Back Matter (PDF)

Total Page:16

File Type:pdf, Size:1020Kb

Back Matter (PDF) Index Page numbers in italics refer to Figures. Page numbers in bold refer to Tables. Abel, Othenio L. F. L. (1875–1946) 91,93 Anoxypristis 129 Academy of Natural Sciences of Philadelphia, Hayden Antarctica, work of ASW 262–263, 264, 278, 282 Medal 44, 56, 58 Apateodus lanceolatus 173 Acanthocybiinae 186 Apateodus striatus 173 Acanthodes, classification 116–117, 119, 123, 124 Aphaneramma longirostris 290, 291 Acanthodes australis 262 Apocopodom sericeus 202 Acanthodes bronni 119 Apsopelix anglicus 172 Acanthodes sulcatus 119 Arber, Agnes Robertson (1879–1960) 89, 94 Acanthodii 123, 125 Arber, Edward Alexander Newell (1870–1918) 94 Acanthomorpha 187, 188, 189, 190 Archaeopteryx 299 Acanthuroidei 187 Archegosaurus ornatus 290, 291 Acestrus ornatus 187 Archipterygium 117, 124, 125 Acipenser 184 Argentina, fossil reptiles 296–298 Acipenser toliapicus 184 work of Ameghino 313–317 Acipenseriformes 184 Argillichthys toombsi 167, 185 ‘acipenseroid’, ASW interpretation of Leedsichthys Argilloberyx prestwichae 185 problematicus 251–252 Arius iheringi 173, 202, 209 Acrodus 142, 143, 144, 157 Arthrodira 123, 126 Acrodus nitidus 202, 224 Aspidorhynchidae 121 Acrognathus boops 173 Aspidorhynchiformes 171 Acrotemnus faba 171 Athens University, honorary DSc 44, 55–56, 57 Actinopterygii 119, 121, 123, 124, 125, 165–191 Atherstonia australis 262, 271, 279 Australia 271 Aulolepis typus 173 English Chalk 167–170, 171–173, 174–177 Aulopiformes 173, 185 London Clay 178–182, 184–187 Aulopopsis 166 preparation techniques 165–166 Aulopopsis depressifrons 185 Aeluridopus baconi 290, 299 Aulopopsis egertoni 185 Aeluropoda melanoluca baconi 290, 299 Australia, work of ASW 261, 262–263, 264, 265–266, Aetholepis mirabilis 116, 118, 262, 273 270–282, 298 Aethospondyli 119, 121 autostylic fish 123, 125 Agassiz, Jean Louis Rodolphe (1807–73) 140 fossil fish 66, 68, 139–140, 142–146 Barameda decipiens 263, 276 classification 116, 117 Barameda mitchelli 276, 277 Monographie des poissons fossiles des Vieux Gres Bate, Dorothea (1878–1951) 42, 91–92, 95 Rouge...(1844–45) 116 batoids 157, 159, 160, 161 Recherches sur les Poissons Fossiles (1833–44) 66, Baugh, Thomas, fossil collection 64 116, 140, 142–143, 144, 266 Bayer, Josef (1882–1931) 91,95 Agassiz Museum of Comparative Zoology 76 Beckles, Samuel (1814–90), fossil collection 79, 115 Agassizodus 148 Beerichthys ingens 187 Agassizodus groenlandicus 148 Belon, Pierre (1517–64), fish classification 139 Aglyptorhynchus sulcatus 186 Belonostomus 202 Aglyptorhynchus venablesi 187 ‘Belonostomus’ carinatus 204, 205, 206, 225 Ahlberg, Per Erik, Natural History Museum 82 Belonostomus cinctus 171 ‘Aipichthys’ nuchalis 173 Belonostomus sweeti 262, 274 Albula 166 Berg, Frederico Guillermo Carlos (1834–1902) 89, 95 Albula oweni 184 Berlin University Natural History collections 74 ‘Albuliformes’ 172, 184 Bernard, Emma, Natural History Museum 83 Ameghino, Florentino (1854–1911) 312–313, 312 Beryciformes 173, 185 work with ASW 311, 313–317 Berycopsis elegans 173 American Museum of Natural History, Lady Smith Beryx lewesiensis 166 Woodward’s tablecloth 92, 93 birds 298–299 Ampheristus toliapicus 185 Bonaparte, Charles Lucien J. L. (1803–57) 139 amphibians 271, 289–292 Bonarelli Event 174–175 Anguilliformes 172, 184 Bonn University Museum 74 Anogmius ornatus 172, 174 Boston Society of Natural History Museum 76 Anomoeodus 171 Bothriceps major 290, 291 anoxia, English Chalk 175, 176, 177 Bottosaurus belgicus 290, 292 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3709018/backmatter.pdf by guest on 27 September 2021 356 INDEX Boulogne Museum 74 work of Agassiz 139–140, 142–146, 152 Bowerbank, James Scott (1797–1877), fossil collection work of Smith Woodward 146, 148, 152 64, 69, 115 Chondropterygii 139 Bradyodonti 148, 150, 152–153 see also sharks Bramoides brieni 187 Chondrostei 119–121, 122, 124, 171, 184 Branner, John Casper (1850–1922), Brazilian fossils Cimolestes cutleri 290, 299 225–226 Cimolichthys lewesiensis 173 Brazil Cladocyclus sweeti 262, 274 Joseph Mawson 219–231, 295–296 Cladodus 142 Mawsonia chronology and distribution 227–231 Cleithrolepis granulatus 262, 269 palaeoichthyology, type specimens of ASW 201–214 Climaxodus wisei 148 plate tectonics 226–231 Clupeiformes 184 British Museum (Natural History) 35 cochliodonts 148, 150, 152 career of Arthur Smith Woodward 1, 35–38 Cochliodus 142, 143, 144, 146 appointment 35–36 Cochliodus contortus 145 assistant keeper 38 coelacanths 123 Keeper of Geology 39, 40,80 see also Mawsonia fossil fish 36–38, 63–83 ‘Coelodus’ fimbriatus 171 Smith Woodward’s type specimens 87–88 ‘Coelodus’ parallelus 171 Leedsichthys problematicus 238–257 Cole, William Willoughby, 3rd Earl of Enniskillen Brodie, Peter B. (1815–97), fossil collection 79 (1807–86) 66, 141 Broken Hill cranium 330–331 fossil fish collection 36–37, 65–66, 68, 140, 142, 266 Brussels, Royal Museum of Natural History 74, 77 Colonna, Fabio (c. 1567–1640), on Glossopetrae 138 Brychaetus muelleri 184 Columbia University Geological Museum 75 Brycon avus 209, 210 Congorhynchus elliotti 187 Buckland, William (1784–1856) 140 Cope, Edward Drinker (1840–97) 120 Bucklandium diluvii 185 Actinopteri 119 Burnhamia davisi 160 fossil collection 75 work of Mawson 224, 225 Calamopleurus mawsoni 206 Philadelphia Academy of Sciences Museum 75 Campodus 146 review of The Catalogue 71 Campodus rectangularis 145 copodonts 148, 152 Cantioscyllium decipiens 87, 88 Copodus spatulatus 145 Capitosaurus stantonensis 290, 291 Cosmopolitodus 158 Caproberyx superbus 173, 175, 176, 177 Cretaceous Capron, John Rand (1829–88), fossil collection 64, Late, British palaeoichthyology 165–191 70, 115 Queensland 274 Carangoidei 186 Cricosaurus 313, 314, 317 Carcharocles 158 crocodiles 295–296 Carcharodon 158 crocodylomorphs, work of Ameghino 311–317 Cariodens belgicus 290, 292 Crossognathiformes 171–172 caseodontoids 152 Crossopterygii 119, 121–122, 123, 124, 125, 126 Caton Thompson, Gertrude (1888–1985), Piltdown 42 Ctenacanthus 142 Cavenderichthys talbragarensis 273 Ctenodus 143 Ceratodus 143, 262, 271 Ctenodus breviceps 262, 276 Cestracion 143 Ctenoides, classification of Agassiz 116, 117 Cestraciontidae 144 ‘Ctenolates’ avus 262, 279 Cetiosauriscus leedsi 294 Ctenopristis, rostral denticles 134 Chalk see English Chalk Ctenoptychius 143 chimaeroids 126, 152 Ctenoptychius lobatus 145 Chiromystus alagoensis 225 Ctenothrissa 166 Chiromystus mawsoni 202, 224, 225 Ctenothrissa microcephala 173 Chirotherium herculis 294 Ctenothrissa radians 173 Chomatodus 143 Ctenothrissiformes 173 Chondrenchelys problematica 150 Cunnington, William (1813–1906), fossil collection 64 Chondrichthyans Cycloides, classification of Agassiz 116, 117 post-Palaeozoic fossil record 155–162 Cylindracanthus rectus 187 bulk sampling 157–158 Cynodontosuchus rothi 290, 296–297 field sampling 155–156 non-destructive testing 159–160 da Vinci, Leonardo (1452–1519), Glossopetrae 137 perception 160–162 Darmstadt State Museum 74 skeletal material 159 Dastilbe crandalli 225, 231 taxonomy and phylogeny 158–159 David, Tannatt William Edgeworth (1858–1934) 97, 264, rostrum-bearing 129, 134–135 267, 271, 273 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3709018/backmatter.pdf by guest on 27 September 2021 INDEX 357 Davies, William, British Museum (Natural History) 36, Elops 184 37, 65, 67, 115, 266 Enchelurus anglicus 68, 172 Davis, James William (1846–93), fossil collection 70, Enchodus lewesiensis 173 72–73, 73, 146 Enchodus subaequilateris 202 Dawkins, Professor Sir William Boyd (1837–1929) 31, English Chalk, palaeoichthyology 165–166 33, 35, 91, 97 evolution 188, 190 Dawson, Charles (1864–1916) future research 190–191 fossil mammal 299 geological context 167–177 Lady Smith Woodward’s tablecloth 90, 92,97 history of study 182–183 Piltdown Man 40–41, 40, 80, 322–326, 327, key exposures 168, 169, 170, 174 329–330, 332 palaeoenvironment 167, 170, 174–175 de Koninck, Laurent-Guillaume (1809–87) 146 preservation 183, 188 Dean, Bashford (1867–1928) 91,97 stratigraphy 168, 169 Debenham, Frank (1883–1965) 267, 278 taphonomy and diagenesis 175, 176, 177 Delatitia breviceps 262, 276 Enniskillen see Cole, William Willoughby, 3rd Earl of Deltodus 143, 146 Enniskillen Deltodus sublaevis 145 Enniskillen Collection 36–37, 65–66, 68, 69, 115, 140, Deltoptychius 143, 146, 147, 150 142, 266 Denmark, travels of ASW 74 Enniskillenus radiatus 187 Derby, Orville (1851–1915), Brazil 224 Eoanthropus dawsoni 40, 42, 263, 323–326, 324, 332 ‘Dercetis’ latiscutatus 173 see also Piltdown Man ‘Dercetis’ maximus 173 Eocoelopoma colei 186, 338, 349, 350–351 Dibley, George Edward, fossil collection 78 Eocoelopoma curvatum 186, 338, 349, 350–351 Dinelops ornatus 172 Eocoelopoma gigas 186, 338, 349, 350–351 Dinilysia patagonica 290, 297 Eocoelopoma hopwoodi 337 Dinodocus mackesoni 294 see also Micrornatus hopwoodi dinosaurs 290, 292, 300–301 Eocoelopoma portentosa 350, 351 ‘Diplodus’ moorei 271 Eodelphis cutleri 290, 299 Diplomystus 173, 270 Eothynnus salmoneus 186 Diplomystus longicostatus 202, 224, 225 Ephippidae 187 Dipnorhynchus 277–278 Erikodus groenlandicus 148, 149, 150, 151 Dipriodon valdensis 290, 299 Esocelops cavifrons 184 Diprotodon 271 Etheridge, Robert Jr (1847–1920) 65, 264, 266, 267, Dixon, Frederic (1799–1849), fossil collection 63, 69, 115 271, 274 Dixonanogmius oblongus 172 Eucalyptus globus 221 Dollo, Louis (1857–1931) 97 Euchondrocephali 152 Dresden, Zwinger Palace collections 74 Eugeneodontiformes 152 Dun, William Sutherland (1868–1934) 264, 267, 271 Eugyrnus wildi 289–290
Recommended publications
  • Annotated Checklist of Fossil Fishes from the Smoky Hill Chalk of the Niobrara Chalk (Upper Cretaceous) in Kansas
    Lucas, S. G. and Sullivan, R.M., eds., 2006, Late Cretaceous vertebrates from the Western Interior. New Mexico Museum of Natural History and Science Bulletin 35. 193 ANNOTATED CHECKLIST OF FOSSIL FISHES FROM THE SMOKY HILL CHALK OF THE NIOBRARA CHALK (UPPER CRETACEOUS) IN KANSAS KENSHU SHIMADA1 AND CHRISTOPHER FIELITZ2 1Environmental Science Program and Department of Biological Sciences, DePaul University,2325 North Clifton Avenue, Chicago, Illinois 60614; and Sternberg Museum of Natural History, Fort Hays State University, 3000 Sternberg Drive, Hays, Kansas 67601;2Department of Biology, Emory & Henry College, P.O. Box 947, Emory, Virginia 24327 Abstract—The Smoky Hill Chalk Member of the Niobrara Chalk is an Upper Cretaceous marine deposit found in Kansas and adjacent states in North America. The rock, which was formed under the Western Interior Sea, has a long history of yielding spectacular fossil marine vertebrates, including fishes. Here, we present an annotated taxo- nomic list of fossil fishes (= non-tetrapod vertebrates) described from the Smoky Hill Chalk based on published records. Our study shows that there are a total of 643 referable paleoichthyological specimens from the Smoky Hill Chalk documented in literature of which 133 belong to chondrichthyans and 510 to osteichthyans. These 643 specimens support the occurrence of a minimum of 70 species, comprising at least 16 chondrichthyans and 54 osteichthyans. Of these 70 species, 44 are represented by type specimens from the Smoky Hill Chalk. However, it must be noted that the fossil record of Niobrara fishes shows evidence of preservation, collecting, and research biases, and that the paleofauna is a time-averaged assemblage over five million years of chalk deposition.
    [Show full text]
  • Cryptoclidid Plesiosaurs (Sauropterygia, Plesiosauria) from the Upper Jurassic of the Atacama Desert
    Journal of Vertebrate Paleontology ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ujvp20 Cryptoclidid plesiosaurs (Sauropterygia, Plesiosauria) from the Upper Jurassic of the Atacama Desert Rodrigo A. Otero , Jhonatan Alarcón-Muñoz , Sergio Soto-Acuña , Jennyfer Rojas , Osvaldo Rojas & Héctor Ortíz To cite this article: Rodrigo A. Otero , Jhonatan Alarcón-Muñoz , Sergio Soto-Acuña , Jennyfer Rojas , Osvaldo Rojas & Héctor Ortíz (2020): Cryptoclidid plesiosaurs (Sauropterygia, Plesiosauria) from the Upper Jurassic of the Atacama Desert, Journal of Vertebrate Paleontology, DOI: 10.1080/02724634.2020.1764573 To link to this article: https://doi.org/10.1080/02724634.2020.1764573 View supplementary material Published online: 17 Jul 2020. Submit your article to this journal Article views: 153 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=ujvp20 Journal of Vertebrate Paleontology e1764573 (14 pages) © by the Society of Vertebrate Paleontology DOI: 10.1080/02724634.2020.1764573 ARTICLE CRYPTOCLIDID PLESIOSAURS (SAUROPTERYGIA, PLESIOSAURIA) FROM THE UPPER JURASSIC OF THE ATACAMA DESERT RODRIGO A. OTERO,*,1,2,3 JHONATAN ALARCÓN-MUÑOZ,1 SERGIO SOTO-ACUÑA,1 JENNYFER ROJAS,3 OSVALDO ROJAS,3 and HÉCTOR ORTÍZ4 1Red Paleontológica Universidad de Chile, Laboratorio de Ontogenia y Filogenia, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago, Chile, [email protected]; 2Consultora Paleosuchus Ltda., Huelén 165, Oficina C, Providencia, Santiago, Chile; 3Museo de Historia Natural y Cultural del Desierto de Atacama. Interior Parque El Loa s/n, Calama, Región de Antofagasta, Chile; 4Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Barrio Universitario, Concepción, Región del Bío Bío, Chile ABSTRACT—This study presents the first plesiosaurs recovered from the Jurassic of the Atacama Desert that are informative at the genus level.
    [Show full text]
  • From the Crato Formation (Lower Cretaceous)
    ORYCTOS.Vol. 3 : 3 - 8. Décembre2000 FIRSTRECORD OT CALAMOPLEU RUS (ACTINOPTERYGII:HALECOMORPHI: AMIIDAE) FROMTHE CRATO FORMATION (LOWER CRETACEOUS) OF NORTH-EAST BRAZTL David M. MARTILL' and Paulo M. BRITO'z 'School of Earth, Environmentaland PhysicalSciences, University of Portsmouth,Portsmouth, POl 3QL UK. 2Departmentode Biologia Animal e Vegetal,Universidade do Estadode Rio de Janeiro, rua SâoFrancisco Xavier 524. Rio de Janeiro.Brazll. Abstract : A partial skeleton representsthe first occurrenceof the amiid (Actinopterygii: Halecomorphi: Amiidae) Calamopleurus from the Nova Olinda Member of the Crato Formation (Aptian) of north east Brazil. The new spe- cimen is further evidencethat the Crato Formation ichthyofauna is similar to that of the slightly younger Romualdo Member of the Santana Formation of the same sedimentary basin. The extended temporal range, ?Aptian to ?Cenomanian,for this genus rules out its usefulnessas a biostratigraphic indicator for the Araripe Basin. Key words: Amiidae, Calamopleurus,Early Cretaceous,Brazil Première mention de Calamopleurus (Actinopterygii: Halecomorphi: Amiidae) dans la Formation Crato (Crétacé inférieur), nord est du Brésil Résumé : la première mention dans le Membre Nova Olinda de la Formation Crato (Aptien ; nord-est du Brésil) de I'amiidé (Actinopterygii: Halecomorphi: Amiidae) Calamopleurus est basée sur la découverted'un squelettepar- tiel. Le nouveau spécimen est un élément supplémentaireindiquant que I'ichtyofaune de la Formation Crato est similaire à celle du Membre Romualdo de la Formation Santana, située dans le même bassin sédimentaire. L'extension temporelle de ce genre (?Aptien à ?Cénomanien)ne permet pas de le considérer comme un indicateur biostratigraphiquepour le bassin de l'Araripe. Mots clés : Amiidae, Calamopleurus, Crétacé inférieu4 Brésil INTRODUCTION Araripina and at Mina Pedra Branca, near Nova Olinda where cf.
    [Show full text]
  • 35-51 New Data on Pleuropholis Decastroi (Teleostei, Pleuropholidae)
    Geo-Eco-Trop., 2019, 43, 1 : 35-51 New data on Pleuropholis decastroi (Teleostei, Pleuropholidae), a “pholidophoriform” fish from the Lower Cretaceous of the Eurafrican Mesogea Nouvelles données sur Pleuropholis decastroi (Teleostei, Pleuropholidae), un poisson “pholidophoriforme” du Crétacé inférieur de la Mésogée eurafricaine Louis TAVERNE 1 & Luigi CAPASSO 2 Résumé: Le crâne et le corps de Pleuropholis decastroi, un poisson fossile de l’Albien (Crétacé inférieur) du sud de l’Italie, sont redécrits en détails. P. decastroi diffère des autres espèces du genre par ses deux nasaux en contact médian et qui séparent complètement le dermethmoïde ( = rostral) des frontaux. Avec son maxillaire extrêmement élargi qui couvre la mâchoire inférieure et son supramaxillaire fortement réduit, P. decastroi semble plus nettement apparenté avec Pleuropholis cisnerosorum, du Jurassique supérieur du Mexique, qu’avec les autres espèces du genre. Par ses mâchoires raccourcies et ses nombreux os orbitaires, Pleuropholis apparaît également comme le genre le plus spécialisé de la famille. La position systématique des Pleuropholidae au sein du groupe des « pholidophoriformes » est discutée. Mots-clés: Pleuropholis decastroi, Albien, Italie du sud, Pleuropholis, Pleuropholidae, “Pholidophoriformes”, ostéologie, position systématique. Abstract: The skull and the body of Pleuropholis decastroi, a fossil fish from the marine Albian (Lower Cretaceous) of southern Italy, are re-described in details. P. decastroi differs from the other species of the genus by their two nasals that are in contact along the mid-line, completely separating the dermethmoid (= rostral) from the frontals. With its extremely broadened maxilla that covers the lower jaw and its strongly reduced supramaxilla, P. decastroi seems more closely related to Pleuropholis cisnerosorum, from the Upper Jurassic of Mexico, than to the other species of the genus.
    [Show full text]
  • The Scales of Mesozoic Actinopterygians
    Mesozoic Fishes – Systematics and Paleoecology, G. Arratia & G. Viohl (eds.): pp. 83-93, 6 figs. © 1996 by Verlag Dr. Friedrich Pfeil, München, Germany – ISBN 3-923871–90-2 The scales of Mesozoic actinopterygians Hans-Peter SCHULTZE Abstract Cycloid scales (elasmoid scales with circuli) are a unique character of teleosts above the level of Pholidophorus and Pholidophoroides. Cycloid scales have two layers. A bony layer, usually acellular, is superimposed on a basal plate composed of partially mineralized layers of plywoodlike laminated collagen fibres. The tissue of the basal layer is refered to here as elasmodin. Basal teleosts (sensu PATTERSON 1973) possess rhombic scales with a bony base overlain by ganoin (lepidosteoid ganoid scale). Amioid scales (elasmoid scales with longitudinally to radially arranged ridges or rods on the overlapped field) are found within halecomorphs. This scale type evolved more than once within primitive actinopterygians and other osteichthyan fishes. It may have even developed twice within halecomorphs, in Caturidae and Amiidae, from rhombic scales of lepidosteoid type. Some basal genera of halecomorphs show remains of a dentine layer between ganoin and bone that is characteristic of actinopterygians below the halecostome level. The Semionotidae placed at the base of the Halecostomi, exhibit scale histology transitional between the palaeoniscoid and lepidosteoid scale type. Introduction Actinopterygians, from primitive Coccolepididae to advanced teleosts, are represented in the Solnhofen lithographic limestone. These are fishes with rhombic and round scales. Ganoid scales of the lepidosteoid type are found in the following fishes: semionotid Lepidotes and Heterostrophus, macrosemiids Histionotus, Macrosemius, Notagogus and Propterus, ophiopsid Ophiopsis, caturids Furo and Brachyichthys, aspido- rhynchid Belonostomus, pleuropholid Pleuropholis, and pholidophorid Pholidophorus.
    [Show full text]
  • Ichthyodectiform Fishes from the Late Cretaceous
    Mesozoic Fishes 5 – Global Diversity and Evolution, G. Arratia, H.-P. Schultze & M. V. H. Wilson (eds.): pp. 247-266, 12 figs., 2 tabs. © 2013 by Verlag Dr. Friedrich Pfeil, München, Germany – ISBN 978-3-89937-159-8 Ichthyodectiform fi shes from the Late Cretaceous (Campanian) of Arkansas, USA Kelly J. IRWIN and Christopher FIELITZ Abstract Several specimens of the ichthyodectiform fishes Xiphactinus audax and Saurocephalus cf. S. lanciformis are reported from the Upper Cretaceous (Campanian) Brownstown Marl and Ozan formations of southwestern Arkansas, U.S.A. Seven individuals of Xiphactinus, based on incomplete specimens, are represented by various elements: disarticu- lated skull bones, jaw fragments, pectoral fin-rays, or vertebrae. The circular vertebral centra are diagnostic for X. audax rather than X. vetus. The specimen of Saurocephalus consists of a three-dimensional skull, lacking much of the skull roof bones. It is identified as Saurocephalus based on the shape of the predentary bone. This specimen provides the first record of entopterygoid teeth in Saurocephalus. These specimens represent new geographic and geologic distribution records of these taxa from the western Gulf Coastal Plain, which biogeographically links records from the eastern Gulf Coastal Plain with those from the Western Interior Sea. Introduction LEIDY (1854) was the first to report the presence of Cretaceous marine vertebrate fossils from Arkansas, yet in the intervening 150+ years, the body of work on the paleoichthyofauna of Arkansas remains limited (WILSON & BRUNER 2004). BARDACK (1965), GOODY (1976), CASE (1978), and RUSSELL (1988) re- ported geographic and geologic distributions for specific taxa, but few descriptive works on fossil fishes are available (see HUSSAKOF 1947; MEYER 1974; BECKER et al.
    [Show full text]
  • Figura 33: Consenso Estrito Das Cinco Árvores Mais Parcimoniosas
    98 Figura 33: Consenso estrito das cinco árvores mais parcimoniosas. 99 Figura 34: C onsenso de maioria das cinco árvores mais parcimoniosas. 100 3 DISCUSSÃO 3.1 Nomenclatura 3.1.1 Série orbital A descrição da série orbital da presente dissertação foi baseada, principalmente, na nomenclatura utilizada por Daget (1964), Patterson (1973) e Grande & Bemis (1998). Daget (1964) definiu os ossos da série infraorbital como sendo os ossos que se dispõem ao longo do canal infraorbital (canal que segue da região nasal, passa abaixo das narinas e dos olhos e segue para trás pelo dermopterótico, chegando ao extraescapular e encontrando o canal da linha lateral), à frente do pterótico e anexados à margem da órbita. Expôs que podiam ser designados por número de ordem, da parte mais anterior para a mais posterior (e.g., infraorbital 1, infraorbital 2, infraorbital 3) ou por posição em relação a órbita (e.g., antorbital, suborbital e postorbital). O autor adotou a designação por ordem. Expôs ainda que é comum a denominação do último infraorbial como dermoesfenótico, osso no qual muitas vezes ocorre a anastomose do canal infraorbital com o canal supraorbital (canal que passa no nasal e no frontal). Para os ossos sem canal da série orbital, os quais Daget tratou como puramente membranosos, ele definiu como supraorbitais os ossos anexados ao longo da borda antero-lateral do frontal e como adenasal (= antorbital para outros autores) o osso entre o nasal e o primeiro infraorbital (Daget, 1964: fig. 38). Patterson (1973), da mesma forma que Daget (1964), denominou de infraorbitais os ossos anexados à margem inferior da órbita pelos quais passava o canal infraorbital e de supraorbitais os ossos anexados à margem superior da órbita e ao frontal.
    [Show full text]
  • (Early Cretaceous, Araripe Basin, Northeastern Brazil): Stratigraphic, Palaeoenvironmental and Palaeoecological Implications
    Palaeogeography, Palaeoclimatology, Palaeoecology 218 (2005) 145–160 www.elsevier.com/locate/palaeo Controlled excavations in the Romualdo Member of the Santana Formation (Early Cretaceous, Araripe Basin, northeastern Brazil): stratigraphic, palaeoenvironmental and palaeoecological implications Emmanuel Faraa,*, Antoˆnio A´ .F. Saraivab, Dio´genes de Almeida Camposc, Joa˜o K.R. Moreirab, Daniele de Carvalho Siebrab, Alexander W.A. Kellnerd aLaboratoire de Ge´obiologie, Biochronologie, et Pale´ontologie humaine (UMR 6046 du CNRS), Universite´ de Poitiers, 86022 Poitiers cedex, France bDepartamento de Cieˆncias Fı´sicas e Biologicas, Universidade Regional do Cariri - URCA, Crato, Ceara´, Brazil cDepartamento Nacional de Produc¸a˜o Mineral, Rio de Janeiro, RJ, Brazil dDepartamento de Geologia e Paleontologia, Museu Nacional/UFRJ, Rio de Janeiro, RJ, Brazil Received 23 August 2004; received in revised form 10 December 2004; accepted 17 December 2004 Abstract The Romualdo Member of the Santana Formation (Araripe Basin, northeastern Brazil) is famous for the abundance and the exceptional preservation of the fossils found in its early diagenetic carbonate concretions. However, a vast majority of these Early Cretaceous fossils lack precise geographical and stratigraphic data. The absence of such contextual proxies hinders our understanding of the apparent variations in faunal composition and abundance patterns across the Araripe Basin. We conducted controlled excavations in the Romualdo Member in order to provide a detailed account of its main stratigraphic, sedimentological and palaeontological features near Santana do Cariri, Ceara´ State. We provide the first fine-scale stratigraphic sequence ever established for the Romualdo Member and we distinguish at least seven concretion-bearing horizons. Notably, a 60-cm-thick group of layers (bMatraca˜oQ), located in the middle part of the member, is virtually barren of fossiliferous concretions.
    [Show full text]
  • A Synopsis of the Vertebrate Fossils of the English Chalk
    A. S. WOODWARD ON FOSSILS OF THE ENGLI SH CHALK. 273 Portion of tooth of Mosasallrus, from the Upper Chalk of Norwich, exhibited hy Mr. B. B. W OODWARD, F.G.S. R ecent Conglomeratic Boulder (pebbles in clay), from the Isle of Wight, exhibited by Mr. E . LITCIIFIELD. A SYNOPSIS 0 .. THE VERTEBRATE FOSSILS OF THE ENGLISH CIIALK. By A. SMITH WOODWARD, F .G.S., F .Z.S., of the British Museum tNatural History). I. INTRODUCTION. Since the publication of the revised edition of Dixon's ' Geology and Fossils of Sussex,' in 1878, no synoptical review of the ver­ tebrate fossils of the English Chalk appears to have been at­ tempted; and with the exception of the elaborate (though not critical) synopsis of genera in Mr. Etheridge's new edition of Phillips' 'Manual,' students of Cretaceous pal reontology can still find no other concise treatise on the subject. Much advance, how­ ever, has been made within the last ten years in our knowledge of later Mesozoic life; and I propose in the present communication to offer a brief epit ome of the facts in regard to the Vertebrata of the period, yielded by th e well-known uppermost division of the Meso­ zoic strata in Western Europe. Th e' Proceedings' of th e Asso­ ciation afford a most appropriate medium for the publication of such a review, so many of th e Members being interested in the treasures continually disinterred from th e numerous chalk pits of the South of England. And I have fortunately been able to compare with all that has been written th e unrivalled series of original specimens in the British Museum, and th e collection of Henry Willett, Esq., F .G.S., of Brighton, besides many othe r fossils in th e Museum of Practical Geology, Jermyn Street, the W oodwardian Museum, Cambridge, and the private cabinets of Mr.
    [Show full text]
  • Bibliography of Alexander O
    Зоологический институт РАН Лаборатория териологии Bibliography of Alexander O. Averianov A. Monograph 1992. Averianov A.O., Baryschnikov G.F., Garutt W.E., Garutt N.W. & Fomicheva N.L. The Volgian Fauna of Pleistocene Mammals in the Geological-Mineralogical Museum of the Kazan University. Kazan State University, Kazan. 164pp. [In Russian] B. Edited books 2003. [Systematics, Phylogeny and Paleontology of Small Mammals. Proceedings of the International Conference devoted to the 90-th anniversary of Prof. I.M. Gromov] (Edited by A.O. Averianov and N.I. Abramson). Zoologicheskii Institut RAN, St. Petersburg. 246 pp. [papers in Russian and English] 1999. [Materials on the History of Fauna of Eurasia] (Edited by I.S. Darevskii and A.O. Averianov). Trudy Zoologicheskogo Instituta RAN, T. 277. 144 pp. [papers in Russian and English] 1997. Nessov, L.A. [Cretaceous Nonmarine Vertebrates of Northern Eurasia] (Posthumous edition by L.B. Golovneva and A.O. Averianov). 218 pp. Izdatelstvo Sankt-Peterburgskogo Universiteta, Saint Petersburg. [in Russian] C. Refereed Journals 2017. Averianov A.O. and Sues H.-D. 2017. The oldest record of Alvarezsauridae (Dinosauria: Theropoda) in the Northern Hemisphere. PLoS One 12(10): e0186254. 2017. Аверьянов А.О. 2017. Титанозавры: новые данные о возрастной и индивидуальной изменчивости зубов. Природа. № 2. С.83-84. 2017. Averianov A.O. and Archibald J.D. 2017. Therian postcranial bones from the Upper Cretaceous Bissekty Formation of Uzbekistan. Proceedings of the Zoological Institute of the Russian Academy of Sciences 321(4): 433–484. 2017. Lopatin A.V. and Averianov A.O. 2017. The stem placental mammal Prokennalestes from the Early Cretaceous of Mongolia.
    [Show full text]
  • Ambush Predator’ Guild – Are There Developmental Rules Underlying Body Shape Evolution in Ray-Finned Fishes? Erin E Maxwell1* and Laura AB Wilson2
    Maxwell and Wilson BMC Evolutionary Biology 2013, 13:265 http://www.biomedcentral.com/1471-2148/13/265 RESEARCH ARTICLE Open Access Regionalization of the axial skeleton in the ‘ambush predator’ guild – are there developmental rules underlying body shape evolution in ray-finned fishes? Erin E Maxwell1* and Laura AB Wilson2 Abstract Background: A long, slender body plan characterized by an elongate antorbital region and posterior displacement of the unpaired fins has evolved multiple times within ray-finned fishes, and is associated with ambush predation. The axial skeleton of ray-finned fishes is divided into abdominal and caudal regions, considered to be evolutionary modules. In this study, we test whether the convergent evolution of the ambush predator body plan is associated with predictable, regional changes in the axial skeleton, specifically whether the abdominal region is preferentially lengthened relative to the caudal region through the addition of vertebrae. We test this hypothesis in seven clades showing convergent evolution of this body plan, examining abdominal and caudal vertebral counts in over 300 living and fossil species. In four of these clades, we also examined the relationship between the fineness ratio and vertebral regionalization using phylogenetic independent contrasts. Results: We report that in five of the clades surveyed, Lepisosteidae, Esocidae, Belonidae, Sphyraenidae and Fistulariidae, vertebrae are added preferentially to the abdominal region. In Lepisosteidae, Esocidae, and Belonidae, increasing abdominal vertebral count was also significantly related to increasing fineness ratio, a measure of elongation. Two clades did not preferentially add abdominal vertebrae: Saurichthyidae and Aulostomidae. Both of these groups show the development of a novel caudal region anterior to the insertion of the anal fin, morphologically differentiated from more posterior caudal vertebrae.
    [Show full text]
  • Supporting Information
    Supporting Information Clarke et al. 10.1073/pnas.1607237113 Major Axes of Shape Variation and Their Anatomical a comparison: the crown teleost vs. stem teleost comparison on Correlates molecular timescales. Here, the larger SL dataset delivers a All relative warp axes that individually account for >5% of the majority of trees where crown teleosts possess significantly variation across the species sampled are displayed in Table S3. higher rates than stem teleosts, whereas the CS and pruned SL Morphospaces derived from the first three axes, containing all datasets find this result in a large minority (Fig. S3). 398 Mesozoic neopterygian species in our shape dataset, are Overall, these results suggest that choice of size metric is presented in Fig. S1. Images of sampled fossil specimens are also relatively unimportant for our dataset, and that the overall size included in Fig. S1 to illustrate the anatomical correlates of and taxonomic samplings of the dataset are more likely to in- shape axes. The positions of major neopterygian clades in mor- fluence subsequent results, despite those factors having a rela- phospace are indicated by different colors in Fig. S2. Major tively small influence here. Nevertheless, choice of metric may be teleost clades are presented in Fig. S2A and major holostean important for other datasets (e.g., different groups of organisms clades in Fig. S2B. or datasets of other biological/nonbiological structures), because RW1 captures 42.53% of the variance, reflecting changes from it is possible to envisage scenarios where the choice of size metric slender-bodied taxa to deep-bodied taxa (Fig. S1 and Table S3).
    [Show full text]