Pulmonary Disorders, Including Vocal Cord Dysfunction

Total Page:16

File Type:pdf, Size:1020Kb

Pulmonary Disorders, Including Vocal Cord Dysfunction Pulmonary disorders, including vocal cord dysfunction Paul A. Greenberger, MD, and Leslie C. Grammer, MD Chicago, Ill The lung is a very complex immunologic organ and responds in a variety of ways to inhaled antigens, organic or inorganic Abbreviations used materials, infectious or saprophytic agents, fumes, and irritants. ABPA: Allergic bronchopulmonary aspergillosis There might be airways obstruction, restriction, neither, or both ANCA: Antineutrophil cytoplasmic antibody accompanied by inflammatory destruction of the pulmonary ARDS: Acute respiratory distress syndrome BAL: Bronchoalveolar lavage interstitium, alveoli, or bronchioles. This review focuses on COPD: Chronic obstructive pulmonary disease diseases organized by their predominant immunologic CSS: Churg-Strauss syndrome responses, either innate or acquired. Pulmonary innate immune CT: Computed tomography conditions include transfusion-related acute lung injury, World FVC: Forced vital capacity Trade Center cough, and acute respiratory distress syndrome. HDAC: Histone deacetylase Adaptive immunity responses involve the systemic and mucosal LT: Leukotriene immune systems, activated lymphocytes, cytokines, and PMN: Polymorphonuclear leukocyte 1 antibodies that produce CD4 TH1 phenotypes, such as for RADS: Reactive airways dysfunction syndrome tuberculosis or acute forms of hypersensitivity pneumonitis, and TLR: Toll-like receptor 1 TRALI: Transfusion-related acute lung injury CD4 TH2 phenotypes, such as for asthma, Churg-Strauss VCD: Vocal cord dysfunction syndrome, and allergic bronchopulmonary aspergillosis. (J Allergy Clin Immunol 2010;125:S248-54.) Key words: Innate, acquired, hypersensitivity, eosinophilia, lympho- antibodies to human neutrophil antigens or HLA class I or II an- 2,3 cyte, tuberculosis, aspergillosis, bronchopulmonary, bronchiectasis, tigens. Neutrophil alloantibodies are found in 10% to 20% of immunologic female donors and 1% to 4% of male donors, yet the incidence of TRALI is about 1:5000 transfusions.3 Alloantibodies are gen- Pulmonary disorders can be organized according to whether the erated during pregnancy, but of course that would not explain the primary immune responses are characterized by innate or adap- presence of such antibodies in men. Some recipients have anti- tive immune responses. The innate responses use complement neutrophil antibodies. The immediate reaction, which might re- activation or activation of polymorphonuclear leukocytes (PMNs) semble anaphylaxis, involves sequestration of PMNs in the and occur without a period for sensitization. The adaptive pulmonary vasculature, complement activation, and generation of TGF-b, IL-8, and IL-13.2 Immune complexes activate PMNs responses include TH1 or TH2 lymphocytes, eosinophils, antibody mediated, and granuloma formation.1 This chapter will review the and cause disruption of the endothelium barrier to plasma. TRALI various pulmonary disorders with a predominant immunologic is extremely rare after intravenous immunoglobulin infusions but pattern and also discuss vocal cord dysfunction (VCD), which occurs with infusions of platelets (suspended in plasma), whole can coexist with asthma or occur independently and results in blood, cryoprecipitates, and fresh frozen plasma. cough, shortness of breath, and dyspnea. The immediate management includes stopping the infusion, oxygen, mechanical ventilation if indicated, and treatment of hypotension with vasopressors. Donors should be deferred from future donations. Indeed, some transfusion experts have recom- INNATE IMMUNE RESPONSES mended that the donor pool should not include women who have Transfusion-related acute lung injury been pregnant and that donor plasma be tested for alloanti- 2,3 Transfusion-related acute lung injury (TRALI) is a nonhemo- bodies. Neither of these suggestions are standard practice. lytic transfusion reaction that occurs within 10 minutes to as long as 6 hours after infusion of a blood product and causes very severe Acute respiratory distress syndrome and acute lung noncardiogenic pulmonary edema, cyanosis, arterial hypoxemia, 2,3 injury and respiratory failure. The donor plasma typically contains Acute respiratory distress syndrome (ARDS) and acute lung 4 From the Division of Allergy-Immunology, Department of Medicine, Northwestern injury represent diffuse pulmonary disease that can be fatal. ARDS University Feinberg School of Medicine. is a more severe form of acute lung injury. Causes include sepsis, 4 Supported by the Ernest S. Bazley Grant to Northwestern Memorial Hospital and pneumonia, trauma, or aspiration pneumonia. Patients experience Northwestern University severe dyspnea, tachypnea, and hypoxemia. The chest roentgeno- Disclosure of potential conflict of interest: P. A. Greenberger has served as an expert gram and computed tomographic (CT) examination demonstrate witness on the topics of immunotheraphy, remote practice, ABPA misdiagnosis, and anaphylaxis. L. Grammer has received research support from S&C Electric Company. bilateral infiltrates, alveolar consolidation, and ‘‘white out’’ of the Received for publication May 18, 2009; revised August 28, 2009; accepted for publica- lung. The alveoli collapse as they become filled with protein and fi- tion September 2, 2009. brin-rich exudates (hyaline membranes), which inactivate surfac- Address for reprints: Paul A. Greenberger, MD, Division of Allergy-Immunology, 676 N tant.4,5 Neutrophils release oxidant proteases, which damage the St Clair Street, #14018, Chicago, IL 60611. E-mail: [email protected]. 0091-6749/$36.00 capillary endothelium. Bronchoalveolar lavage (BAL) reveals the Ó 2010 American Academy of Allergy, Asthma & Immunology presence of PMNs, procoagulant activity, IL-8 (chemotactic for doi:10.1016/j.jaci.2009.09.020 PMNs), IL-2, IL-6, and TGF-b. There is reduced apoptosis of S248 J ALLERGY CLIN IMMUNOL GREENBERGER AND GRAMMER S249 VOLUME 125, NUMBER 2 PMNs, which is attributable to increased concentrations of BAL The onset of symptoms is within 12 hours of inhalation of organic fluid IL-2, IL-8, granulocyte colony-stimulating factor, GM-CSF, dusts. Although the clinical presentation might mimic that of and growth-related oncogene a.6 Alternatively, there is enhanced acute hypersensitivity pneumonitis, there is no requirement for apoptosis of epithelial cells, resulting in the lack of a sufficient bar- prior exposure or immunologic sensitization (see the later section rier between the alveoli and capillaries. TNF-related apoptosis-in- on hypersensitivity pneumonitis). Various circumstances of ex- duced ligand levels are increased in BAL fluid in patients with posure have been described, such as from organic mulch, ARDS and are recognized as proapoptotic for epithelial cells.6 endotoxin-rich vegetables and grass seeds, and contaminated Patients requiring mechanical ventilation benefit from smaller seaweed. Massive inhalation of microbial products can cause an volumes, such as a tidal volume of 6 mL/kg, with positive end- ARDS-like presentation, and this is designated as organic dust 11 expiratory pressures of 5 to 10 cm H2O. Fluid replacement should toxic syndrome or pulmonary mycotoxicosis. be conservative. Corticosteroids and other interventions, such as In patients with silo-unloader’s disease, there is inhalation of 7 nitric oxide and surfactants, are not effective. nonorganic gases, such as NO, NO2, or N2O4. These nitrogen ox- ides then generate nitric and nitrous acids that cause noncardiac pul- monary edema and, in some patients, methemoglobinemia. Deaths Community-acquired pneumonia can occur, whereas survivors might have bronchiolitis obliterans. Community-acquired pneumonia presents with a productive Grain-handler’s disease occurs in agricultural workers with a cough, fever, pleuritic chest pain, and abnormal chest roentgen- chronic cough, symptoms of chronic bronchitis, or wheeze after 8 ographic results. On auscultation, there can be crackles and bron- exposure to grain dusts. Concurrent cigarette smoking appears to chial breath sounds. Most pathogens include viruses, be more injurious to the lung and associated with reductions in Streptococcus pneumoniae, Haemophilus influenzae, Myco- spirometric values. Measures to reduce exposure to dust are plasma pneumoniae, Staphylococcus aureus, and Legionella beneficial. Because of less implementation of safety standards, 8 pneumophila. There might be no recovered organisms in some there is a major concern that workers will experience grain- 8 patients. Comorbidities influence survival. handler’s disease and other respiratory disorders in the world’s Levels of proinflammatory cytokines, such as TNF-a and IL-6, emerging economies. and the anti-inflammatory cytokine IL-10 are increased in those patients who succumb compared with survivors.9 Impaired recog- nition of molecular patterns of bacteria is associated with decreased Reactive airways dysfunction syndrome 10 activation of innate immunity and worse clinical outcomes. Toll- The reactive airways dysfunction syndrome (RADS) describes like receptors (TLRs) recognize pathogen-associated molecular a single unexpected inhalation of high concentrations of irritant patterns, and genetic polymorphisms have been identified in fumes, vapors, fog, or smoke that results in acute cough, dyspnea, 10 patients who had invasive S pneumoniae infections. For example, and wheezing within 24 hours.12 An asthma-like syndrome begins polymorphisms of TLR4 impair its function in recognition of S that can last for months or years. Bronchial hyperreactivity can
Recommended publications
  • Medical Review(S) Clinical Review
    CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 200327 MEDICAL REVIEW(S) CLINICAL REVIEW Application Type NDA Application Number(s) 200327 Priority or Standard Standard Submit Date(s) December 29, 2009 Received Date(s) December 30, 2009 PDUFA Goal Date October 30, 2010 Division / Office Division of Anti-Infective and Ophthalmology Products Office of Antimicrobial Products Reviewer Name(s) Ariel Ramirez Porcalla, MD, MPH Neil Rellosa, MD Review Completion October 29, 2010 Date Established Name Ceftaroline fosamil for injection (Proposed) Trade Name Teflaro Therapeutic Class Cephalosporin; ß-lactams Applicant Cerexa, Inc. Forest Laboratories, Inc. Formulation(s) 400 mg/vial and 600 mg/vial Intravenous Dosing Regimen 600 mg every 12 hours by IV infusion Indication(s) Acute Bacterial Skin and Skin Structure Infection (ABSSSI); Community-acquired Bacterial Pneumonia (CABP) Intended Population(s) Adults ≥ 18 years of age Template Version: March 6, 2009 Reference ID: 2857265 Clinical Review Ariel Ramirez Porcalla, MD, MPH Neil Rellosa, MD NDA 200327: Teflaro (ceftaroline fosamil) Table of Contents 1 RECOMMENDATIONS/RISK BENEFIT ASSESSMENT ......................................... 9 1.1 Recommendation on Regulatory Action ........................................................... 10 1.2 Risk Benefit Assessment.................................................................................. 10 1.3 Recommendations for Postmarketing Risk Evaluation and Mitigation Strategies ........................................................................................................................
    [Show full text]
  • Vocal Cord Dysfunction in Amyotrophic Lateral Sclerosis Four Cases and a Review of the Literature
    NEUROLOGICAL REVIEW SECTION EDITOR: DAVID E. PLEASURE, MD Vocal Cord Dysfunction in Amyotrophic Lateral Sclerosis Four Cases and a Review of the Literature Maaike M. van der Graaff, MD; Wilko Grolman, MD, PhD; Erik J. Westermann, MD; Hans C. Boogaardt; Hans Koelman, MD, PhD; Anneke J. van der Kooi, MD, PhD; Marina A. Tijssen, MD, PhD; Marianne de Visser, MD, PhD e describe 4 patients with amyotrophic lateral sclerosis (ALS) and glottic nar- rowing due to vocal cord dysfunction, and review the literature found using the following search terms: amyotrophic lateral sclerosis, motor neuron disease, stri- dor, laryngospasm, vocal cord abductor paresis, and hoarseness. Neurological Wliterature rarely reports vocal cord dysfunction in ALS, in contrast to otolaryngology literature (4%- 30% of patients with ALS). Both infranuclear and supranuclear mechanisms may play a role. Vocal cord dysfunction can occur at any stage of disease and may account for sudden death in ALS. Treat- ment of severe cases includes acute airway management and tracheotomy. Arch Neurol. 2009;66(11):1329-1333 Amyotrophic lateral sclerosis (ALS) is a neu- (VCAP), it is potentially life threatening, as rodegenerative disease characterized by fea- a predominance of vocal cord adduction re- tures indicative of both upper and lower sults in glottic narrowing or even occlu- motor neuron degeneration. Initial manifes- sion. Assessment by an otolaryngologist is tations usually include weakness in the bul- then of the highest priority. Stridor is a well- bar region or weakness of the limbs. Progres- known symptom in multiple system atro- sive weakness leads to increasing disability phy and may also incidentally occur in other and respiratory insufficiency, resulting in neurodegenerative diseases.8-10 Laryngo- death.
    [Show full text]
  • Vocal Cord Dysfunction JAMES DECKERT, MD, Saint Louis University School of Medicine, St
    Vocal Cord Dysfunction JAMES DECKERT, MD, Saint Louis University School of Medicine, St. Louis, Missouri LINDA DECKERT, MA, CCC-SLP, Special School District of St. Louis County, Town & Country, Missouri Vocal cord dysfunction involves inappropriate vocal cord motion that produces partial airway obstruction. Patients may present with respiratory distress that is often mistakenly diagnosed as asthma. Exercise, psychological conditions, airborne irritants, rhinosinusitis, gastroesophageal reflux disease, or use of certain medications may trigger vocal cord dysfunction. The differential diagnosis includes asthma, angioedema, vocal cord tumors, and vocal cord paralysis. Pulmo- nary function testing with a flow-volume loop and flexible laryngoscopy are valuable diagnostic tests for confirming vocal cord dysfunction. Treatment of acute episodes includes reassurance, breathing instruction, and use of a helium and oxygen mixture (heliox). Long-term manage- ment strategies include treatment for symptom triggers and speech therapy. (Am Fam Physician. 2010;81(2):156-159, 160. Copyright © 2010 American Academy of Family Physicians.) ▲ Patient information: ocal cord dysfunction is a syn- been previously diagnosed with asthma.8 A handout on vocal cord drome in which inappropriate Most patients with vocal cord dysfunction dysfunction, written by the authors of this article, is vocal cord motion produces par- have intermittent and relatively mild symp- provided on page 160. tial airway obstruction, leading toms, although some patients may have pro- toV subjective respiratory distress. When a per- longed and severe symptoms. son breathes normally, the vocal cords move Laryngospasm, a subtype of vocal cord away from the midline during inspiration and dysfunction, is a brief involuntary spasm of only slightly toward the midline during expi- the vocal cords that often produces aphonia ration.1 However, in patients with vocal cord and acute respiratory distress.
    [Show full text]
  • Strokovno Poročilo UKCL 2019
    STROKOVNO POROČILO 2019 STROKOVNO POROČILO 2019 Univerzitetni klinični center Ljubljana, Zaloška cesta 2, 1000 Ljubljana Odgovorna oseba: prof. dr. Jadranka Buturović Ponikar, dr. med., strokovna direktorica UKC Ljubljana Besedila za poročilo so prispevali: prof. dr. Zlatko Fras, mag. Jana Brguljan Hitij, prof. dr. Aleš Blinc, prof. dr. Matjaž Šinkovec, prof. dr. Marko Noč, prof. dr. Marjeta Terčelj, prof. dr. Borut Štabuc, prof. dr. Miha Arnol, doc. dr. Andrej Janež, prof. dr. Samo Zver, prof. dr. Matija Tomšič, Gregor Veninšek, doc. dr. Miran Brvar, dr. Hugon Možina, prof. dr. Matjaž Veselko, dr. Nikola Lakić, prof. dr. Roman Bošnjak, prof. dr. Uroš Ahčan, prof. dr. Matej Cimerman, prof. dr. Aleš Tomažič, dr. Tomaž Štupnik, asist. Bojan Štrus, prof. dr. Andrej Kansky, prof. dr. Vesna Novak Jankovič, doc. dr. Igor Frangež, prof. dr. Simon Podnar, prof. dr. Uroš Rot, doc., prof. dr. Adolf Lukanovič, doc. dr. Borut Kobal, Mag. Gorazd Kavšek, prof. dr. Eda Vrtačnik Bokal, Leon Meglič, prof. dr. Borut Peterlin, doc.dr. Marko Pokorn, doc. dr. Anamarija Meglič, prim. Mojca Brecelj Kobe, prof. dr.Tadej Avčin, Uroš Krivec, prof. dr. Rok Orel, prof. dr. Tadej Battellino, prof. dr. Tanja Kersnik Levart, prof. dr. Janez Jazbec, prof. dr. Darja Paro Panjan, prof. dr. David Neubauer, mag. Mojca Tomažič, asist. dr. Veronika Velenšek, prof. dr. Milan Petelin, prof. dr. Martina Drevenšek, dr. Rok Kosem, doc.dr. Milan Kuhar, doc. dr. Tatjana Lejko Zupanc, prof. dr. Mojca Globočnik Petrović, prof. dr. Vane Antolič, doc. dr. Aleksandar Aničin, prim. asist. Tanja Planinšek Ručigaj, doc.dr.. Dimitrij Kuhelj, doc. dr. Katja Zaletel, prof. dr. Milan Skitek, prof.
    [Show full text]
  • Severe Asthma Associated with Myasthenia Gravis and Upper Airway Obstruction a Souza-Machado,1,2 E Ponte,2 ÁA Cruz2
    Severe Asthma and Myasthenia Gravis CASE REPORT Severe Asthma Associated With Myasthenia Gravis and Upper Airway Obstruction A Souza-Machado,1,2 E Ponte,2 ÁA Cruz2 1Pharmacology Department, Bahia School of Medicine and Public Health, Universidade Federal da Bahia, Salvador–Bahia, Brazil 2Asthma and Allergic Rhinitis Control Program (ProAR), Bahia Faculty of Medicine, Universidade Federal da Bahia, Salvador–Bahia, Brazil ■ Abstract An unusual association of asthma and myasthenia gravis (MG) complicated by tracheal stenosis is reported. The patient was a 35-year-old black woman with a history of severe asthma and rhinitis over 30 years. A respiratory tract infection triggered a life-threatening asthma attack whose treatment required orotracheal intubation and mechanical ventilatory support. A few weeks later, tracheal stenosis was diagnosed. Clinical manifestations of MG presented 3 years after her near-fatal asthma attack. Spirometry showed severe obstruction with no response after inhalation of 400 µg of albuterol. Baseline lung function parameters were forced vital capacity, 3.29 L (105% predicted); forced expiratory volume in 1 second (FEV1), 1.10 L (41% predicted); maximal midexpiratory fl ow rate, 0.81 L/min (26% predicted). FEV1 after administration of albuterol was 0.87 L (32% predicted). The patient’s fl ow–volume loops showed fl attened inspiratory and expiratory limbs, consistent with fi xed extrathoracic airway obstruction. Chest computed tomography scans showed severe concentric reduction of the lumen of the upper thoracic trachea. Key words: Asthma. Tracheal stenosis. Myasthenia gravis. Exacerbation. ■ Resumen En este caso informamos de una asociación infrecuente entre el asma y la miastenia grave (MG) complicada por estenosis traqueal.
    [Show full text]
  • Newsletteralumni News of the Newyork-Presbyterian Hospital/Columbia University Department of Surgery Volume 13, Number 1 Summer 2010
    NEWSLETTERAlumni News of the NewYork-Presbyterian Hospital/Columbia University Department of Surgery Volume 13, Number 1 Summer 2010 CUMC 2007-2009 Transplant Activity Profile* Activity Kidney Liver Heart Lung Pancreas Baseline list at year start 694 274 174 136 24 Deceased donor transplant 123 124 93 57 11 Living donor transplant 138 17 — 0 — Transplant rate from list 33% 50% 51% 57% 35% Mortality rate while on list 9% 9% 9% 15% 0% New listings 411 217 144 68 23 Wait list at year finish 735 305 204 53 36 2007-June 2008 Percent 1-Year Survival No % No % No % No % No % Adult grafts 610 91 279 86 169 84 123 89 6 100 Adult patients 517 96 262 88 159 84 116 91 5 100 Pediatric grafts 13 100 38 86 51 91 3 100 0 — Pediatric patients 11 100 34 97 47 90 2 100 0 — Summary Data Total 2009 living donor transplants 155 (89% Kidney) Total 2009 deceased donor transplants 408 (30% Kidney, 30% Liver) 2007-June 2008 adult 1-year patient survival range 84% Heart to 100% Pancreas 2007-June 2008 pediatric 1-year patient survival range 90% Heart to 100% Kidney or lung *Health Resource and Service Administration’s Scientific Registry of Transplant Recipients (SRTR) Ed Note. The figure shows the US waiting list for whole organs which will only be partially fulfilled by some 8,000 deceased donors, along with 6,600 living donors, who will provide 28,000 to 29,000 organs in 2010. The Medical Center’s role in this process is summarized in the table, and the articles that follow my note expand on this incredible short fall and its potential solutions.
    [Show full text]
  • Vocal Cord Dysfunction: a Review Neha M
    Dunn et al. Asthma Research and Practice (2015) 1:9 DOI 10.1186/s40733-015-0009-z REVIEW Open Access Vocal cord dysfunction: a review Neha M. Dunn1*, Rohit K. Katial2 and Flavia C. L. Hoyte2 Abstract Vocal cord dysfunction (VCD) is a term that refers to inappropriate adduction of the vocal cords during inhalation and sometimes exhalation. It is a functional disorder that serves as an important mimicker of asthma. Vocal cord dysfunction can be difficult to treat as the condition is often underappreciated and misdiagnosed in clinical practice. Recognition of vocal cord dysfunction in patients with asthma-type symptoms is essential since missing this diagnosis can be a barrier to adequately treating patients with uncontrolled respiratory symptoms. Although symptoms often mimic asthma, the two conditions have certain distinct clinical features and demonstrate specific findings on diagnostic studies, which can serve to differentiate the two conditions. Moreover, management of vocal cord dysfunction should be directed at minimizing known triggers and initiating speech therapy, thereby minimizing use of unnecessary asthma medications. This review article describes key clinical features, important physical exam findings and commonly reported triggers in patients with vocal cord dysfunction. Additionally, this article discusses useful diagnostic studies to identify patients with vocal cord dysfunction and current management options for such patients. Keywords: Vocal cord dysfunction, Paradoxical vocal fold movement, Vocal cord, Asthma-comorbidity Introduction medical literature 70 years later, in 1974, by Patterson Vocal cord dysfunction (VCD) is a term that refers to in- and colleagues in a 33 year old woman with 15 hospitali- appropriate adduction of the vocal cords during inhalation zations for what they termed “Munchausen’s stridor” [6].
    [Show full text]
  • Invasive Aspergillosis Poster IDSA FINAL Pdf.Pdf
    Invasive Aspergillosis Associated with Severe Influenza Infections Nancy Crum-Cianflone MD MPH Scripps Mercy Hospital, San Diego, CA USA Abstract Background (cont.) Results Results (cont.) Background: Bacterial superinfections are well-described complications of influenza • Typically, invasive aspergillosis occurs among severely immunosuppressed hosts Case-Control Study • Systematic Review of the Literature infection, however few data exist on invasive fungal infections in this setting. The Hematologic malignancies, neutropenia, and transplant recipients 48 medical ICU patients underwent influenza testing; 8 were diagnosed with influenza N=52 and present cases (n=5) = 57 total cases • All influenza-positive patients had ventilator-dependent respiratory failure A summary of the cases is shown in Table 2 pathogenesis of invasive aspergillosis may be related to respiratory epithelium • Isolation of Aspergillus sp. in the immunocompetent host without these conditions may be initially considered as a colonizer or non-pathogen Of the 8 patients with severe influenza infection, six (75%) had Aspergillus sp. isolated Increasing number of cases over time: disruption and viral-induced lymphopenia. • 4 A. fumigatus, 1 A. fumigatus and A. versicolor, and 1 A. niger isolated • First cases described in 1979, followed by three cases in the 1980s, two cases in the 1990s, two cases in • However, recent cases have suggested that Aspergillus may rapidly lead to invasive • Since A. niger was of unknown pathogenicity this case was excluded the 2000’s, and 48 cases from 2010 to the 1st quarter of 2016 demonstrating an increasing trend of aspergillosis superinfection (p<0.001) Methods: A retrospective study was conducted among severe influenza cases requiring disease in the setting of severe influenza infection [2,3] Of the 40 patients negative for influenza admitted to the same ICU, none had Aspergillus ICU admission at a large academic hospital (2015-2016).
    [Show full text]
  • Hypersensitivity Pneumonitis and Metalworking Fluids Contaminated by Mycobacteria
    3 Mahn K, Ojo OO, Chadwick G, et al. Ca2+ homeostasis and structural 5 Arvizo RR, Miranda OR, Thompson MA, et al. Effect of nanoparticle and functional remodelling of airway smooth muscle in asthma. surface charge at the plasma membrane and beyond. Nano Lett 2010; Thorax 2010; 65: 547–552. 10: 2543–2548. 4 Meurs H, Gosens R, Zaagsma J. Airway hyperresponsiveness in asthma: lessons from in vitro model systems and animal models. Eur Respir J 2008; 32: 487–502. DOI: 10.1183/09031936.00042211 Hypersensitivity pneumonitis and metalworking fluids contaminated by mycobacteria To the Editors: specific challenges performed in two workers, where positive responses were seen after controlled exposure to used MWFs that We read with interest the article published by TILLIE-LEBLOND did not contain mycobacteria [3]. et al. [1] relating to hypersensitivity pneumonitis (HP) in French automobile workers exposed to metalworking fluids Although referenced by TILLIE-LEBLOND et al. [1], the detailed (MWFs). Our group was involved in the UK outbreak immunological investigation performed on workers from a investigation referenced in their article [2, 3], and have a MWF-HP outbreak in the USA, where mycobacterial contam- clinical and research interest in this area. ination was identified [11], is not discussed in any detail. In this key study [11], in vitro secretion of interleukin-8, tumour Whilst TILLIE-LEBLOND et al. [1] are correct in stating that the a c majority of MWF-HP outbreaks have occurred in the USA, the necrosis factor- and interferon- were measured in whole UK Powertrain and French outbreaks are not the only ones to blood and from peripheral blood mononuclear cells in response have occurred in Europe.
    [Show full text]
  • Vocal Cord Dysfunction (VCD)
    Leaders In Allergy & Asthma Care For Over 40 Years Vocal Cord Dysfunction (VCD) Vocal cord dysfunction (VCD) is a disorder of the vocal cords (or vocal folds). When a patient experiences VCD, the vocal cords adduct (come together) during inspiration when they should abduct (spread apart). Smooth movement of air into and out of the chest is obstructed and it is harder to breathe. During VCD episodes patients feel anxious, helpless, or terrified. Patients typically feel as if they can’t breathe. Some patients feel faint. The exact cause of VCD remains unknown. Symptoms that commonly occur during VCD include: Wheezing (a whistling sound typically from the neck) Shortness of breath Hoarseness Audible breathing (stridor) Throat or chest tightness Triggers of VCD include: Exercise Coughing Acid reflux (GERD) Breathing cold air Breathing irritants (tobacco smoke, pollution, strong odors etc.) Stress (emotional and psychosocial issues) VCD verses Asthma VCD may mimic or coexist with asthma. Symptoms and triggers of VCD can overlap with those of asthma. Correct diagnosis is important since asthma medication will have little or no effect on symptoms caused by VCD and may even make symptoms worse. Patients who have VCD along with asthma will frequently find that their usual asthma therapy is no longer as effective at preventing breathing difficulties or that asthma "rescue medication" no longer works. Diagnosis Correct diagnosis is important. The diagnosis of VCD is made based on history, physical examination, and testing. Testing to evaluate asthma is important. Your doctor may recommend special testing to determine if you have asthma, VCD, or both.
    [Show full text]
  • Myasthenia Gravis
    FACT SHEET FOR PATIENTS AND FAMILIES Myasthenia Gravis What is myasthenia gravis? How is it diagnosed? Myasthenia [mahy-uh s-THEE-nee-uh] gravis is a disease Your doctor will ask you about your symptoms, where the body’s immune system attacks the perform a physical examination, and review all of connection between the nerve and muscle, causing your blood work and other tests. More blood work weakness. might be ordered to look for signs that the immune system might be attacking the muscles. A doctor may What causes it? What are the risk also perform a nerve conduction study known as factors? electromyography [ih-lek-troh-mahy-OG-ruh-fee} or EMG. Myasthenia gravis is an autoimmune [aw-toh-i-MYOON] An EMG records the electrical activity of muscles. disease. It occurs when the parts of the immune system that normally attack bacteria and viruses What are the complications? (antibodies) accidentally attack the connection If symptoms become severe, you may not be able between the nerve and muscle, also known as the to breathe normally or swallow saliva or food. This neuromuscular [noor-oh-MUHS-kyuh-ler] junction. results in aspiration [as-puh-REY-shuh n], where food or saliva goes into your airway. Serious complications The antibodies block a chemical called acetylcholine like these can result in injury or even death if left [uh-seet-l-KOH-leen], which is released by the nerve untreated. ending to activate the muscle, creating movement. Blocking this chemical causes weakness. How is it treated? Risk factors for myasthenia gravis include having a Mild symptoms are treated with a medicine called personal or family history of autoimmune diseases.
    [Show full text]
  • Obliterative Bronchiolitis, Cryptogenic Organising Pneumonitis and Bronchiolitis Obliterans Organizing Pneumonia: Three Names for Two Different Conditions
    Eur Reaplr J EDITORIAL 1991, 4, 774-775 Obliterative bronchiolitis, cryptogenic organising pneumonitis and bronchiolitis obliterans organizing pneumonia: three names for two different conditions R.M. du Bois, O.M. Geddes Over the last five years, increasing confusion has has been applied to conditions in which airflow obstruc­ developed over the use of the terms "bronchiolitis tion is prominent and in which response to treatment is obliterans" and "bronchiolitis obliterans organizing poor. pneumonia". The confusion stems largely from the common use of the term "bronchiolitis obliterans" or "obliterative bronchiolitis" in the diagnostic labels applied "Cryptogenic organizing pneumonitis" or "bronchi· to two entities which are quite distinct clinically but which otitis obliterans organizing pneumonia" (BOOP) bear certain resemblances histologically. Cryptogenic organizing pneumonitis was first described by DAVISON et al. [7] in 1983. The clinical syndrome ObUterative bronchiolitis consisted of breathlessness, malaise, fever, high erythrocyte sedimentation rate (ESR), pneumonic In 1977, GEODES et al. [1] reported the case histories shadowing on chest radiograph with a restrictive of six patients whose clinical condition was characterized pulmonary function defect and low gas transfer coeffi­ by airways obliteration in association with rheumatoid cient. On histological examination of lung biopsy mate· arthritis. The striking clinical features were of rapidly rial, the typical and distinguishing feature was the progressive breathlessness and the fmding on examination presence of connective tissue within the alveoli, alveolar of a high-pitched mid-inspiratory squeak heard over the ducts and, occasionally, in respiratory bronchioles. This lung fields. Chest radiographs showed hyperinflated lungs connective tissue consisted of "loosely woven fibres of but were otherwise normal.
    [Show full text]