Early and Dynamic Colonization of Central America Drives Speciation in Neotropical Army Ants
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Mesosomal Anatomy of Myrmecia Nigrocincta Workers and Evolutionary Transformations in Formicidae (Hymeno- Ptera)
7719 (1): – 1 2019 © Senckenberg Gesellschaft für Naturforschung, 2019. The mesosomal anatomy of Myrmecia nigrocincta workers and evolutionary transformations in Formicidae (Hymeno- ptera) Si-Pei Liu, Adrian Richter, Alexander Stoessel & Rolf Georg Beutel* Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany; Si-Pei Liu [[email protected]]; Adrian Richter [[email protected]]; Alexander Stößel [[email protected]]; Rolf Georg Beutel [[email protected]] — * Corresponding author Accepted on December 07, 2018. Published online at www.senckenberg.de/arthropod-systematics on May 17, 2019. Published in print on June 03, 2019. Editors in charge: Andy Sombke & Klaus-Dieter Klass. Abstract. The mesosomal skeletomuscular system of workers of Myrmecia nigrocincta was examined. A broad spectrum of methods was used, including micro-computed tomography combined with computer-based 3D reconstruction. An optimized combination of advanced techniques not only accelerates the acquisition of high quality anatomical data, but also facilitates a very detailed documentation and vi- sualization. This includes fne surface details, complex confgurations of sclerites, and also internal soft parts, for instance muscles with their precise insertion sites. Myrmeciinae have arguably retained a number of plesiomorphic mesosomal features, even though recent mo- lecular phylogenies do not place them close to the root of ants. Our mapping analyses based on previous morphological studies and recent phylogenies revealed few mesosomal apomorphies linking formicid subgroups. Only fve apomorphies were retrieved for the family, and interestingly three of them are missing in Myrmeciinae. Nevertheless, it is apparent that profound mesosomal transformations took place in the early evolution of ants, especially in the fightless workers. -
Ecology and the Evolution of Worker Morphological Diversity: a Comparative Analysis with Eciton Army Ants
Functional Ecology 2006 Ecology and the evolution of worker morphological diversity: a comparative analysis with Eciton army ants SCOTT POWELL*f and NIGEL R. FRANKS School of Biological Sciences, University of Bristol, Woodland Road, Bristol, Avon, BS8 1UG, UK Summary 1. Certain ants have considerable morphological diversity within the workforce, with individuals physically specialized for particular jobs. The ecological conditions that select for this phenomenon are still poorly understood. 2. We use a comparative analysis to address the hypothesis that prey type has selected for greater morphological diversity in the small, monophyletic army ant genus Eciton. These ants are nomadic group-predators and transport loads in the limited space below the body, so bulkier prey types should select for more diverse worker morphology. 3. We show that five Eciton species differ in the presence or absence of a distinct 'submajor caste', the morphological exaggeration of submajors when present, and the allometric scaling of standard workers over a broad size range. Crucially, the presence and morphological exaggeration of submajors is associated with the variety of awkwardly shaped prey types that the species takes, and this caste specializes in prey transport. 4. Our findings support the importance of dietary composition in the evolution of worker morphological diversity in Eciton and demonstrate the utility of our general approach. Future critical tests of this hypothesis are discussed, as well as how our approach can contribute to a broader understanding of the relationship between ecology and the evolution of worker morphological diversity. Key-words: allometry, caste, Ecitoninae, polymorphism, prey transport Functional Ecology (2006) doi: 10.1111/j.1365-2435.2006.01184.x degree of worker polymorphism (allometric scaling of Introduction body parts over a broad size range) and distinct worker Specialization within the workforce is central to the types or castes are rarer still (Oster & Wilson 1978). -
First Record of the Army Ant Cheliomyrmex Morosus in Panama and Its High Associate Diversity
BIOTROPICA *(*): ***-*** **** 10.1111/J.1744-7429.2007.00302.X First Record of the Army Ant Cheliomyrmex morosus in Panama and its High Associate Diversity Stefanie M. Berghoff1 and Nigel R. Franks School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK ABSTRACT The occurrence and distribution of hypogaeic army ants is still poorly known despite their potential importance for tropical soil ecosystems. We present the first record of one of the most cryptic of army ants, Cheliomyrmex morosus, in Panama and list a diverse array of associated arthropods. The late discovery of these ants and high diversity of their associates indicates that much remains to be discovered even in one of the most intensely studied research areas. Abstract in Spanish is available at http://www.blackwell-synergy.com/loi/btp. Key words: Acari; Coleoptera; Diptera; Ecitoninae; Formicidae; hypogaeic; myrmecophile; Zygentoma. THROUGHOUT THE TROPICS, ARMY ANTS ARE ONE OF THE MOST and evolution of other New World army ant associates. Here, we CONSPICUOUS GROUPS OF ANTS. Species with large epigaeic mass report the first record of a Cheliomyrmex morosus colony in Panama raids, such as Eciton and Labidus in the New World, Dorylus and give a summary of associates collected from the ant column. {Anomma) in Africa, and Aenictus in Asia, are recognized as key- We conducted extensive daily ant surveys in the Barro Col- stone species in their habitats (Franks & Bossert 1983, Gotwald orado Nature Monument and Soberanfa National Park (Panama, 1995, Brown & Feener 1998). Army ant colonies host very diverse 9° 10' N, 79°51' W) between March and May 2005. -
Borowiec Et Al-2020 Ants – Phylogeny and Classification
A Ants: Phylogeny and 1758 when the Swedish botanist Carl von Linné Classification published the tenth edition of his catalog of all plant and animal species known at the time. Marek L. Borowiec1, Corrie S. Moreau2 and Among the approximately 4,200 animals that he Christian Rabeling3 included were 17 species of ants. The succeeding 1University of Idaho, Moscow, ID, USA two and a half centuries have seen tremendous 2Departments of Entomology and Ecology & progress in the theory and practice of biological Evolutionary Biology, Cornell University, Ithaca, classification. Here we provide a summary of the NY, USA current state of phylogenetic and systematic 3Social Insect Research Group, Arizona State research on the ants. University, Tempe, AZ, USA Ants Within the Hymenoptera Tree of Ants are the most ubiquitous and ecologically Life dominant insects on the face of our Earth. This is believed to be due in large part to the cooperation Ants belong to the order Hymenoptera, which also allowed by their sociality. At the time of writing, includes wasps and bees. ▶ Eusociality, or true about 13,500 ant species are described and sociality, evolved multiple times within the named, classified into 334 genera that make up order, with ants as by far the most widespread, 17 subfamilies (Fig. 1). This diversity makes the abundant, and species-rich lineage of eusocial ants the world’s by far the most speciose group of animals. Within the Hymenoptera, ants are part eusocial insects, but ants are not only diverse in of the ▶ Aculeata, the clade in which the ovipos- terms of numbers of species. -
Download PDF File
Myrmecological News 19 Digital supplementary material Digital supplementary material to DEJEAN, A., CORBARA, B., ROUX, O. & ORIVEL, J. 2014: The antipredatory behaviours of Neotropical ants towards army ant raids (Hymenoptera: Formicidae). – Myrmeco- logical News 19: 17-24. Appendix 1: Synthesis of the reactions of different ant species when faced with New World army ants. The size of the ecitonine colonies varies as follows: Eciton burchellii WESTWOOD, 1842: up to 650,000 workers (FRANKS 1985) and E. hamatum FABRICIUS, 1782: up to 250,000 workers (RETTENMEYER & al. 1983); Neivamyrmex nigrescens (CRESSON, 1872): 150,000 to 200,000 (SCHNEIRLA 1958); Nomamyrmex esenbeckii (WESTWOOD, 1842): 700,000 workers (RETTENMEYER 1963); Labidus praedator (F. SMITH, 1858): one million workers (HÖLLDOBLER & WILSON 1990). SF: subfamily; Dol: Dolichoderinae; Eci: Ecitoninae; Ect: Ectatomminae; Form: Formicinae; Myr: Myrmicinae; Par: Paraponerinae; Ps; Pseudomyrmecinae; Pon: Ponerinae. Raided ant species SF Army ant Details of the reactions References Avoided by army ants Acromyrmex coronatus Myr Eciton bur- Encountered Acromyrmex forager immobilized, crouched, SAN JUAN (2002) FABRICIUS, 1804 chellii (WEST- was antennated, then it moved; Eciton seemed repulsed. WOOD, 1842) Atta cephalotes (LINNAEUS, Myr Eciton No aggressiveness during the encounters. Once the raid RETTENMEYER 1758), Atta spp. burchellii traversed the Atta nest. (1963), this study Odontomachus spp. Pon Eciton hama- Avoided; seldom retrieved workers. RETTENMEYER & tum (FABRICI- al. (1983) US, 1782) Crematogaster spp. Myr Eciton spp. Avoided by Eciton as well as Neivamyrmex pilosus. RETTENMEYER & al. (1983) Myrmecocystus mimicus Myr Neivamyrmex Avoided; even F. pruinosus climbed over the raiders, MIRENDA & al. WHEELER, 1908, nigrescens which remained motionless. (1980) Forelius pruinosus (ROGER, Dol (CRESSON, 1863) 1872) Solenopsis xyloni MCCOOK, Myr Neivamyrmex Avoided but was raided by Neivamyrmex harrisi (speci- MIRENDA & al. -
Encyclopedia of Social Insects
G Guests of Social Insects resources and homeostatic conditions. At the same time, successful adaptation to the inner envi- Thomas Parmentier ronment shields them from many predators that Terrestrial Ecology Unit (TEREC), Department of cannot penetrate this hostile space. Social insect Biology, Ghent University, Ghent, Belgium associates are generally known as their guests Laboratory of Socioecology and Socioevolution, or inquilines (Lat. inquilinus: tenant, lodger). KU Leuven, Leuven, Belgium Most such guests live permanently in the host’s Research Unit of Environmental and nest, while some also spend a part of their life Evolutionary Biology, Namur Institute of cycle outside of it. Guests are typically arthropods Complex Systems, and Institute of Life, Earth, associated with one of the four groups of eusocial and the Environment, University of Namur, insects. They are referred to as myrmecophiles Namur, Belgium or ant guests, termitophiles, melittophiles or bee guests, and sphecophiles or wasp guests. The term “myrmecophile” can also be used in a broad sense Synonyms to characterize any organism that depends on ants, including some bacteria, fungi, plants, aphids, Inquilines; Myrmecophiles; Nest parasites; and even birds. It is used here in the narrow Symbionts; Termitophiles sense of arthropods that associated closely with ant nests. Social insect nests may also be parasit- Social insect nests provide a rich microhabitat, ized by other social insects, commonly known as often lavishly endowed with long-lasting social parasites. Although some strategies (mainly resources, such as brood, retrieved or cultivated chemical deception) are similar, the guests of food, and nutrient-rich refuse. Moreover, nest social insects and social parasites greatly differ temperature and humidity are often strictly regu- in terms of their biology, host interaction, host lated. -
Mechanisms for the Evolution of Superorganismality in Ants
Rockefeller University Digital Commons @ RU Student Theses and Dissertations 2021 Mechanisms for the Evolution of Superorganismality in Ants Vikram Chandra Follow this and additional works at: https://digitalcommons.rockefeller.edu/ student_theses_and_dissertations Part of the Life Sciences Commons MECHANISMS FOR THE EVOLUTION OF SUPERORGANISMALITY IN ANTS A Thesis Presented to the Faculty of The Rockefeller University in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy by Vikram Chandra June 2021 © Copyright by Vikram Chandra 2021 MECHANISMS FOR THE EVOLUTION OF SUPERORGANISMALITY IN ANTS Vikram Chandra, Ph.D. The Rockefeller University 2021 Ant colonies appear to behave as superorganisms; they exhibit very high levels of within-colony cooperation, and very low levels of within-colony conflict. The evolution of such superorganismality has occurred multiple times across the animal phylogeny, and indeed, origins of multicellularity represent the same evolutionary process. Understanding the origin and elaboration of superorganismality is a major focus of research in evolutionary biology. Although much is known about the ultimate factors that permit the evolution and persistence of superorganisms, we know relatively little about how they evolve. One limiting factor to the study of superorganismality is the difficulty of conducting manipulative experiments in social insect colonies. Recent work on establishing the clonal raider ant, Ooceraea biroi, as a tractable laboratory model, has helped alleviate this difficulty. In this dissertation, I study the proximate evolution of superorganismality in ants. Using focussed mechanistic experiments in O. biroi, in combination with comparative work from other ant species, I study three major aspects of ant social behaviour that provide insight into the origin, maintenance, and elaboration of superorganismality. -
Curriculum Vitae
CURRICULUM VITAE Sean O'Donnell, Ph.D. Interim Department Head and Professor of Biology Professor of Biodiversity, Earth & Environmental Science Drexel University, Philadelphia, PA Office Phone: (215) 571-4177 Email: so356 “at” drexel.edu RESEARCH INTERESTS Brain/behavior relationships; evolution and development of brain investment Thermal physiology and thermal ecology Social behavior: Behavioral, genetic and physiological regulation of division of labor Interspecific group dynamics; avian behavioral ecology PROFESSIONAL EXPERIENCE ADMINISTRATIVE POSITIONS July 2019-present Interim Department Head, Biology, Drexel University 2012-2016 Associate Department Head, Biodiversity, Earth & Environmental Science and Biology, Drexel University 2007-2008 Program Officer, Behavioral Systems Cluster, National Science Foundation 2006-2007 Area Head, Animal Behavior (Psychology), University of Washington FACULTY AND RESEARCH POSITIONS 2011-present Professor of Biodiversity, Earth & Environmental Science and Biology, Drexel University, Philadelphia, PA 2014-present Research Associate, Academy of Natural Sciences of Philadelphia 2011-2014 Affiliate Professor, Department of Psychology, University of Washington-Seattle 2010-2011 Professor of Psychology (Animal Behavior); Adjunct Professor of Biology; Graduate Program in Neurobiology and Behavior, Univ. of Washington 2002-2010 Associate Professor of Psychology (Animal Behavior), Univ. of Washington 1996-2002 Assistant Professor of Psychology (Animal Behavior), Univ. of Washington SPECIAL SKILLS/TRAINING -
The Adaptive Significance of Phasic Colony Cycles in Army Ants
bioRxiv preprint doi: https://doi.org/10.1101/091934; this version posted December 6, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 The adaptive significance of phasic colony cycles in army ants 2 3 Simon Garnier1 & Daniel J. C. Kronauer2 4 5 1Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA; 6 [email protected] 7 2Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY 10065, USA; 8 [email protected] 9 10 Keywords: Dorylinae; Evolution; Foraging; Formicidae; Group predation; Modelling; Nomadism; 11 Reproductive cycle 12 1 bioRxiv preprint doi: https://doi.org/10.1101/091934; this version posted December 6, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 13 Abstract: 14 Army ants are top arthropod predators in tropical forests around the world. The colonies of many army 15 ant species undergo stereotypical behavioral and reproductive cycles, alternating between brood care 16 and reproductive phases. In the brood care phase, colonies contain a cohort of larvae that are 17 synchronized in their development and have to be fed. In the reproductive phase larvae are absent and 18 oviposition takes place. Despite these colony cycles being a striking feature of army ant biology, their 19 adaptive significance is unclear. -
Hymenoptera: Formicidae)
Zootaxa 1622: 1–55 (2007) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2007 · Magnolia Press ISSN 1175-5334 (online edition) A catalogue of the ants of Paraguay (Hymenoptera: Formicidae) ALEXANDER L. WILD Department of Entomology, University of Arizona, Tucson, AZ 85721 Table of contents Abstract ............................................................................................................................................................................... 1 Introduction .........................................................................................................................................................................1 Material and methods ..........................................................................................................................................................4 Results .................................................................................................................................................................................8 Discussion ...........................................................................................................................................................................9 Acknowledgements ...........................................................................................................................................................11 Literature cited ..................................................................................................................................................................11 -
Extraordinary Predation by the Neotropical Army Ant Cheliomyrmex Andicola: Implications for the Evolution of the Army Ant Syndrome1
BIOTROPICA 37(4): 706–709 2005 10.1111/j.1744-7429.2005.00091.x Extraordinary Predation by the Neotropical Army Ant Cheliomyrmex andicola: Implications for the Evolution of the Army Ant Syndrome1 Sean O’Donnell2 Department of Psychology, Box 351525, University of Washington, Seattle, WA 98195, U.S.A. Michael Kaspari Department of Zoology, University of Oklahoma, 730 Van Vleet Oval, Room 314, Norman, OK 73019, U.S.A. and John Lattke Museo del Instituto de Zoolog´ıa Agr´ıcola, Universidad Central Venezuela, Apartado 4579, Maracay 2101-A, Venezuela ABSTRACT Workers of the genus Cheliomyrmex are unique among the New world army ants (subfamily Ecitoninae) in that their mandibles are armed with elongate, spine-like teeth. We present the first prey records for this genus. Cheliomyrmex andicola prey on large-bodied ground dwelling invertebrates and, possibly, on vertebrates. Unlike other army ants, C. andicola workers use their sting during prey capture. The workers’ unusual mandibles and potent stings may be adapted for piercing and gripping the integument of nonarthropod prey animals, and for rapidly subduing large-bodied prey, respectively. The genus Cheliomyrmex may be the sister taxon to other Neotropical army ants (Ecitoninae), and Cheliomyrmex shares features of mandibular morphology and prey selection with Old World driver ants in the genus Dorylus. Mass cooperative foraging, an important element of army ant behavior, may have arisen in part as an adaptation for exploiting large-bodied prey. RESUMEN Las obreras del genero´ Cheliomyrmex son unicas´ entre las hormigas cazadoras del Nuevo Mundo (subfamilia Ecitoninae) por tener las mand´ıbulas dotadas de dientes alargados y aciculares. -
V. 15 N. 1 Janeiro/Abril De 2020
v. 15 n. 1 janeiro/abril de 2020 Boletim do Museu Paraense Emílio Goeldi Ciências Naturais v. 15, n. 1 janeiro-abril 2020 BOLETIM DO MUSEU PARAENSE EMÍLIO GOELDI. CIÊNCIAS NATURAIS (ISSN 2317-6237) O Boletim do Museu Paraense de História Natural e Ethnographia foi criado por Emílio Goeldi e o primeiro fascículo surgiu em 1894. O atual Boletim é sucedâneo daquele. IMAGEM DA CAPA Elaborada por Rony Peterson The Boletim do Museu Paraense de História Natural e Ethnographia was created by Santos Almeida e Lívia Pires Emilio Goeldi, and the first number was issued in 1894. The present one is the do Prado. successor to this publication. EDITOR CIENTÍFICO Fernando da Silva Carvalho Filho EDITORES DO NÚMERO ESPECIAL Lívia Pires do Prado Rony Peterson Santos Almeida EDITORES ASSOCIADOS Adriano Oliveira Maciel Alexandra Maria Ramos Bezerra Aluísio José Fernandes Júnior Débora Rodrigues de Souza Campana José Nazareno Araújo dos Santos Junior Valéria Juliete da Silva William Leslie Overal CONSELHO EDITORIAL CIENTÍFICO Ana Maria Giulietti - Universidade Estadual de Feira de Santana - Feira de Santana - Brasil Augusto Shinya Abe - Universidade Estadual Paulista - Rio Claro - Brasil Carlos Afonso Nobre - Instituto Nacional de Pesquisas Espaciais - São José dos Campos - Brasil Douglas C. Daly - New York Botanical Garden - New York - USA Hans ter Steege - Utrecht University - Utrecht - Netherlands Ima Célia Guimarães Vieira - Museu Paraense Emílio Goeldi - Belém - Brasil John Bates - Field Museum of Natural History - Chicago - USA José Maria Cardoso da