DHTKD1 and OGDH Display in Vivo Substrate Overlap and Form a Hybrid Ketoacid
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Newborn Screening Laboratory Manual of Services
Newborn Screening Laboratory Manual of Services Test Panel: Please see the following links for a detailed description of testing in the Newborn Screening section. Information about the Newborn Screening program is available here. Endocrine Disorders Congenital adrenal hyperplasia (CAH) Congenital hypothyroidism (TSH) Hemoglobinopathies Sickle cell disease (FS) Alpha (Barts) Sickle βeta Thalassemia (FSA) Other sickling hemoglobinopathies such as: FAS FAC FAD FAE Homozygous conditions such as: FC FD FE Metabolic Disorders Biotinidase deficiency Galactosemia Cystic fibrosis (CF) first tier screening for elevated immunoreactive trypsinogen (IRT) Cystic fibrosis second tier genetic mutation analysis on the top 4% IRT concentrations. Current alleles detected : F508del, I507del, G542X, G85E, R117H, 621+1G->T, 711+1G->T, R334W, R347P, A455E, 1717-1G->A, R560T, R553X, G551D, 1898+1G->A, 2184delA, 2789+5G->A, 3120+1G->A, R1162X, 3659delC, 3849+10kbC->T, W1282X, N1303K, IVS polyT T5/T7/T9 *Currently validating a mutation panel that includes the above alleles in addition to the following: 1078delT, Y122X, 394delTT, R347H, M1101K, S1255X, 1898+5G->T, 2183AA->G, 2307insA, Y1092X, 3876delA, 3905insT, S549N, S549R_1645A->C, S549R-1647T->G, S549R-1647T->G, V520F, A559T, 1677delTA, 2055del9->A, 2143delT, 3199del6, 406-1G->A, 935delA, D1152H, CFTRdele2, E60X, G178R, G330X, K710X, L206W, Q493X, Q890X, R1066C, R1158X, R75X, S1196X, W1089X, G1244E, G1349D, G551S, R560KT, S1251N, S1255P Amino acid disorders Phenylketonuria (PKU) / Hyperphenylalaninemia Maple -
Clinical Report of a Neonate Carrying a Large Deletion in the 10P15.3P13
Shao et al. Mol Cytogenet (2021) 14:29 https://doi.org/10.1186/s13039-021-00546-1 CASE REPORT Open Access Clinical report of a neonate carrying a large deletion in the 10p15.3p13 region and review of the literature Qiao‑Yan Shao, Pei‑Lin Wu, Bi‑Yun Lin, Sen‑Jing Chen, Jian Liu and Su‑Qing Chen* Abstract Background: Terminal deletion of chromosome 10p is a rare chromosomal abnormality. We report a neonatal case with a large deletion of 10p15.3p13 diagnosed early because of severe clinical manifestations. Case presentation: Our patient presented with specifc facial features, hypoparathyroidism, sen sorineural deafness, renal abnormalities, and developmental retardation, and carried a 12.6 Mb deletion in the 10p15.3 p13 region. The terminal 10p deletion involved in our patient is the second largest reported terminal deletion reported to date, and includes the ZMYND11 and GATA3 genes and a partial critical region of the DiGeorge syndrome 2 gene (DGS2). Conclusion: On the basis of a literature review, this terminal 10p deletion in the present case is responsible for a spe‑ cifc contiguous gene syndrome. This rare case may help the understanding of the genotype–phenotype spectrum of terminal deletion of chromosome 10p. Keywords: 10p15.3 microdeletion syndrome, HDR syndrome, DiGeorge critical region 2, ZMYND11, GATA3 Background Here, we report a Chinese infant showing specifc Terminal deletion of chromosome 10p is a rare chromo- facial features, congenital hypoparathyroidism, sen- somal disorder. Te haploinsufciency in the distal region sorineural hearing loss, absence of the right kidney, a of 10p15.3 is responsible for 10p15.3 microdeletion syn- sacrococcygeal mass, a right frontal cyst, and psycho- drome (OMIM 608,668), characterized by specifc facial motor retardation. -
Inherited Neuropathies
407 Inherited Neuropathies Vera Fridman, MD1 M. M. Reilly, MD, FRCP, FRCPI2 1 Department of Neurology, Neuromuscular Diagnostic Center, Address for correspondence Vera Fridman, MD, Neuromuscular Massachusetts General Hospital, Boston, Massachusetts Diagnostic Center, Massachusetts General Hospital, Boston, 2 MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology Massachusetts, 165 Cambridge St. Boston, MA 02114 and The National Hospital for Neurology and Neurosurgery, Queen (e-mail: [email protected]). Square, London, United Kingdom Semin Neurol 2015;35:407–423. Abstract Hereditary neuropathies (HNs) are among the most common inherited neurologic Keywords disorders and are diverse both clinically and genetically. Recent genetic advances have ► hereditary contributed to a rapid expansion of identifiable causes of HN and have broadened the neuropathy phenotypic spectrum associated with many of the causative mutations. The underlying ► Charcot-Marie-Tooth molecular pathways of disease have also been better delineated, leading to the promise disease for potential treatments. This chapter reviews the clinical and biological aspects of the ► hereditary sensory common causes of HN and addresses the challenges of approaching the diagnostic and motor workup of these conditions in a rapidly evolving genetic landscape. neuropathy ► hereditary sensory and autonomic neuropathy Hereditary neuropathies (HN) are among the most common Select forms of HN also involve cranial nerves and respiratory inherited neurologic diseases, with a prevalence of 1 in 2,500 function. Nevertheless, in the majority of patients with HN individuals.1,2 They encompass a clinically heterogeneous set there is no shortening of life expectancy. of disorders and vary greatly in severity, spanning a spectrum Historically, hereditary neuropathies have been classified from mildly symptomatic forms to those resulting in severe based on the primary site of nerve pathology (myelin vs. -
Glutaric Acidemia Type 1
Glutaric acidemia type 1 What is glutaric acidemia type 1? Glutaric acidemia type 1 is an inherited disease characterized by episodes of severe brain dysfunction that result in spasticity, low muscle tone, and seizures.1,2 Individuals with glutaric acidemia type 1 have defects in the glutaryl-CoA dehydrogenase enzyme, which breaks down the amino acids lysine, hydroxylysine, and tryptophan. The symptoms of glutaric acidemia type 1 are due to the build-up of these amino acids and their metabolites in the body, primarily affecting the brain.1 Glutaric acidemia type 1 is also known as glutaric aciduria type 1.2 What are the symptoms of glutaric acidemia type 1 and what treatment is available? The severity of symptoms of glutaric acidemia type 1 can vary widely, even within families. Newborns may have macrocephaly (large head size) with no other signs or symptoms. Symptoms typically begin within months after birth and are often triggered by illness or fasting. Symptoms may include2: • Hypotonia (low muscle tone) • Feeding difficulties • Poor growth • Swelling of the brain • Spasticity (abnormally tight muscles) • Dystonia (sustained muscle contractions causing twisting movements and abnormal posture) • Seizures • Developmental delays • Coma, and possibly death, especially if untreated Individuals tend to have a reduced life expectancy. Approximately 10% of individuals die within the first decade; more than half do not survive past 35 years of age. 3 There is no cure for glutaric acidemia type 1, and treatment is aimed at preventing episodes of brain dysfunction and seizures. Treatment generally includes a low protein diet and nutrition supplements, and a feeding tube may be required for some individuals. -
Multi-Omic Analysis of Hibernator Skeletal Muscle and Regulation of Calcium Handling
Multi-omic Analysis of Hibernator Skeletal Muscle and Regulation of Calcium Handling A Thesis SUBMITTED TO THE FACULTY OF UNIVERSITY OF MINNESOTA BY Kyle J. Anderson IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE Advisor: Matthew T. Andrews May 2016 © Kyle J. Anderson 2016 Acknowledgements I would like to first thank my family and friends for their guidance and support through my graduate career. I would also like to thank my thesis committee Dr. Andrews, Dr. Hampton, and Dr. Liang for their guidance and assistance throughout these projects. None of this work would have been possible without the financial support I received from the Biology department through my GTA appointments. Additional financial and scientific support to complete the proteomics project came from Tim Griffin and everyone at the Center for Mass Spectrometry and Proteomics at the University of Minnesota and was greatly appreciated. This work was funded by the United States Army Medical Research and Materiel Command contract W81XWH-11-0409, the University of Minnesota McKnight Presidential Endowment, and NIH grant 1RC2HL101625-01 to M.T.A. Additional funding came from the NSF grant 1147079 for the Galaxy-P team. i Abstract Mammalian hibernation is a strategy employed by many species to survive fluctuations in resource availability and environmental conditions. Hibernating mammals endure conditions of dramatically depressed heart rate, body temperature, and oxygen consumption; yet do not show the typical pathological responses. Because of the high abundance and metabolic cost of skeletal muscle, not only must it adjust to the constraints of hibernation, but it is also positioned to play a more active role in the initiation and maintenance of the hibernation phenotype. -
Inhibition of Glycolysis in Pathogenic TH17 Cells Through Targeting a -21Mir −Peli1− C-Rel Pathway Prevents Autoimmunity
Inhibition of Glycolysis in Pathogenic TH17 Cells through Targeting a miR-21−Peli1− c-Rel Pathway Prevents Autoimmunity This information is current as Rong Qiu, Xiang Yu, Li Wang, Zhijun Han, Chao Yao, of September 26, 2021. Yange Cui, Guojun Hou, Dai Dai, Wenfei Jin and Nan Shen J Immunol published online 15 May 2020 http://www.jimmunol.org/content/early/2020/05/14/jimmun ol.2000060 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2020/05/14/jimmunol.200006 Material 0.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 26, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2020 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published May 15, 2020, doi:10.4049/jimmunol.2000060 The Journal of Immunology Inhibition of Glycolysis in Pathogenic TH17 Cells through Targeting a miR-21–Peli1–c-Rel Pathway Prevents Autoimmunity Rong Qiu,*,†,1 Xiang Yu,*,1 Li Wang,* Zhijun Han,‡ Chao Yao,† Yange Cui,† Guojun Hou,* Dai Dai,* Wenfei Jin,‡ and Nan Shen*,x,{,||,# It is well known that some pathogenic cells have enhanced glycolysis; the regulatory network leading to increased glycolysis are not well characterized. -
Supplementary Figures 1-14 and Supplementary References
SUPPORTING INFORMATION Spatial Cross-Talk Between Oxidative Stress and DNA Replication in Human Fibroblasts Marko Radulovic,1,2 Noor O Baqader,1 Kai Stoeber,3† and Jasminka Godovac-Zimmermann1* 1Division of Medicine, University College London, Center for Nephrology, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK. 2Insitute of Oncology and Radiology, Pasterova 14, 11000 Belgrade, Serbia 3Research Department of Pathology and UCL Cancer Institute, Rockefeller Building, University College London, University Street, London WC1E 6JJ, UK †Present Address: Shionogi Europe, 33 Kingsway, Holborn, London WC2B 6UF, UK TABLE OF CONTENTS 1. Supplementary Figures 1-14 and Supplementary References. Figure S-1. Network and joint spatial razor plot for 18 enzymes of glycolysis and the pentose phosphate shunt. Figure S-2. Correlation of SILAC ratios between OXS and OAC for proteins assigned to the SAME class. Figure S-3. Overlap matrix (r = 1) for groups of CORUM complexes containing 19 proteins of the 49-set. Figure S-4. Joint spatial razor plots for the Nop56p complex and FIB-associated complex involved in ribosome biogenesis. Figure S-5. Analysis of the response of emerin nuclear envelope complexes to OXS and OAC. Figure S-6. Joint spatial razor plots for the CCT protein folding complex, ATP synthase and V-Type ATPase. Figure S-7. Joint spatial razor plots showing changes in subcellular abundance and compartmental distribution for proteins annotated by GO to nucleocytoplasmic transport (GO:0006913). Figure S-8. Joint spatial razor plots showing changes in subcellular abundance and compartmental distribution for proteins annotated to endocytosis (GO:0006897). Figure S-9. Joint spatial razor plots for 401-set proteins annotated by GO to small GTPase mediated signal transduction (GO:0007264) and/or GTPase activity (GO:0003924). -
Crystal Structure and Interaction Studies of Human Iucrj DHTKD1 Provide Insight Into a Mitochondrial ISSN 2052-2525 Megacomplex in Lysine Catabolism Biologyjmedicine
research papers Crystal structure and interaction studies of human IUCrJ DHTKD1 provide insight into a mitochondrial ISSN 2052-2525 megacomplex in lysine catabolism BIOLOGYjMEDICINE Gustavo A. Bezerra,a‡ William R. Foster,a‡ Henry J. Bailey,a‡ Kevin G. Hicks,b Sven W. Sauer,c Bianca Dimitrov,c Thomas J. McCorvie,a Ju¨rgen G. Okun,c Jared Rutter,b Stefan Ko¨lkerc and Wyatt W. Yuea* Received 31 January 2020 Accepted 22 May 2020 aStructural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom, bDepartment of Biochemistry, University of Utah School of Medicine, USA, and cDivision of Child Neurology and Metabolic Medicine, Centre for Pediatrics and Adolescent Medicine, Clinic I, University Hospital Heidelberg, Edited by L. A. Passmore, MRC Laboratory of Germany. *Correspondence e-mail: [email protected] Molecular Biology, UK ‡ These authors contributed equally to this DHTKD1 is a lesser-studied E1 enzyme among the family of 2-oxoacid work. dehydrogenases. In complex with E2 (dihydrolipoamide succinyltransferase, DLST) and E3 (dihydrolipoamide dehydrogenase, DLD) components, Keywords: human DHTKD1; 2-oxoadipate; 2- DHTKD1 is involved in lysine and tryptophan catabolism by catalysing the oxoacid dehydrogenase; thiamine diphosphate; oxidative decarboxylation of 2-oxoadipate (2OA) in mitochondria. Here, the lysine catabolism; cryo-EM; enzyme mechan- ˚ isms; multi-protein complexes. 1.9 A resolution crystal structure of human DHTKD1 is solved in complex with the thiamine diphosphate co-factor. The structure reveals how the DHTKD1 EMDB reference: EMD-11014 active site is modelled upon the well characterized homologue 2-oxoglutarate (2OG) dehydrogenase but engineered specifically to accommodate its PDB reference: DHTKD1, 6sy1 preference for the longer substrate of 2OA over 2OG. -
Orphanet Report Series Rare Diseases Collection
Marche des Maladies Rares – Alliance Maladies Rares Orphanet Report Series Rare Diseases collection DecemberOctober 2013 2009 List of rare diseases and synonyms Listed in alphabetical order www.orpha.net 20102206 Rare diseases listed in alphabetical order ORPHA ORPHA ORPHA Disease name Disease name Disease name Number Number Number 289157 1-alpha-hydroxylase deficiency 309127 3-hydroxyacyl-CoA dehydrogenase 228384 5q14.3 microdeletion syndrome deficiency 293948 1p21.3 microdeletion syndrome 314655 5q31.3 microdeletion syndrome 939 3-hydroxyisobutyric aciduria 1606 1p36 deletion syndrome 228415 5q35 microduplication syndrome 2616 3M syndrome 250989 1q21.1 microdeletion syndrome 96125 6p subtelomeric deletion syndrome 2616 3-M syndrome 250994 1q21.1 microduplication syndrome 251046 6p22 microdeletion syndrome 293843 3MC syndrome 250999 1q41q42 microdeletion syndrome 96125 6p25 microdeletion syndrome 6 3-methylcrotonylglycinuria 250999 1q41-q42 microdeletion syndrome 99135 6-phosphogluconate dehydrogenase 67046 3-methylglutaconic aciduria type 1 deficiency 238769 1q44 microdeletion syndrome 111 3-methylglutaconic aciduria type 2 13 6-pyruvoyl-tetrahydropterin synthase 976 2,8 dihydroxyadenine urolithiasis deficiency 67047 3-methylglutaconic aciduria type 3 869 2A syndrome 75857 6q terminal deletion 67048 3-methylglutaconic aciduria type 4 79154 2-aminoadipic 2-oxoadipic aciduria 171829 6q16 deletion syndrome 66634 3-methylglutaconic aciduria type 5 19 2-hydroxyglutaric acidemia 251056 6q25 microdeletion syndrome 352328 3-methylglutaconic -
Glutaric Acidemia Type 1: Treatment and Outcome of 168 Patients Over Three Decades
University of Massachusetts Medical School eScholarship@UMMS Open Access Publications by UMMS Authors 2020-11-01 Glutaric acidemia type 1: Treatment and outcome of 168 patients over three decades Kevin A. Strauss University of Massachusetts Medical School Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/oapubs Part of the Congenital, Hereditary, and Neonatal Diseases and Abnormalities Commons, Nutritional and Metabolic Diseases Commons, and the Pediatrics Commons Repository Citation Strauss KA. (2020). Glutaric acidemia type 1: Treatment and outcome of 168 patients over three decades. Open Access Publications by UMMS Authors. https://doi.org/10.1016/j.ymgme.2020.09.007. Retrieved from https://escholarship.umassmed.edu/oapubs/4429 Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 License. This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Open Access Publications by UMMS Authors by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. Molecular Genetics and Metabolism 131 (2020) 325–340 Contents lists available at ScienceDirect Molecular Genetics and Metabolism journal homepage: www.elsevier.com/locate/ymgme Glutaric acidemia type 1: Treatment and outcome of 168 patients over three T decades ⁎ Kevin A. Straussa,b,c, , Katie B. Williamsa, Vincent J. Carsona,b, Laura Poskitta,b, Lauren E. Bowsera, Millie Younga, Donna L. Robinsona, -
The Role of the Rare Variants in the Genes Encoding the Alpha-Ketoglutarate Dehydrogenase in Alzheimer’S Disease
life Article The Role of the Rare Variants in the Genes Encoding the Alpha-Ketoglutarate Dehydrogenase in Alzheimer’s Disease Dora Csaban 1, Klara Pentelenyi 1, Renata Toth-Bencsik 1, Anett Illes 2, Zoltan Grosz 1, Andras Gezsi 3 and Maria Judit Molnar 1,* 1 Institute of Genomic Medicine and Rare Disorders, Semmelweis University, H-1082 Budapest, Hungary; [email protected] (D.C.); pentelenyi.klara@ med.semmelweis-univ.hu (K.P.); [email protected] (R.T.-B.); [email protected] (Z.G.) 2 PentaCore Laboratory Budapest, H-1094 Budapest, Hungary; [email protected] 3 Department of Measurement and Information Systems, Budapest University of Technology and Economics, H-1117 Budapest, Hungary; [email protected] * Correspondence: [email protected] Abstract: There is increasing evidence that several mitochondrial abnormalities are present in the brains of patients with Alzheimer’s disease (AD). Decreased alpha-ketoglutarate dehydrogenase complex (αKGDHc) activity was identified in some patients with AD. The αKGDHc is a key enzyme in the Krebs cycle. This enzyme is very sensitive to the harmful effect of reactive oxygen species, which gives them a critical role in the Alzheimer and mitochondrial disease research area. Previously, several genetic risk factors were described in association with AD. Our aim was to analyze the associations of rare damaging variants in the genes encoding αKGDHc subunits and AD. The three genes (OGDH, DLST, DLD) encoding αKGDHc subunits were sequenced from different brain regions Citation: Csaban, D.; Pentelenyi, K.; of 11 patients with histologically confirmed AD and the blood of further 35 AD patients. -
Defects in Amino Acid Catabolism and the Urea Cycle
Handbook of Clinical Neurology, Vol. 113 (3rd series) Pediatric Neurology Part III O. Dulac, M. Lassonde, and H.B. Sarnat, Editors © 2013 Elsevier B.V. All rights reserved Chapter 181 Defects in amino acid catabolism and the urea cycle GEORG F. HOFFMANN* AND STEFAN KO¨ LKER Department of General Pediatrics, University Children’s Hospital Heidelberg, Heidelberg, Germany INTRODUCTION organizations can offer support. Since treatment is time- and cost-intensive, often lifelong, and mostly Defects in amino acid catabolism and the urea cycle performed at home, regular training and support of result in an accumulation of metabolites upstream of patients and their families is essential. Unfortunately, as the defective enzyme (amino acids (AAs), organic acids for all chronic diseases, average compliance with recom- and/or ammonia) causing intoxication. Phenylketonuria mendations has been found as low as 50%, e.g., in PKU. (PKU) is the most frequent AA disorder (AAD) in Individual defects in AA catabolism and the urea Caucasians. Breakdown of AAs results in the release cycle usually have a low prevalence except for some of ammonia that is detoxified by the urea cycle. Hyper- communities with high consanguinity rates. However, ammonemia is the biochemical hallmark of urea cycle the cumulative prevalence of these disorders is consider- defects (UCDs). able (i.e., at least> 1:2000 newborns; Schulze et al., After an uneventful pregnancy and an initially asymp- 2003). Detailed information on diagnosis, genetic test- tomatic period, the onset of symptoms in these disorders ing, treatment and follow-up is available at the following varies from neonatal metabolic decompensation to late online databases: onset in adulthood.