Characterization of the Deubiquitinating Enzyme Cyld, a Novel Target of Iκb Kinase Regulating Immune Function

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of the Deubiquitinating Enzyme Cyld, a Novel Target of Iκb Kinase Regulating Immune Function The Pennsylvania State University The Graduate School Department of Cellular and Molecular Biology CHARACTERIZATION OF THE DEUBIQUITINATING ENZYME CYLD, A NOVEL TARGET OF IκB KINASE REGULATING IMMUNE FUNCTION A Thesis in Cellular and Molecular Biology By William Reiley Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2005 The thesis of William W. Reiley was reviewed and approved* by the following: Shao-Cong Sun Professor of Microbiology and Immunology Thesis Advisor Chair of Committee Robert Bonneau Associate Professor of Microbiology and Immunology Vincent Chau Professor of Cellular and Molecular Physiology Neil Christensen Associate Professor of Pathology David Spector Associate Professor of Microbiology and Immunology Henry Donahue Professor of Orthopedics and Rehabilitation Director, Department of Cell and Molecular Biology Graduate Program * Signatures are on file in the Graduate School iii ABSTRACT Since its beginnings in 1986, the transcription factor NF-κB has been implicated in the regulation of diverse biological processes ranging from development to immune responses. The pleotropic biological role of NF-κB is explained by its involvement in the regulation of growth factors, immune receptors and ligands, and apoptosis inhibitors. Knock-out mice studies have further defined the specific function of individual NF-κB members in regulating different aspects of immune function as well as the development of lymphoid and nonlymphoid tissues. In concert with functional studies, a vast amount of knowledge has been gained about how NF-κB is activated, how it is regulated and the genes which it in turn regulates. The activation of NF-κB occurs through a highly ordered pathway whereby the activation of a large kinase complex, IκB kinase (IKK), leads to the phosphorylation of IκB, its subsequent ubiquitination, proteasome-mediated degradation, and the concurrent release and nuclear translocation of NF-κB. IKK is clearly a cornerstone in the signaling pathway leading to NF-κB activation. A major missing link in the NF-κB signaling pathway is the mechanism that connects IKK to different upstream signals. It is generally believed that IKK may be activated by distinct upstream kinases in response to different stimuli. Indeed, a number of upstream kinases have been shown to activate IKK; these include members of the MAP3 kinase family, such as MEKK1, MEKK3, NIK and TAK1. Further, the physiological role of these upstream kinases in mediating receptor-specific IKK activation is becoming increasingly recognized. Connecting the MAP3Ks to the cell surface receptors, especially those belonging to the TNF receptor (TNFR) superfamily, are the adaptor proteins TRAFs. TRAFs may activate the MAP3Ks via a novel signaling iv mechanism involving ubiquitination, which occurs through lysine-63 linkages that do not target protein degradation but appear to specifically lead to signal activation. Emerging evidence suggests that TRAF-mediated ubiquitination is important for the activation of both IKK and the c-Jun N-terminal kinase (JNK) by various TNFR members, as well as certain other immune receptors, such as the toll-like receptors and IL-1 receptors. It is thus apparent that the ubiquitination activity of TRAFs must be under tight control. Recent biochemical studies have identified a negative regulator of TRAF- ubiquitination. This factor, CYLD, was originally discovered as a tumor suppressor that is mutated in cylindromatosis, a predisposition to tumors of skin appendages. CYLD belongs to the deubiquitination enzyme (DUB) family, which digests ubiquitin chains. At least in transfected cells, CYLD inhibited the ubiquitination of two major TRAF members, TRAF2 and TRAF6, as well as the ubiquitination of a downstream target, IKKγ. Consistent with its DUB activity, CYLD negatively regulates the activation of NF-κB by TRAFs and TNFRs. These in vitro studies provide an insight into the tumor suppressor function of CYLD and shed light on the signaling role of this DUB. However, the physiological function of CYLD in the immune system and other biological systems remain unclear. Hence, the work described in this thesis was aimed at understanding the physiological role of CYLD. A number of unique findings are presented here: 1) CYLD is a non-redundant DUB of TRAF2. Although initial reports suggest that overexpressed CYLD inhibits the ubiquitination of transfected TRAF2, it has remained unclear whether CYLD indeed serves as a critical regulator of TRAF2 under endogenous conditions. By RNA interference-(RNAi)- v mediated CYLD knock down, we demonstrated that the loss of endogenous CYLD resulted in constitutive ubiquitination of endogenous TRAF2. This finding suggest that CYLD is a key DUB that controls the state of TRAF2 ubiquitination. 2) CYLD is a negative regulator of both IKK and JNK. Our CYLD knock down studies reveal that the loss of endogenous CYLD caused hyperactivation of not only IKK, but also JNK. Further, the ability of CYLD to regulate JNK was specific for immune receptors and involved the upstream kinase MKK7, but not MKK4. 3) The DUB function of CYLD is negatively regulated by its phosphorylation. CYLD becomes transiently phosphorylated along with signal-induced activation of JNK and IKK. We mapped the phosphorylation sites of CYLD to seven serines. Interestingly, the phosphorylation of CYLD appears to involve IKK, and this posttranslational modification caused inactivation of CYLDs ability to deubiquitinate TRAF2. Consequently, CYLD mutants that are defective in phosphorylation prevents signal-induced TRAF2 ubiquitination and a loss in the negative regulation of JNK and IKK. These findings suggest a model where CYLD phosphorylation serves as a mechanism to inactivate its DUB function, thus allowing transient activation of TRAF2 ubiquitination and initiation of downstream signaling pathways. 4) Establishment of CYLD as an immune regulator. In order to understand the physiological functions of CYLD, we generated CYLD knockout mice. Although these mutant mice had no gross abnormalities in growth or survival, vi they displayed clear defects in the immune system. First, the number of peripheral T cells was significantly reduced in the spleens of CYLD -/- mice. This defect was at least partially due to a defect in thymocyte development from the double-positive to the single-positive stage, which was more pronounced for CD4+ T cells. Second, CYLD -/- T cells were hyper- responsive to TCR stimulation, producing markedly larger amounts of cytokines than control T cells. These findings suggest that CYLD is a negative regulator of T cell activation, where it is required for T cell development in the thymus. Since it is the step of negative selection that appears to be affected by the loss of CYLD, the CYLD deficiency may cause abnormal TCR signaling, resulting in uncontrolled T cell deletion during this stage of development. In summary, the work presented here 1) defines a signaling function for CYLD in regulating TRAF ubiquitination and activation of NF-κB and JNK, 2) elucidates a mechanism of CYLD regulation, which involves its site specific phosphorylation and 3) demonstrates a role for CYLD in the regulation of T cell development and activation. These results provide significant insight into the physiological function of CYLD as well as the mechanism of its regulation. These findings also provide an example for how a DUB participates in signal regulation of the immune system. vii TABLE OF CONTENTS Page LIST OF FIGURES………………………………………………………………….. ix LIST OF ABBREVIATIONS………………………………………………………...x ACKNOWLEDGMENTS…………………………………………………………….xiii CHAPTER I. LITERATURE REVIEW……………………………………………..1 1.1 The Two Branches of the Immune System…………………. 2 1.2 NF-κB Signal Transduction Pathway Regulates Both the Innate and Adaptive Immune Functions………….. 5 1.3 NF-κB Family and Structure………………………………...5 1.4 Inhibitors of κB………………………………………….….. 8 1.5 Mechanism of NF-κB Activation……………………………10 1.6 The IκB kinase (IKK)………………………………………..14 1.7 Receptors Mediating Activation of IKK and NF-κB……….. 22 1.7.1 Toll-like Receptors…….……………………22 1.7.2 Antigen Receptors……...…………………...29 1.7.3 Tumor Necrosis Factor Receptor Superfamily……………………… 36 1.8 Tumor Necrosis Factor Receptor Associated Factors (TRAFs)…………………………….….. 40 1.9 Role of TRAF2s in Activation of JNK and IKK…………….42 1.10 The Role of TRAF6 in Activation of JNK and IKK………... 43 1.11 Ubiquitination and Deubiquitination……………….………..45 1.12 CYLD a Novel DUB Involved in Regulation of of Signal Transduction……………………………………… 47 CHAPTER II. NEGATIVE REGULATION OF JNK SIGNALING BY THE TUMOR SUPPRESSOR CYLD………………………..,.. 52 Abstract……………………………………………………………... 53 Introduction…………………………………………………………. 54 Materials and Methods……………………………………………… 56 Results………………………………………………………………. 58 Discussion…………………...……………………………………… 63 Acknowledgments………………………………………………...… 66 CHAPTER III. REGULATION OF THE DEUBIQUITINATING ENZYME CYLD BY IKKγ-DEPENDENT PHOSPHORYLATION …………………...………………………..76 Abstract………………………………………………………………77 Introduction……………………………………………………….… 78 Materials and Methods……………………………………………… 80 Results………………………………………………………………. 84 viii Discussion…………………………………………………………... 93 Acknowledgments…………………………………………………... 97 CHAPTER IV. REGULATION OF T CELL DEVELOPMENT AND ACTIVATION BY THE DEUBIQUITINATION ENZYME CYLD………………………….……………………….. 116 Abstract……………………………………………………………... 117 Introduction……………………………………………………….… 118 Materials and Methods……………………………………………… 121 Results………………………………………………………………. 124 Discussion…………………………………………………………..
Recommended publications
  • The Aryl Hydrocarbon Receptor: Structural Analysis and Activation Mechanisms
    The Aryl Hydrocarbon Receptor: Structural Analysis and Activation Mechanisms This thesis is submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in the School of Molecular and Biomedical Sciences (Biochemistry), The University of Adelaide, Australia Fiona Whelan, B.Sc. (Hons) 2009 2 Table of Contents THESIS SUMMARY................................................................................. 6 DECLARATION....................................................................................... 7 PUBLICATIONS ARISING FROM THIS THESIS.................................... 8 ACKNOWLEDGEMENTS...................................................................... 10 ABBREVIATIONS ................................................................................. 12 CHAPTER 1: INTRODUCTION ............................................................. 17 1.1 BHLH.PAS PROTEINS ............................................................................................17 1.1.1 General background..................................................................................17 1.1.2 bHLH.PAS Class I Proteins.........................................................................18 1.2 THE ARYL HYDROCARBON RECEPTOR......................................................................19 1.2.1 Domain Structure and Ligand Activation ..............................................19 1.2.2 AhR Expression and Developmental Activity .......................................21 1.2.3 Mouse AhR Knockout Phenotype ...........................................................23
    [Show full text]
  • CYLD Is a Deubiquitinating Enzyme That Negatively Regulates NF-Kb
    letters to nature 13. Schwartz, S. et al. Human–mouse alignments with BLASTZ. Genome Res 13, 103–107 (2003). necrosis factor receptors (TNFRs). Loss of the deubiquitinating 14. Schwartz, S. et al. MultiPipMaker and supporting tools: alignments and analysis of multiple genomic activity of CYLD correlates with tumorigenesis. CYLD inhibits DNA sequences. Nucleic Acids Res. 31, 3518–3524 (2003). 15.Murphy,W.J.et al. Resolution of the early placental mammal radiation using Bayesian phylogenetics. activation of NF-kB by the TNFR family members CD40, XEDAR Science 294, 2348–2351 (2001). and EDAR in a manner that depends on the deubiquitinating 16. Poux, C., Van Rheede, T., Madsen, O. & de Jong, W. W. Sequence gaps join mice and men: activity of CYLD. Downregulation of CYLD by RNA-mediated phylogenetic evidence from deletions in two proteins. Mol. Biol. Evol. 19, 2035–2037 (2002). 17. Huelsenbeck, J. P., Larget, B. & Swofford, D. A compound Poisson process for relaxing the molecular interference augments both basal and CD40-mediated activation clock. Genetics 154, 1879–1892 (2000). of NF-kB. The inhibition of NF-kBactivationbyCYLDis 18. Cooper, G. M. et al. Quantitative estimates of sequence divergence for comparative analyses of mediated, at least in part, by the deubiquitination and inacti- mammalian genomes. Genome Res. 13, 813–820 (2003). vation of TNFR-associated factor 2 (TRAF2) and, to a lesser 19. Siepel, A. & Haussler, D. Proc. 7th Annual Int. Conf. Research in Computational Molecular Biology (ACM, New York, 2003). extent, TRAF6. These results indicate that CYLD is a negative 20. Hardison, R. C. et al. Covariation in frequencies of substitution, deletion, transposition, and regulator of the cytokine-mediated activation of NF-kB that is recombination during eutherian evolution.
    [Show full text]
  • A Drosophila Ortholog of the Human Cylindromatosis Tumor Suppressor
    RESEARCH ARTICLE 2605 Development 134, 2605-2614 (2007) doi:10.1242/dev.02859 A Drosophila ortholog of the human cylindromatosis tumor suppressor gene regulates triglyceride content and antibacterial defense Theodore Tsichritzis1, Peer C. Gaentzsch3, Stylianos Kosmidis2, Anthony E. Brown3, Efthimios M. Skoulakis2, Petros Ligoxygakis3,* and George Mosialos1,4,* The cylindromatosis (CYLD) gene is mutated in human tumors of skin appendages. It encodes a deubiquitylating enzyme (CYLD) that is a negative regulator of the NF-␬B and JNK signaling pathways, in vitro. However, the tissue-specific function and regulation of CYLD in vivo are poorly understood. We established a genetically tractable animal model to initiate a systematic investigation of these issues by characterizing an ortholog of CYLD in Drosophila. Drosophila CYLD is broadly expressed during development and, in adult animals, is localized in the fat body, ovaries, testes, digestive tract and specific areas of the nervous system. We demonstrate that the protein product of Drosophila CYLD (CYLD), like its mammalian counterpart, is a deubiquitylating enzyme. Impairment of CYLD expression is associated with altered fat body morphology in adult flies, increased triglyceride levels and increased survival under starvation conditions. Furthermore, flies with compromised CYLD expression exhibited reduced resistance to bacterial infections. All mutant phenotypes described were reversible upon conditional expression of CYLD transgenes. Our results implicate CYLD in a broad range of functions associated with fat homeostasis and host defence in Drosophila. KEY WORDS: Cylindromatosis, Drosophila, Fat body, Host defense, NF-kappaB INTRODUCTION disease and it is required for the proper development of T Familial cylindromatosis is an autosomal-dominant predisposition lymphocytes in mice (Costello et al., 2005; Reiley et al., 2006).
    [Show full text]
  • S41598-018-28214-2.Pdf
    www.nature.com/scientificreports OPEN Dissecting Distinct Roles of NEDDylation E1 Ligase Heterodimer APPBP1 and UBA3 Received: 7 November 2017 Accepted: 25 May 2018 Reveals Potential Evolution Process Published: xx xx xxxx for Activation of Ubiquitin-related Pathways Harbani Kaur Malik-Chaudhry1, Zied Gaieb1, Amanda Saavedra1, Michael Reyes1, Raphael Kung1, Frank Le1, Dimitrios Morikis1,2 & Jiayu Liao1,2 Despite the similar enzyme cascade in the Ubiquitin and Ubiquitin-like peptide(Ubl) conjugation, the involvement of single or heterodimer E1 activating enzyme has been a mystery. Here, by using a quantitative Förster Resonance Energy Transfer (FRET) technology, aided with Analysis of Electrostatic Similarities Of Proteins (AESOP) computational framework, we elucidate in detail the functional properties of each subunit of the E1 heterodimer activating-enzyme for NEDD8, UBA3 and APPBP1. In contrast to SUMO activation, which requires both subunits of its E1 heterodimer AOS1-Uba2 for its activation, NEDD8 activation requires only one of two E1 subunits, UBA3. The other subunit, APPBP1, only contributes by accelerating the activation reaction rate. This discovery implies that APPBP1 functions mainly as a scafold protein to enhance molecular interactions and facilitate catalytic reaction. These fndings for the frst time reveal critical new mechanisms and a potential evolutionary pathway for Ubl activations. Furthermore, this quantitative FRET approach can be used for other general biochemical pathway analysis in a dynamic mode. Ubiquitin and Ubls are peptides that are conjugated to various target proteins to either lead the targeted protein to degradation or changes of activities in vivo, and their dysregulations ofen leads to various diseases, such as can- cers or neurodegenerative diseases1–3.
    [Show full text]
  • The Anti-Tumor Activity of the NEDD8 Inhibitor Pevonedistat in Neuroblastoma
    International Journal of Molecular Sciences Article The Anti-Tumor Activity of the NEDD8 Inhibitor Pevonedistat in Neuroblastoma Jennifer H. Foster 1,* , Eveline Barbieri 1, Linna Zhang 1, Kathleen A. Scorsone 1, Myrthala Moreno-Smith 1, Peter Zage 2,3 and Terzah M. Horton 1,* 1 Texas Children’s Cancer and Hematology Centers, Department of Pediatrics, Section of Hematology and Oncology, Baylor College of Medicine, Houston, TX 77030, USA; [email protected] (E.B.); [email protected] (L.Z.); [email protected] (K.A.S.); [email protected] (M.M.-S.) 2 Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA 92024, USA; [email protected] 3 Peckham Center for Cancer and Blood Disorders, Rady Children’s Hospital, San Diego, CA 92123, USA * Correspondence: [email protected] (J.H.F.); [email protected] (T.M.H.); Tel.: +1-832-824-4646 (J.H.F.); +1-832-824-4269 (T.M.H.) Abstract: Pevonedistat is a neddylation inhibitor that blocks proteasomal degradation of cullin–RING ligase (CRL) proteins involved in the degradation of short-lived regulatory proteins, including those involved with cell-cycle regulation. We determined the sensitivity and mechanism of action of pevonedistat cytotoxicity in neuroblastoma. Pevonedistat cytotoxicity was assessed using cell viability assays and apoptosis. We examined mechanisms of action using flow cytometry, bromod- eoxyuridine (BrDU) and immunoblots. Orthotopic mouse xenografts of human neuroblastoma were generated to assess in vivo anti-tumor activity. Neuroblastoma cell lines were very sensitive to pevonedistat (IC50 136–400 nM). The mechanism of pevonedistat cytotoxicity depended on p53 Citation: Foster, J.H.; Barbieri, E.; status.
    [Show full text]
  • Deubiquitinases in Cancer: New Functions and Therapeutic Options
    Oncogene (2012) 31, 2373–2388 & 2012 Macmillan Publishers Limited All rights reserved 0950-9232/12 www.nature.com/onc REVIEW Deubiquitinases in cancer: new functions and therapeutic options JM Fraile1, V Quesada1, D Rodrı´guez, JMP Freije and C Lo´pez-Otı´n Departamento de Bioquı´mica y Biologı´a Molecular, Facultad de Medicina, Instituto Universitario de Oncologı´a, Universidad de Oviedo, Oviedo, Spain Deubiquitinases (DUBs) have fundamental roles in the Hunter, 2010). Consistent with the functional relevance ubiquitin system through their ability to specifically of proteases in these processes, alterations in their deconjugate ubiquitin from targeted proteins. The human structure or in the mechanisms controlling their genome encodes at least 98 DUBs, which can be grouped spatiotemporal expression patterns and activities cause into 6 families, reflecting the need for specificity in diverse pathologies such as arthritis, neurodegenerative their function. The activity of these enzymes affects the alterations, cardiovascular diseases and cancer. Accord- turnover rate, activation, recycling and localization ingly, many proteases are an important focus of of multiple proteins, which in turn is essential for attention for the pharmaceutical industry either as drug cell homeostasis, protein stability and a wide range of targets or as diagnostic and prognostic biomarkers signaling pathways. Consistent with this, altered DUB (Turk, 2006; Drag and Salvesen, 2010). function has been related to several diseases, including The recent availability of the genome sequence cancer. Thus, multiple DUBs have been classified as of different organisms has facilitated the identification oncogenes or tumor suppressors because of their regula- of their entire protease repertoire, which has been tory functions on the activity of other proteins involved in defined as degradome (Lopez-Otin and Overall, 2002).
    [Show full text]
  • Uncovering Ubiquitin and Ubiquitin-Like Signaling Networks Alfred C
    REVIEW pubs.acs.org/CR Uncovering Ubiquitin and Ubiquitin-like Signaling Networks Alfred C. O. Vertegaal* Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands CONTENTS 8. Crosstalk between Post-Translational Modifications 7934 1. Introduction 7923 8.1. Crosstalk between Phosphorylation and 1.1. Ubiquitin and Ubiquitin-like Proteins 7924 Ubiquitylation 7934 1.2. Quantitative Proteomics 7924 8.2. Phosphorylation-Dependent SUMOylation 7935 8.3. Competition between Different Lysine 1.3. Setting the Scenery: Mass Spectrometry Modifications 7935 Based Investigation of Phosphorylation 8.4. Crosstalk between SUMOylation and the and Acetylation 7925 UbiquitinÀProteasome System 7935 2. Ubiquitin and Ubiquitin-like Protein Purification 9. Conclusions and Future Perspectives 7935 Approaches 7925 Author Information 7935 2.1. Epitope-Tagged Ubiquitin and Ubiquitin-like Biography 7935 Proteins 7925 Acknowledgment 7936 2.2. Traps Based on Ubiquitin- and Ubiquitin-like References 7936 Binding Domains 7926 2.3. Antibody-Based Purification of Ubiquitin and Ubiquitin-like Proteins 7926 1. INTRODUCTION 2.4. Challenges and Pitfalls 7926 Proteomes are significantly more complex than genomes 2.5. Summary 7926 and transcriptomes due to protein processing and extensive 3. Ubiquitin Proteomics 7927 post-translational modification (PTM) of proteins. Hundreds ff fi 3.1. Proteomic Studies Employing Tagged of di erent modi cations exist. Release 66 of the RESID database1 (http://www.ebi.ac.uk/RESID/) contains 559 dif- Ubiquitin 7927 ferent modifications, including small chemical modifications 3.2. Ubiquitin Binding Domains 7927 such as phosphorylation, acetylation, and methylation and mod- 3.3. Anti-Ubiquitin Antibodies 7927 ification by small proteins, including ubiquitin and ubiquitin- 3.4.
    [Show full text]
  • (51) International Patent Classification: Declarations Under Rule 4.17
    l ( (51) International Patent Classification: Declarations under Rule 4.17: A61K 31/55 (2006.01) A61K 45/06 (2006.01) — as to applicant's entitlement to apply for and be granted a A61K 39/00 (2006.01) A61P 35/00 (2006.01) patent (Rule 4.17(H)) (21) International Application Number: — as to the applicant's entitlement to claim the priority of the PCT/IB20 19/057 160 earlier application (Rule 4.17(iii)) (22) International Filing Date: Published: 26 August 2019 (26.08.2019) — with international search report (Art. 21(3)) — before the expiration of the time limit for amending the (25) Filing Language: English claims and to be republished in the event of receipt of (26) Publication Language: English amendments (Rule 48.2(h)) — in black and white; the international application as filed (30) Priority Data: contained color or greyscale and is available for download 62/724,190 29 August 2018 (29.08.2018) US from PATENTSCOPE 62/837,346 23 April 2019 (23.04.2019) US (71) Applicant: GLAXOSMITHKLINE INTELLECTUAL PROPERTY DEVELOPMENT LIMITED [GB/GB]; 980 Great West Road, Brentford, Middlesex TW8 9GS (GB). (72) Inventors: ANBARI, Jill Marinis; 1250 South Col- legeville Road, Collegeville, PA 19426 (US). REILLY, Michael; 1250 South Collegeville Road, Collegeville, PA 19426 (US). MAHAJAN, Mukesh K.; 1250 South Col¬ legeville Road, Collegeville, PA 19426 (US). RATHI, Chetan; 1250 South Collegeville Road, Collegeville, PA 19426 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available) : AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • The UBE2L3 Ubiquitin Conjugating Enzyme: Interplay with Inflammasome Signalling and Bacterial Ubiquitin Ligases
    The UBE2L3 ubiquitin conjugating enzyme: interplay with inflammasome signalling and bacterial ubiquitin ligases Matthew James George Eldridge 2018 Imperial College London Department of Medicine Submitted to Imperial College London for the degree of Doctor of Philosophy 1 Abstract Inflammasome-controlled immune responses such as IL-1β release and pyroptosis play key roles in antimicrobial immunity and are heavily implicated in multiple hereditary autoimmune diseases. Despite extensive knowledge of the mechanisms regulating inflammasome activation, many downstream responses remain poorly understood or uncharacterised. The cysteine protease caspase-1 is the executor of inflammasome responses, therefore identifying and characterising its substrates is vital for better understanding of inflammasome-mediated effector mechanisms. Using unbiased proteomics, the Shenoy grouped identified the ubiquitin conjugating enzyme UBE2L3 as a target of caspase-1. In this work, I have confirmed UBE2L3 as an indirect target of caspase-1 and characterised its role in inflammasomes-mediated immune responses. I show that UBE2L3 functions in the negative regulation of cellular pro-IL-1 via the ubiquitin- proteasome system. Following inflammatory stimuli, UBE2L3 assists in the ubiquitylation and degradation of newly produced pro-IL-1. However, in response to caspase-1 activation, UBE2L3 is itself targeted for degradation by the proteasome in a caspase-1-dependent manner, thereby liberating an additional pool of IL-1 which may be processed and released. UBE2L3 therefore acts a molecular rheostat, conferring caspase-1 an additional level of control over this potent cytokine, ensuring that it is efficiently secreted only in appropriate circumstances. These findings on UBE2L3 have implications for IL-1- driven pathology in hereditary fever syndromes, and autoinflammatory conditions associated with UBE2L3 polymorphisms.
    [Show full text]
  • Chlamydia Trachomatis-Containing Vacuole Serves As Deubiquitination
    RESEARCH ARTICLE Chlamydia trachomatis-containing vacuole serves as deubiquitination platform to stabilize Mcl-1 and to interfere with host defense Annette Fischer1, Kelly S Harrison2, Yesid Ramirez3, Daniela Auer1, Suvagata Roy Chowdhury1, Bhupesh K Prusty1, Florian Sauer3, Zoe Dimond2, Caroline Kisker3, P Scott Hefty2, Thomas Rudel1* 1Department of Microbiology, Biocenter, University of Wu¨ rzburg, Wu¨ rzburg, Germany; 2Department of Molecular Biosciences, University of Kansas, lawrence, United States; 3Rudolf Virchow Center for Experimental Biomedicine, University of Wu¨ rzburg, Wu¨ rzburg, Germany Abstract Obligate intracellular Chlamydia trachomatis replicate in a membrane-bound vacuole called inclusion, which serves as a signaling interface with the host cell. Here, we show that the chlamydial deubiquitinating enzyme (Cdu) 1 localizes in the inclusion membrane and faces the cytosol with the active deubiquitinating enzyme domain. The structure of this domain revealed high similarity to mammalian deubiquitinases with a unique a-helix close to the substrate-binding pocket. We identified the apoptosis regulator Mcl-1 as a target that interacts with Cdu1 and is stabilized by deubiquitination at the chlamydial inclusion. A chlamydial transposon insertion mutant in the Cdu1-encoding gene exhibited increased Mcl-1 and inclusion ubiquitination and reduced Mcl- 1 stabilization. Additionally, inactivation of Cdu1 led to increased sensitivity of C. trachomatis for IFNg and impaired infection in mice. Thus, the chlamydial inclusion serves as an enriched site for a *For correspondence: thomas. deubiquitinating activity exerting a function in selective stabilization of host proteins and [email protected]. protection from host defense. de DOI: 10.7554/eLife.21465.001 Competing interests: The authors declare that no competing interests exist.
    [Show full text]
  • Celastrol Increases Glucocerebrosidase Activity in Gaucher Disease by Modulating Molecular Chaperones
    Celastrol increases glucocerebrosidase activity in Gaucher disease by modulating molecular chaperones Chunzhang Yanga,1, Cody L. Swallowsa, Chao Zhanga, Jie Lua, Hongbin Xiaob, Roscoe O. Bradya,1, and Zhengping Zhuanga,1 aSurgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1260; and bInstitute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China Contributed by Roscoe O. Brady, November 19, 2013 (sent for review October 21, 2013) Gaucher disease is caused by mutations in the glucosidase, beta, acid increased the catalytic activity of mutant GCase. Celastrol interfered gene that encodes glucocerebrosidase (GCase). Glucosidase, beta, with the recruitment of Cdc37 to Hsp90 halting the assembly of the acid mutations often cause protein misfolding and quantitative loss requisite chaperone complex. Inhibition of Hsp90 reduced its rec- of GCase. In the present study, we found that celastrol, an herb de- ognition of mutant GCase and therefore limited the proteasomal rivative with known anticancer, anti-inflammatory, and antioxidant degradation of the mutant protein. Additionally, celastrol triggered activity, significantly increased the quantity and catalytic activity of a reorganization of the gene expression pattern of molecular chap- GCase. Celastrol interfered with the establishment of the heat-shock erones such as DnaJ homolog subfamily B members 1 and 9 protein 90/Hsp90 cochaperone Cdc37/Hsp90-Hsp70-organizing pro- (DNAJB1/9), heat shock 70kDa proteins 1A and 1B (HSPA1A/B), tein chaperone complex with mutant GCase and reduced heat-shock and Bcl2-associated athanogene 3 (BAG3). The presence of BAG protein 90-associated protein degradation. In addition, celastrol mod- family molecular chaperone regulator 3 (BAG3) further stabi- ulated the expression of molecular chaperones.
    [Show full text]
  • The COP9 Signalosome Variant CSNCSN7A Stabilizes the Deubiquitylating Enzyme CYLD Impeding Hepatic Steatosis
    Article The COP9 Signalosome Variant CSNCSN7A Stabilizes the Deubiquitylating Enzyme CYLD Impeding Hepatic Steatosis Xiaohua Huang 1,* , Dawadschargal Dubiel 2 and Wolfgang Dubiel 2,3,*,† 1 Charité—Universitätsmedizin Berlin, Chirurgische Klinik, Campus Charité Mitte|Campus Virchow-Klinikum, Experimentelle Chirurgie und Regenerative Medizin, Augustenburger Platz 1, 13353 Berlin, Germany 2 Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; [email protected] 3 State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang’an South Road, Xiamen 361102, China * Correspondence: [email protected] (X.H.); [email protected] (W.D.) † Lead Contact. Abstract: Hepatic steatosis is a consequence of distorted lipid storage and plays a vital role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). This study aimed to explore the role of the COP9 signalosome (CSN) in the development of hepatic steatosis and its interplay with the deubiquitylating enzyme (DUB) cylindromatosis (CYLD). CSN occurs as CSNCSN7A and CSNCSN7B variants regulating the ubiquitin proteasome system. It is a deneddylating complex and associates with other DUBs. CYLD cleaves Lys63-ubiquitin chains, regulating a signal cascade that mitigates hepatic steatosis. CSN subunits CSN1 and CSN7B, as well as CYLD, were downregulated with specific siRNA in HepG2 cells and human primary hepatocytes. The same cells were transfected Citation: Huang, X.; Dubiel, D.; with Flag-CSN7A or Flag-CSN7B for pulldowns. Hepatic steatosis in cell culture was induced Dubiel, W. The COP9 Signalosome by palmitic acid (PA). Downregulation of CSN subunits led to reduced PPAR-γ expression.
    [Show full text]