitomer, for their willingness to serve as my committee members and thoughtful advice to improve the quality of my research and dissertation. Gratefulness is also expressed to research funding sources including National Science Foundation (NSF) Water Equipment and Policy Center (WEP), the Lafferty Family Foundation and Arthur J. Schmitt Foundation for supporting my education and research. I would also acknowledge members of Water Quality Center. I thank our lab manager, Mike Dollhopf. His efforts for making the lab space, instruments, and chemicals organized was the basic quality control for my experiments. In no particular order, I would like to thank my past and present colleagues: Dr. Daniel Carey, Dr. Matthew Seib, Dr. Anthony Kappell, Dr. Zhongzhe Liu, Dr. Yu Yang, Dr. Kyana Young, Dr. Kaushik Venkiteshwaran, , Joseph Heffron, Emily Maher, Anna Avila, Saba Seyedi, ii Erik Anderson, Dylan Friss, Lee Kimbell, Paige Peters, Vinny Martino, Donald Ryan, Will Lynn, John Ross, Tom Hoffman, Carlan Johnson and Nick Benn. They are not only great friends, but also my mentors on techniques to some extent. Words just can’t describe how much thankfulness I have for my beloved mom and dad. They have always been extremely supportive and empathetic to the decisions I made. And my dearest boyfriend, Zhuozhi, I feel blessed to have him for putting our endeavors together to achieve shared life goals. iii TABLE OF CONTENTS ACKNOWLEDGMENTS ................................................................................................... i LIST OF TABLES ............................................................................................................. ix LIST OF FIGURES ............................................................................................................ x 1 INTRODUCTION .................................................................................................. 1 1.1 The Nutrients-Energy-Water Nexus at Water Resource Reclamation Facilities .................................................................................................................. 2 1.2 Anaerobic Treatment and Nutrient Recovery ............................................. 3 1.3 Pyrolysis for Biosolids Treatment .............................................................. 4 1.4 Organic Micropollutants in Wastewater ..................................................... 4 1.5 Adsorptive Behavior of Micropollutants in WRRFs .................................. 5 1.6 Research Objectives .................................................................................... 8 1.7 References ................................................................................................... 9 2 LITERATURE REVIEW: ADSORPTION OF ORGANIC MICROPOLLUTANTS ONTO SOLID ADSORBENTS................................................ 13 2.1 Introduction ............................................................................................... 14 2.2 Adsorbent surface properties and their adsorption abilities ...................... 15 2.2.1 Biochar surface properties and the adsorption of organic contaminants ............................................................................................. 16 2.2.2 Surface properties of non-carbonaceous adsorbents ..................... 19 2.3 The kinetics of adsorption of aqueous-phase organic compounds onto porous media ......................................................................................................... 20 2.3.1 Diffusion-controlled kinetics ........................................................ 21 2.3.2 Reaction-controlled kinetics .......................................................... 24 2.4 Adsorption mechanisms of organic micropollutants binding to porous sorbents ................................................................................................................. 26 iv 2.5 Quantitative methods for characterizing adsorption of organic micropollutants on porous media from water ....................................................... 32 2.5.1 Isotherms ....................................................................................... 32 2.5.2 Thermodynamics of adsorption ..................................................... 37 2.6 Conclusions and Research Gaps ............................................................... 44 2.7 References ................................................................................................. 46 3 THE FATE AND IMPACT OF ORGANIC MICROPOLLUTANTS DURING NUTRIENT REMOVAL AND RECOVERY VIA ION EXCHANGE AND STRUVITE PRECIPITATION ............................................................................................................. 57 3.1 Introduction ............................................................................................... 58 3.2 Materials and Methods .............................................................................. 61 3.2.1 Ion exchangers .............................................................................. 61 3.2.2 Ion exchanger characterization ....................................................
Recommended publications
  • Citing Data Using ACS Style
    Sciences and Technology Library Citing Data using ACS Style ACS Style Guidelines for Citing Data The examples below are suggested formats for citing data such as physical property data or spectra obtained from various types of resources. The ACS Style Guide provides a few examples for citing data but does not include examples of the wide variety of online sources that are available. The purpose of the citation is to provide sufficient detail so that someone else can locate the data. Page numbers may not exist when citing online sources of data and therefore it may be necessary to indicate information like the CAS Registry Number or the entry name so that someone else can locate the exact information that was cited. For more information consult the ACS Style Guide: Effective Communication of Scientific Communication, 3rd edition (Sciences and Technology Library Reference QD 8.5 A25 2006). Citation Examples for Citing Data Web Sites Web sites can be government sites, organization sites, course web sites or personal home pages. Some websites are considered databases and should be cited as a database. See the information on databases listed below. Databases include a reference number or other identifying information along with one or more search options. General Features of Web Sites: accessible on the Internet no page numbers information cited is located at the URL provided – no additional searching is required Where to Find Citation Information: Look at the About Us links, Contact Us links, Copyright link, copyright information at the bottom of the search screen, links with the word Citation or Cite.
    [Show full text]
  • Mysore University Library LIST of JOURNALS
    Mysore University Library LIST OF JOURNALS SUBJECT: CHEMISTRY PRINT JOURNALS SUBSCRIBED Journal Name Current Science Indian Chemical Society Indian Journal of Chemical Technology Indian Journal of Chemistry Section - A Indian Journal of Chemistry Section - B Indian Journal of Heterocyclic Chemistry Journal of Applied Chemistry Journal of Applied Geochemistry Journal of Chemical Science Journal of Chemistry and Chemical Sciences Research Journal of Chemistry and Environment E-JOURNALS: UGC-INFONET & MUL PUBLISHERS/ E-JOURNALS URL AGGREGATOR Accounts of Chemical Research American Chemical Society http://pubs.acs.org/journals/achre4/index.html Acs chemical biology American Chemical Society http://pubs.acs.org/journals/acbcct/index.html Acta biomaterialia ScienceDirect http://www.sciencedirect.com/science/journal/17427061 Acta crystallographicasection a Blackwell - Wiley http://www.onlinelibrary.wiley.com/journal/10.1111/(ISSN)1600-5724 Acta crystallographica section b Blackwell - Wiley http://www.onlinelibrary.wiley.com/journal/10.1111/(ISSN)1600-5740 Acta crystallographica section c Blackwell - Wiley http://www.onlinelibrary.wiley.com/journal/10.1111/(ISSN)1600-5759 Acta crystallographica section d Blackwell - Wiley http://www.onlinelibrary.wiley.com/journal/10.1111/(ISSN)1399-0047 Acta crystallographica section e Blackwell - Wiley http://www.onlinelibrary.wiley.com/journal/10.1111/(ISSN)1600-5368 (electronic) Acta crystallographica section f Blackwell - Wiley http://www.onlinelibrary.wiley.com/journal/10.1111/(ISSN)1744-3091 (electronic)
    [Show full text]
  • Financial Statements and Trustees' Report 2017
    Royal Society of Chemistry Financial Statements and Trustees’ Report 2017 About us Contents We are the professional body for chemists in the Welcome from our president 1 UK with a global community of more than 50,000 Our strategy: shaping the future of the chemical sciences 2 members in 125 countries, and an internationally Chemistry changes the world 2 renowned publisher of high quality chemical Chemistry is changing 2 science knowledge. We can enable that change 3 As a not-for-profit organisation, we invest our We have a plan to enable that change 3 surplus income to achieve our charitable objectives Champion the chemistry profession 3 in support of the chemical science community Disseminate chemical knowledge 3 and advancing chemistry. We are the largest non- Use our voice for chemistry 3 governmental investor in chemistry education in We will change how we work 3 the UK. Delivering our core roles: successes in 2017 4 We connect our community by holding scientific Champion for the chemistry profession 4 conferences, symposia, workshops and webinars. Set and maintain professional standards 5 We partner globally for the benefit of the chemical Support and bring together practising chemists 6 sciences. We support people teaching and practising Improve and enrich the teaching and learning of chemistry 6 chemistry in schools, colleges, universities and industry. And we are an influential voice for the Provider of high quality chemical science knowledge 8 chemical sciences. Maintain high publishing standards 8 Promote and enable the exchange of ideas 9 Our global community spans hundreds of thousands Facilitate collaboration across disciplines, sectors and borders 9 of scientists, librarians, teachers, students, pupils and Influential voice for the chemical sciences 10 people who love chemistry.
    [Show full text]
  • UC Berkeley UC Berkeley Electronic Theses and Dissertations
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Supercharging methods for improving analysis and detection of proteins by electrospray ionization mass spectrometry Permalink https://escholarship.org/uc/item/93j8p71p Author Going, Catherine Cassou Publication Date 2015 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Supercharging methods for improving analysis and detection of proteins by electrospray ionization mass spectrometry by Catherine Cassou Going A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Chemistry in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Evan R. Williams, chair Professor Kristie A. Boering Professor Robert Glaeser Fall 2015 Supercharging methods for improving analysis and detection of proteins by electrospray ionization mass spectrometry Copyright 2015 by Catherine Cassou Going Abstract Supercharging methods for improving analysis and detection of proteins by electrospray ionization mass spectrometry by Catherine Cassou Going Doctor of Philosophy in Chemistry University of California, Berkeley Professor Evan R. Williams, Chair The characterization of mechanisms, analytical benefits, and applications of two different methods for producing high charge state protein ions in electrospray ionization (ESI) mass spectrometry (MS), or "supercharging", are presented in this dissertation. High charge state protein ions are desirable in tandem MS due to their higher fragmentation efficiency and thus greater amount of sequence information that can be obtained from them. The first supercharging method, supercharging with reagents (typically non-volatile organic molecules), is shown in this work to be able to produce such highly charged protein ions from denaturing solutions that about one in every three residues carries a charge.
    [Show full text]
  • Chemspider – Is This the Future of Linked Chemistry on the Internet?
    ChemSpider – Is This The Future of Linked Chemistry on the Internet? Antony Williams BAGIM, Boston, August 2010 Our dog has fleas It’s not an Advantage… What is the structure of “Advantage”? . Audience Participation Time…. Where would you look? . What would you trust? . Where would you look ONLINE? What is the Structure of Vitamin K? MeSH . A lipid cofactor that is required for normal blood clotting. Several forms of vitamin K have been identified: VITAMIN K 1 (phytomenadione) derived from plants, VITAMIN K 2 (menaquinone) from bacteria, and synthetic naphthoquinone provitamins, VITAMIN K 3 (menadione). Vitamin K 3 provitamins, after being alkylated in vivo, exhibit the antifibrinolytic activity of vitamin K. Green leafy vegetables, liver, cheese, butter, and egg yolk are good sources of vitamin K What is the Structure of Vitamin K1? Wikipedia What is the Structure of Vitamin K1? CAS’s Common Chemistry PubChem “2-methyl-3-(3,7,11,15-tetramethylhexadec-2- enyl)naphthalene-1,4-dione” . Variants of systematic names on PubChem . 2-methyl-3-[(E,7R,11R)-3,7,11,15-tetramethyl . 2-methyl-3-[(E,7S,11R)-3,7,11,15-tetramethyl . 2-methyl-3-[(E,7R,11S)-3,7,11,15-tetramethyl . 2-methyl-3-[(E,7S,11S)-3,7,11,15-tetramethyl . 2-methyl-3-[(E,11S)-3,7,11,15-tetramethyl . 2-methyl-3-[(E)-3,7,11,15-tetramethyl . 2-methyl-3-(3,7,11,15-tetramethyl . 2-methyl-3-[(E)-3,7,11,15-tetramethyl Bioassay Data are Associated… Structures on DailyMed Lack of Stereochemistry Does Stereochemistry Matter? Does one stereocenter matter? .
    [Show full text]
  • New Journal and Database Subscriptions – 2012 -2013
    NEW JOURNAL AND DATABASE SUBSCRIPTIONS – 2012 -2013 New Journals Afterall: A Journal of Art, Context and Enquiry American Biology Teacher American Journal of Bioethics American Political Thought Annals of Tourism Research Art Documentation Biodiversity and Conservation Biomaterials Science BioScience Boom: A Journal of California California Archaeology California Management Review Catalysis Science & Technology Chemical Hazards in Industry China Journal Classical Antiquity Classical Philology Crime and Justice Critical Review of International Social and Political Philosophy Education in Chemistry Educational Technology Research Development Elephant Ethics Federal Sentencing Reporter Food & Function Frankie Gastronomica: The Journal of Food and Culture Haaretz Historical Studies in the Natural Sciences HOPOS: The Journal of the International Society for the History of Philosophy of Science Huntington Library Quarterly Indian Country Today Indonesia Journal Information, Communication & Society Innovation Policy and the Economy Integrative Biology Issues in Environmental Science and Technology Journal of Applied Remote Sensing Journal of Digital Media Management Journal of Empirical Research on Human Research Ethics Journal of Environmental Studies and Sciences Journal of Human Capital Journal of Labor Economics Journal of Leisure Research Journal of Micro/Nanolithography, MEMS, and MOEMS Journal of Modern History Journal of Nanophotonics Journal of North African Studies Journal of Palestine Studies Journal of Photonics for Energy Journal
    [Show full text]
  • One Million Structures and Counting the Journey, the Insights, and the Future of the CSD
    One Million Structures and Counting The journey, the insights, and the future of the CSD Suzanna Ward The Cambridge Crystallographic Data Centre ECM32 – Wednesday 21st August 2019 2 The Cambridge Structural Database (CSD) 1,013,731 ▪ Every published Structures structure An N-heterocycle published produced by a that year ▪ Inc. ASAP & early view chalcogen-bonding ▪ CSD Communications catalyst. Determined Structures at Shandong published ▪ Patents University in China by previously Yao Wang and his ▪ University repositories team. XOPCAJ - The millionth CSD structure. ▪ Every entry enriched and annotated by experts ▪ Discoverability of data and knowledge ▪ Sustainable for over 54 years 3 Inside the CSD Organic ligands Additional data Organic Metal-Organic • Drugs • 10,860 polymorph families 43% 57% • Agrochemicals • 169,218 melting points • At least one transition metal, Pigments • 840,667 crystal colours lanthanide, actinide or any of Al, • Explosives Ga, In, Tl, Ge, Sn, Pb, Sb, Bi, Po • 700,002 crystal shapes • Protein ligands • 23,622 bioactivity details Polymeric: 11% Polymeric: • 9,740 natural source data Not Polymeric Metal-Organic • > 250,000 oxidation states 89% • Metal Organic Frameworks • Models for new catalysts ligand Links/subsets • Porous frameworks for gas s • Drugbank storage • Druglike • Fundamental chemical bonding • MOFs Single Multi ligands • PDB ligands Component Component • PubChem 56% 44% • ChemSpider • Pesticides 4 1965 The sound of music • Film first released in 1965 • Highest grossing film of 1965 • Set in Austria 5 The 1960s Credits: NASA Credits: Thegreenj 6 The vision • Established in 1965 by Olga Kennard • She and J.D. Bernal had a vision that a collective use of data would lead to new knowledge and generate insights J.D.
    [Show full text]
  • Final-SPARC Paper Revised 2.Pdf (76.01Ko)
    A study of Canadian authorship in selected SPARC Alternative journals in the early years after their introduction By John Dupuis and Leila Fernandez Steacie Science and Engineering Library, York University, Toronto, Canada Abstract The Scholarly Publishing and Academic Resources Coalition (SPARC) is an initiative of the Association of Research Libraries. In 1998 SPARC introduced the Alternative Program working with partners to launch new journals to compete with existing high- priced titles in the STM field. Currently there are 11 titles in this program listed on the website (http://www.arl.org/sparc/partner/partnerlist.html), three of which are freely accessible. This study examines the earliest adopters, Organic Letters and Evolutionary Ecology Research to determine author satisfaction with these journals. Organic Letters although originally a SPARC Alternative journal is no longer listed under this Program. A survey of Canadian authors in these journals in the first five years since inception provides insight into the reasons why they chose to publish in these journals and has definite implications for librarians. The results of these surveys are discussed in the larger framework of existing scholarly communication models. Introduction: The Scholarly Publishing and Academic Resources Coalition is well-known in the scholarly communications arena through its various partnerships and programs, its advocacy initiatives and its promotion of open access publishing. Its early development and evolution has been traced by Mary Case in Igniting Change in Scholarly Communication: SPARC, Its Past, Present, and Future, which also provides an overview of the three main publisher partnership programs SPARC Alternative, SPARC Leading Edge and SPARC Scientific Communities.
    [Show full text]
  • A Pitfall in Drug Discovery
    SOCIAL ASPECTS OF DRUG DISCOVERY, DEVELOPMENT AND COMMERCIALIZATION ODILIA OSAKWE, MS, PhD Industrial BioDevelopment Laboratory, UHN-MaRS Centre Toronto Medical Discovery Tower and Ryerson University, Toronto, Canada SYED A. A. RIZVI, MSc, MBA, MS, PhD (Pharm), PhD (Chem), MRSC Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA Amsterdam • Boston • Heidelberg • London New York • Oxford • Paris • San Diego San Francisco • Singapore • Sydney • Tokyo Academic Press is an imprint of Elsevier Academic Press is an imprint of Elsevier 125 London Wall, London EC2Y 5AS, UK 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, USA The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK Copyright © 2016 Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further infor- mation about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions. This book and the individual contributions contained in it are protected under copyright by the Pub- lisher (other than as may be noted herein). Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein.
    [Show full text]
  • An Open Access Knowledge Base for Microbial Natural Products Discovery † † † ‡ § Jeffrey A
    This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. Research Article Cite This: ACS Cent. Sci. 2019, 5, 1824−1833 http://pubs.acs.org/journal/acscii The Natural Products Atlas: An Open Access Knowledge Base for Microbial Natural Products Discovery † † † ‡ § Jeffrey A. van Santen, Gregoire Jacob, Amrit Leen Singh, Victor Aniebok, Marcy J. Balunas, † † ∥ ⊥ # † † Derek Bunsko, Fausto Carnevale Neto, , , Laia Castaño-Espriu, Chen Chang, Trevor N. Clark, ¶ ‡ ◆ # Jessica L. Cleary Little, David A. Delgadillo, Pieter C. Dorrestein, Katherine R. Duncan, † ¶ † † # † Joseph M. Egan, Melissa M. Galey, F.P. Jake Haeckl, Alex Hua, Alison H. Hughes, Dasha Iskakova, ‡ ¶ † † † ‡ Aswad Khadilkar, Jung-Ho Lee, Sanghoon Lee, Nicole LeGrow, Dennis Y. Liu, Jocelyn M. Macho, † ○ ∇ ∇ Catherine S. McCaughey, Marnix H. Medema, Ram P. Neupane, Timothy J. O’Donnell, † ¶ ■ # ○ Jasmine S. Paula, Laura M. Sanchez, Anam F. Shaikh, Sylvia Soldatou, Barbara R. Terlouw, ¶ ⬢ † ○ ‡ ◆ Tuan Anh Tran, , Mercia Valentine, Justin J. J. van der Hooft, Duy A. Vo, Mingxun Wang, † ¶ † Darryl Wilson, Katherine E. Zink, and Roger G. Linington*, † Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada ‡ Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 65064, United States § Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs,
    [Show full text]
  • Identification of a Novel Biosynthetic Gene Cluster in Aspergillus Niger
    Journal of Fungi Article Identification of a Novel Biosynthetic Gene Cluster in Aspergillus niger Using Comparative Genomics Gregory Evdokias 1, Cameron Semper 2, Montserrat Mora-Ochomogo 1, Marcos Di Falco 1 , Thi Truc Minh Nguyen 1 , Alexei Savchenko 2, Adrian Tsang 1 and Isabelle Benoit-Gelber 1,* 1 Centre for Structural and Functional Genomics, Department of Biology, Concordia University, 7141 Rue Sherbrooke Ouest, Montréal, QC H4B 1R6, Canada; [email protected] (G.E.); [email protected] (M.M.-O.); [email protected] (M.D.F.); [email protected] (T.T.M.N.); [email protected] (A.T.) 2 Department of Microbiology, Immunology and Infectious Disease, University of Calgary, 3330 Hospital Drive, Calgary, AB T2N 4N1, Canada; [email protected] (C.S.); [email protected] (A.S.) * Correspondence: [email protected] Abstract: Previously, DNA microarrays analysis showed that, in co-culture with Bacillus subtilis, a biosynthetic gene cluster anchored with a nonribosomal peptides synthetase of Aspergillus niger is downregulated. Based on phylogenetic and synteny analyses, we show here that this gene cluster, NRRL3_00036-NRRL3_00042, comprises genes predicted to encode a nonribosomal pep- tides synthetase, a FAD-binding domain-containing protein, an uncharacterized protein, a trans- porter, a cytochrome P450 protein, a NAD(P)-binding domain-containing protein and a transcription factor. We overexpressed the in-cluster transcription factor gene NRRL3_00042. The overexpres- Citation: Evdokias, G.; Semper, C.; sion strain, NRRL3_00042OE, displays reduced growth rate and production of a yellow pigment, Mora-Ochomogo, M.; Di Falco, M.; which by mass spectrometric analysis corresponds to two compounds with masses of 409.1384 and Nguyen, T.T.M.; Savchenko, A.; 425.1331.
    [Show full text]
  • Annual Review 2011
    Annual Review 2011 www.rsc.org Contents 01 Welcome from the President 02 A message from the Chief Executive 03 Supporting a strong membership 07 Leading the global chemistry community 11 Engaging people with chemistry 15 Influencing the future of chemistry 19 Enhancing knowledge 23 Summary of financial information 24 Contacts Professor David Phillips CBE CSci CChem FRSC We championed the cause of chemical sciences with pride and conviction throughout the International Year of Chemistry. ‘‘ Welcome from the President When the United Nations announced that 2011 would be designated the “International Year of Chemistry” (IYC), we knew immediately that the year would bring countless opportunities to promote, expand and evolve both the RSC and the chemical sciences more broadly. We needed to make it a year to remember. I’m delighted to say we rose to the challenge. In a year marked with natural disasters, economic uncertainty and adverse conditions affecting the chemical sciences in ways never seen before, we still led the UK in being perhaps the most active country in the world throughout IYC. Our members did us proud, arranging hundreds of IYC events across the globe. Perhaps most visible was the Global Water Experiment, an international effort to map global water quality using data collected by school pupils. A national media campaign, including an outing on BBC TV’s One Show, led to widespread awareness of the experiment. Dedicated and enthusiastic UK teachers then inspired a sensational number of their pupils to take part, and as a country we contributed more data to the experiment than any other.
    [Show full text]