(Melanoides Tuberculatus)— a Snail in Biscayne National Park, Florida

Total Page:16

File Type:pdf, Size:1020Kb

(Melanoides Tuberculatus)— a Snail in Biscayne National Park, Florida Red-Rimmed Melania (Melanoides tuberculatus) — A Snail in Biscayne National Park, Florida— Harmful Invader or Just a Nuisance? Potentially harmful to humans and What We Know about Why should you be concerned? other animals, the red-rimmed melania snail Melanoides tuberculatus First, human health issues. Nobody (Melanoides tuberculatus; family Thiaridae) wants to be home to liver or lung flukes. was discovered in Biscayne National Park, How did Melanoides tuberculatus get here? In Asia, where Melanoides tuberculatus Florida, in 2003 by U.S. Geological Survey Melanoides tuberculatus is native is native, the snails are part of the (USGS) researchers (figs. 1, 2; box on p. 2). to tropical and subtropical regions of complex life cycle of several species of The discovery raised concerns for park Africa and Asia (Clench, 1969). Specifics parasitic trematode worms, including managers because this aquatic non-native of how and when M. tuberculatus got liver flukes—Clonorchis sinensis, snail is present in significant numbers in to the United States are not known, but Opisthorchis spp., and Haplorchis areas frequently used by park visitors and Murray (1971) and Roessler and others spp.—and a lung fluke—Paragonimus poses a risk of exposure. Researchers are (1977) believed it was through the aquar- westermani. The life cycle of these addressing questions such as: Is this species ium trade. The species was first reported trematode parasites (fig. 3) involves a danger to human health? How wide- in Arizona in the 1950s (Murray, 1971; both vertebrate and invertebrate hosts; spread is it within the park? What factors Dundee, 1974) and in south Florida in for example, humans, fish, snails, and control the distribution of the species? Is 1971 (Russo, 1973). By 1977, it had crustaceans (such as crabs, crayfish, and its presence a threat to native animals? reached areas adjacent to Biscayne shrimp). The cycle continues when a Bay (Roessler and others, 1977). The person (or alternate host such as a bird known distribution of the species in the or raccoon) eats raw or undercooked fish United States is shown in figure 2. or crab that has been infected. 1 mm Eggs expelled in feces Adult Adult worms are worms ingested and 1 mm 1 mm Wingard, USGS Photographs by G. Lynn infect mammals or birds Figure 1. Juvenile and adult Melanoides tuberculatus. This non-native species shows many variations and can be easily confused Proper food preparation with native snails. mm, millimeter. stops cycle here for humans Free-swimming life stage—Miracidium Biscayne Free-swimming life National Miracidiae stage of Metacercariae stage of the stage—Cercariae Park the trematode enters trematode develops in Melanoides tuberculatus crustacean or fish Figure 2. Known U.S. distribution of and larvae develop MelanoidesFigure 2. Known tuberculatus U.S. distribution as of April of 2006; theMelanoides non-native tuberculatus snail may as have of April expanded 2006; itsthe range non-native from snailthe areas may have shown. expanded Map Figure 3. Generalized life cycle of trematodes that infect Melanoides tuberculatus and other its range from the areas shown. Map aquatic snails. Hosts differ at each stage, depending on the species of trematode. Trematodes courtesycourtesy ofof A.J.A.J. Benson, Benson, USGS; USGS; adapted adapted fromfrom http://nas.er.usgs.gov/queries/ are parasitic worms (also called “flukes”) that can cause illness in humans and other animals. SpeciesList.asp?Group=Mollusks.http://nas.er.usgs.gov/queries/SpeciesList. Proper food preparation can prevent humans from being infected. asp?Group=Mollusks U.S. Department of the Interior Printed on recycled paper Fact Sheet 2008–3006 U.S. Geological Survey May 2008 How do we collect our samples and what happens to them? What are 1 2 you up to? 4 5 6 Samples are collected (1) in the field in 3 Biscayne National Park (fig. 4) by using a petite ponar device while being supervised by local wildlife (brown pelican). Samples are sieved immediately in specially designed buckets (2). The samples are placed in plastic 1 cm bags with some of the water from the site to keep the snails alive. Back in our lab at the U.S. Geological Survey, after all live Dried samples are then sorted under a microscope (4 and 5) to specimens have been removed from samples, remove the Melanoides tuberculatus debris (animals not alive the samples are washed through sieves to when sample was collected). M. tuberculatus specimens are remove any mud (3), then dried. lined up on specimen trays, arranged by size, and counted (6). Some live M. tuberculatus are selected for DNA analysis (7) by polymerase chain reactions (PCR), or they are tested for their salinity tolerance in experimental tanks (8). 7 8 In the 1970s, some researchers a potential host for others. Centrocestus Because B. minima and M. tubercula- (Murray, 1971; Roessler and others, formosanus is a trematode parasite that tus co-exist in Biscayne Bay, there is a 1977) thought the risk to human health burrows into the gills of fish and then potential for the parasite to expand from from these parasites was minimal in the enters mammals or birds that consume one host species to an alternate, previ- United States because sewage treatment the fish. Centrocestus causes losses of ously unaffected, host population. and food preparation methods would over $3 million annually to ornamental Third, potential displacement of prevent the spread of infection. The fish producers and has been found on native species. A new, prolific species advent of more ethnic and diversified fish in the wild in Texas, Florida, and that can out-compete native species methods of food preparation in recent Utah (Mitchell, 2005). Haplorchis spp., for food sources could cause serious decades (Simonne and others, 2004), another parasite present in M. tubercula- ecological damage (Murray, 1971; however, in creases the chances of live tus, infects the muscle tissue of fish. Roessler and others, 1977; Mitchell, parasite ingestion. Infection by the lung Other parasites are not yet known to 2005). Melanoides tuberculatus has fluke (Paragonimus) has been docu- include Melanoides tuberculatus in their been found in Florida in densities of mented in people in the United States life cycles but are cause for concern. The 10,000 per square meter at St. Johns River (Stoll, 1947; Mariano and others, 1986; trematode parasite Philophthalmus mega- (Thompson, 2004) and 23,000 per square DeFrain and Hooker, 2002). Parasite lurus affects the eyes of birds, including meter near Coral Gables (Roessler and infections can last for years (Stauffer and waterfowl, exposed to M. tuberculatus others, 1977). M. tuberculatus (and other others, 2004), increasing the chances of while feeding in the shallow waters members of the family Thiaridae) can the host passing infectious materials on of Biscayne Bay. These parasites can reproduce asexually; thus, a single snail and starting the life cycle again. potentially adapt to new animal hosts. is all it takes to populate a new area, and Second, animal health issues. Penner and Fried (1963) found a marine the reproductive rates are extremely high. Trematode flukes affect waterfowl, fish, species of Philophthalmus along the In addition, M. tuberculatus snails do not and other animals (including humans). Gulf Coast of Florida to Key West that lay eggs, but brood their young internally; Melanoides tuberculatus is a known utilizes another snail—Batillaria minima this reproductive strategy may also give host for several of these parasites and (West Indian false cerith)—as its host. them an advantage over native species. 2 80°25'W 80°20'W 80°15'W Cutler Drain Canal Biscayne National Park Boundary 25°35'N Transect at Black Point follows channel out from shore B l a c k C re e k C a na l Water Treatment Facility Landfill Goulds Canal Black Point Princeton Canal Florida Turnpike 25°30'N Homestead Air Force Base Alabama Georgia Atlantic Military Canal Ocean Florida Gulf of Mexico Mowry Canal North Canal Convoy Point FLA City Canal Area of enlarged map Turkey Point 25°25'N EXPLANATION Melanoides tuberculatus Biscayne detected in field surveys National Park Alive Shell debris Figure 4. Satellite image showing location of sites in and near Biscayne National Park, Florida, where Melanoides tuberculatus snails (live and debris) were found during field surveys conducted by the USGS between October 2004 and July 2007. Inset at upper left shows part of transect at Black Point. Inset maps at right show location of larger view. Base image is a mosaic of Landsat orthorectified data obtained from the USGS EROS Data Center. Photograph of Black Point by James B. Murray, USGS. 3 How do conditions in south Florida increase increasingly abundant at Black Point the potential for Melanoides tuberculatus (fig. 5). The estimated number of M. tuber- to affect human and animal health? culatus snails per square meter approaches The potential danger to human health 60,000 on the Black Point transect at site and animal health is increased by the TR4, which is about 500 meters offshore. presence of Melanoides tuberculatus in In order to determine how many south Florida because conditions here introductions of Melanoides tuberculatus favor the parasitic life cycle shown in have taken place in Biscayne Bay, we figure 3. First, the are analyzing mitochondrial DNA from Wingard, USGS Bird photographs by G. Lynn potential snail, fish, selected locations. Analysis of samples and crustacean hosts from Black Creek Canal and site TR2 are present in large num- on the Black Point transect show that bers. Second, many activities the two populations are indistinguish- bring people and animals into able. This finding suggests that the contact with the hosts. Fish and population at Black Point is the result of shellfish are popular food sources a single introduction of one clonal type of in the region and are sometimes M.
Recommended publications
  • INTRODUCTION the Peruvian "Lead Snail"
    RADIATION DECONTAMINATION OF PERUVIAN MARINE "LEAD SNAIL" (THAIS CHOCOLATA) INOCULATED WITH VIBRIO CHOLERAE Ol EL TOR Z. TORRES Instituto Peruano de Energia Nuclear XA0100965 F. ARIAS Universidad Nacional del Centro del Peru Peru Abstract In vivo studies were conducted using marine snails (Thais chocolatd) artificially contaminated in a tank containing sea water inoculated with a pure culture of Vibrio cholerae, such that 105 colony forming units per gram (CFU/g) were uptaken by the mollusks in 1.5 h. A radiation Di0 value of 0.12 kGy was determined for V. cholerae upon subsequent irradiation of the live snails at doses in the range 0.0-4.0 kGy. A second series of tests were conducted using naturally contaminated, non-inoculated snails, shelled and packaged simulating commercial procedures, irradiated at 0.0-3.0 kGy, and stored at 2-4°C. These tests indicated that a dose of 2.0 kGy was optimal to extend the microbiological shelf- life of the snails to 21 days without inducing significant adverse sensory or chemical effects. Non- irradiated snails similarly treated and stored spoiled after only seven days. INTRODUCTION The Peruvian "lead snail" (Thais chocolatd) is a mollusk having a single, heavy, large and wide valve, uniformly brown in color, from which an orange internal columnella and bluish interior can be observed. Its average size is 88-mm long by 35-mm dia. (Rosales, 1988). This snail is typically found in marine rocky beds, where it forms banks at a depth of some 30 m, affixing itself to rocks in temperate waters (15-17°C).
    [Show full text]
  • Melanoides Tuberculata), Species Habitat Associations and Life History Investigations in the San Solomon Spring Complex, Texas
    FINAL REPORT As Required by THE ENDANGERED SPECIES PROGRAM TEXAS Grant No. TX E-121-R Endangered and Threatened Species Conservation Native springsnails and the invasive red-rim melania snail (Melanoides tuberculata), species habitat associations and life history investigations in the San Solomon Spring complex, Texas Prepared by: David Rogowski Carter Smith Executive Director Clayton Wolf Director, Wildlife 3 October 2012 FINAL REPORT STATE: ____Texas_______________ GRANT NUMBER: ___ TX E-121-R___ GRANT TITLE: Native springsnails and the invasive red-rim melania snail (Melanoides tuberculata), species habitat associations and life history investigations in the San Solomon Spring complex, Texas. REPORTING PERIOD: ____17 Sep 09 to 31 May 12_ OBJECTIVE(S): To determine patterns of abundance, distribution, and habitat use of the Phantom Cave snail (Cochliopa texana), Phantom Spring tryonia (Tryonia cheatumi), and the invasive red-rim melania snail (Melanoides tuberculta) in San Solomon Springs, and potential interactions. Segment Objectives: Task 1. January - February 2010. A reconnaissance visit(s) will be made to the region to investigate the study area and work on specific sampling procedural methods. Visit with TPWD at the Balmorhea State Park, as well as meet The Nature Conservancy personnel at Diamond Y and Sandia springs complexes. Task 2. March 2010– August 2011. Begin sampling. Field sampling will be conducted every 6-8 weeks, over a period of a year and a half. Sampling methods are outlined below stated Tasks. Task 3. December 2010. Completion of first year of study. With four seasonal samples completed, preliminary data analysis and statistical modeling will begin. Preliminary results will be presented at the Texas Chapter of the American Fisheries Society meeting.
    [Show full text]
  • Zhang Et Al., 2015
    Estuarine, Coastal and Shelf Science 153 (2015) 38e53 Contents lists available at ScienceDirect Estuarine, Coastal and Shelf Science journal homepage: www.elsevier.com/locate/ecss Modeling larval connectivity of the Atlantic surfclams within the Middle Atlantic Bight: Model development, larval dispersal and metapopulation connectivity * Xinzhong Zhang a, , Dale Haidvogel a, Daphne Munroe b, Eric N. Powell c, John Klinck d, Roger Mann e, Frederic S. Castruccio a, 1 a Institute of Marine and Coastal Science, Rutgers University, New Brunswick, NJ 08901, USA b Haskin Shellfish Research Laboratory, Rutgers University, Port Norris, NJ 08349, USA c Gulf Coast Research Laboratory, University of Southern Mississippi, Ocean Springs, MS 39564, USA d Center for Coastal Physical Oceanography, Old Dominion University, Norfolk, VA 23529, USA e Virginia Institute of Marine Science, The College of William and Mary, Gloucester Point, VA 23062, USA article info abstract Article history: To study the primary larval transport pathways and inter-population connectivity patterns of the Atlantic Received 19 February 2014 surfclam, Spisula solidissima, a coupled modeling system combining a physical circulation model of the Accepted 30 November 2014 Middle Atlantic Bight (MAB), Georges Bank (GBK) and the Gulf of Maine (GoM), and an individual-based Available online 10 December 2014 surfclam larval model was implemented, validated and applied. Model validation shows that the model can reproduce the observed physical circulation patterns and surface and bottom water temperature, and Keywords: recreates the observed distributions of surfclam larvae during upwelling and downwelling events. The surfclam (Spisula solidissima) model results show a typical along-shore connectivity pattern from the northeast to the southwest individual-based model larval transport among the surfclam populations distributed from Georges Bank west and south along the MAB shelf.
    [Show full text]
  • Life in the Fast Lane – from Hunted to Hunter Middle School Version
    Life in the Fast Lane: From Hunted to Hunter Lab Activity: Dissection of a Squid-A Cephalopod Middle School Version Lesson by Kevin Goff Squid and octopi are cephalopods [say “SEFF-uh-luh-pods”]. The name means “head-foot,” because these animals have VIDEOS TO WATCH gripping, grasping arms that emerge straight from their heads. Watch this short clip on the Shape of Life At first glance, they seem totally different from every other website to become familiar with basic mollusc anatomy: creature on Earth. But in fact, they are molluscs, closely related • “Mollusc Animation: Abalone Body to snails, slugs, clams, oysters, mussels, and scallops. Like all Plan” (under Animation; 1.5 min) modern day molluscs, cephalopods descended from simple, Note the abalone’s foot, radula, and shell- snail-like ancestors. These ancient snails crept sluggishly on making mantle. These were present in the seafloor over 500 million years ago. Their shells resembled the snail-like ancestor of all molluscs an umbrella, probably to shield them from the sun’s intense ultraviolet radiation. When all sorts of new predators appeared on the scene, with powerful jaws or crushing claws, a thin shell was no match for such weapons. Over time, some snails evolved thicker shells, often coiled and spiky. These heavy shells did a better job of fending off predators, but they came with a price: They were costly to build and a burden to lug around. These snails sacrificed speed for safety. This lifestyle worked fine for many molluscs. And, still today, nearly 90% of all molluscs are heavily armored gastropods that crawl around at a snail’s pace.
    [Show full text]
  • December 2017
    Ellipsaria Vol. 19 - No. 4 December 2017 Newsletter of the Freshwater Mollusk Conservation Society Volume 19 – Number 4 December 2017 Cover Story . 1 Society News . 4 Announcements . 7 Regional Meetings . 8 March 12 – 15, 2018 Upcoming Radisson Hotel and Conference Center, La Crosse, Wisconsin Meetings . 9 How do you know if your mussels are healthy? Do your sickly snails have flukes or some other problem? Contributed Why did the mussels die in your local stream? The 2018 FMCS Workshop will focus on freshwater mollusk Articles . 10 health assessment, characterization of disease risk, and strategies for responding to mollusk die-off events. FMCS Officers . 19 It will present a basic understanding of aquatic disease organisms, health assessment and disease diagnostic tools, and pathways of disease transmission. Nearly 20 Committee Chairs individuals will be presenting talks and/or facilitating small group sessions during this Workshop. This and Co-chairs . 20 Workshop team includes freshwater malacologists and experts in animal health and disease from: the School Parting Shot . 21 of Veterinary Medicine, University of Minnesota; School of Veterinary Medicine, University of Wisconsin; School 1 Ellipsaria Vol. 19 - No. 4 December 2017 of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University; the US Geological Survey Wildlife Disease Center; and the US Fish and Wildlife Service Fish Health Center. The opening session of this three-day Workshop will include a review of freshwater mollusk declines, the current state of knowledge on freshwater mollusk health and disease, and a crash course in disease organisms. The afternoon session that day will include small panel presentations on health assessment tools, mollusk die-offs and kills, and risk characterization of disease organisms to freshwater mollusks.
    [Show full text]
  • Alien Tropical Snail, the Red-Rimmed Melania Melanoides Tuberculata Müller, 1774 (Thiaridae) from Artificial Lake in Warsaw, Central Poland
    Available online at www.worldscientificnews.com WSN 132 (2019) 285-290 EISSN 2392-2192 SHORT COMMUNICATION Alien tropical snail, the red-rimmed melania Melanoides tuberculata Müller, 1774 (Thiaridae) from artificial lake in Warsaw, Central Poland Rafał Maciaszek1,*, Dorota Marcinek2, Witold Sosnowski3 1 Department of Genetics and Animal Breeding, Faculty of Animal Sciences, Warsaw University of Life Sciences, ul. Ciszewskiego 8, 02-786 Warsaw, Poland 2 Faculty of Animal Sciences, Warsaw University of Life Sciences, ul. Ciszewskiego 8, 02-786 Warsaw, Poland 3Laboratory of Marine Organisms Reproduction, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology, ul. Kazimierza Królewicza 4, 70-001, Szczecin, Poland *E-mail address: [email protected] ABSTRACT This paper describes the case of introduction of an exotic ornamental snail, Melanoides tuberculata (Thiaridae) in an artificial water reservoir in Pole Mokotowskie park complex in Warsaw, Poland. Observed individuals have been identified, described and presented in photographs. The basic physicochemical parameters of water were analyzed and prospects for the population were evaluated. Another second species of aquatic ornamental snail - Physa acuta (Physidae) was found in the same water reservoir. The observation was analyzed with available literature describing introductions of alien species of aquatic origin in Polish waters. Keywords: aquarium, invasive species, freshwater mollusc, ornamental pet, tadpole snail, Pole Mokotowskie park complex, Melanoides tuberculata ( Received 12 July 2019; Accepted 27 July 2019; Date of Publication 28 July 2019 ) World Scientific News 132 (2019) 285-290 1. INTRODUCTION The red-rimmed melania, Melanoides tuberculata (Müller, 1774) is a viable, parthenogenetic species of snail that naturally inhabits freshwaters of southern Asia, Africa, Madagascar and northern Australia.
    [Show full text]
  • Evolution of the Pachychilidae TROSCHEL, 1857 (Chaenogastropoda, Cerithioidea) – from the Tethys to Modern Tropical Rivers 41
    44 44 he A Rei Series A/ Zitteliana An International Journal of Palaeontology and Geobiology Series A /Reihe A Mitteilungen der Bayerischen Staatssammlung für Pa lä on to lo gie und Geologie 44 An International Journal of Palaeontology and Geobiology München 2004 Zitteliana Umschlag 44 1 18.01.2005, 10:04 Uhr Zitteliana An International Journal of Palaeontology and Geobiology Series A/Reihe A Mitteilungen der Bayerischen Staatssammlung für Pa lä on to lo gie und Geologie 44 CONTENTS/INHALT REINHOLD R. LEINFELDER & MICHAEL KRINGS Editorial 3 DIETRICH HERM Herbert HAGN † 5 KAMIL ZÁGORŠEK & ROBERT DARGA Eocene Bryozoa from the Eisenrichterstein beds, Hallthurm, Bavaria 17 THORSTEN KOWALKE Evolution of the Pachychilidae TROSCHEL, 1857 (Chaenogastropoda, Cerithioidea) – from the Tethys to modern tropical rivers 41 HERBERT W. SCHICK The stratigraphical signifi cance of Cymaceras guembeli for the boundary between Platynota Zone and Hypselocyclum Zone, and the correlation of the Swabian and Franconian Alb 51 GÜNTER SCHWEIGERT, RODNEY M. FELDMANN & MATTHIAS WULF Macroacaena franconica n. sp. (Crustaceae: Brachyura: Raninidae) from the Turonian of S Germany 61 JÜRGEN KRIWET & STEFANIE KLUG Late Jurassic selachians (Chondrichthyes, Elasmobranchii) from southern Germany: Re-evaluation on taxonomy and diversity 67 FELIX SCHLAGINTWEIT Calcareous green algae from the Santonian Hochmoos Formation of Gosau (Northern Calcareous Alps, Austria, Lower Gosau Group) 97 MICHAEL KRINGS & HELMUT MAYR Bassonia hakelensis (BASSON) nov. comb., a rare non-calcareous
    [Show full text]
  • The Freshwater Snails (Mollusca: Gastropoda) of Mexico: Updated Checklist, Endemicity Hotspots, Threats and Conservation Status
    Revista Mexicana de Biodiversidad Revista Mexicana de Biodiversidad 91 (2020): e912909 Taxonomy and systematics The freshwater snails (Mollusca: Gastropoda) of Mexico: updated checklist, endemicity hotspots, threats and conservation status Los caracoles dulceacuícolas (Mollusca: Gastropoda) de México: listado actualizado, hotspots de endemicidad, amenazas y estado de conservación Alexander Czaja a, *, Iris Gabriela Meza-Sánchez a, José Luis Estrada-Rodríguez a, Ulises Romero-Méndez a, Jorge Sáenz-Mata a, Verónica Ávila-Rodríguez a, Jorge Luis Becerra-López a, Josué Raymundo Estrada-Arellano a, Gabriel Fernando Cardoza-Martínez a, David Ramiro Aguillón-Gutiérrez a, Diana Gabriela Cordero-Torres a, Alan P. Covich b a Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av.Universidad s/n, Fraccionamiento Filadelfia, 35010 Gómez Palacio, Durango, Mexico b Institute of Ecology, Odum School of Ecology, University of Georgia, 140 East Green Street, Athens, GA 30602-2202, USA *Corresponding author: [email protected] (A. Czaja) Received: 14 April 2019; accepted: 6 November 2019 Abstract We present an updated checklist of native Mexican freshwater gastropods with data on their general distribution, hotspots of endemicity, threats, and for the first time, their estimated conservation status. The list contains 193 species, representing 13 families and 61 genera. Of these, 103 species (53.4%) and 12 genera are endemic to Mexico, and 75 species are considered local endemics because of their restricted distribution to very small areas. Using NatureServe Ranking, 9 species (4.7%) are considered possibly or presumably extinct, 40 (20.7%) are critically imperiled, 30 (15.5%) are imperiled, 15 (7.8%) are vulnerable and only 64 (33.2%) are currently stable.
    [Show full text]
  • Molecular Phylogenetic Relationship of Thiaridean Genus Tarebia Lineate
    Journal of Entomology and Zoology Studies 2017; 5(3): 1489-1492 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Molecular phylogenetic relationship of Thiaridean JEZS 2017; 5(3): 1489-1492 © 2017 JEZS genus Tarebia lineate (Gastropoda: Cerithioidea) Received: 23-03-2017 Accepted: 24-04-2017 as determined by partial COI sequences Chittaranjan Jena Department of Biotechnology, Vignan’s University (VFSTRU), Chittaranjan Jena and Krupanidhi Srirama Vadlamudi, Andhra Pradesh, India Abstract An attempt was made to investigate phylogenetic affinities of the genus Tarebia lineata sampled from Krupanidhi Srirama the Indian subcontinent using partial mitochondrial COI gene sequence. The amplified partial mt-COI Department of Biotechnology, gene sequence using universal primers, LCO1490 and HCO2198 resulted into ~700 base pair DNA Vignan’s University (VFSTRU), Vadlamudi, Andhra Pradesh, fragment. The obtained nucleotide sequence of partial COI gene of T. lineata was submitted to BLAST India analysis and 36 close relative sequences of the chosen genera, Cerithioidea were derived. Maximum likelihood (ML) algorithm in-biuilt in RAxML software tool was used to estimate phylogenetic their affinities. The present analysis revealed that a single assemblage of the family Thiaridae supported by a bootstrap value of 96% is earmarked at the base of the derived cladogram as a cluster and emerged as a sister group with another four Cerithioideans. Our dataset brought add-on value to the current taxonomy of Thiaridae of the clade Sorbeconcha by clustering them as sister and non-sister groups indicating the virtual relations. Out of seven genera, Tarebia and Melanoides formed as primary and secondary clusters within the Thiaridae. The monophyly of Thiaridae and its conspecifics were depicted in the cladogram.
    [Show full text]
  • Mollusca Three Classes
    Mollusca Three Classes 1. Gastropoda (gastropods)~ slugs and snails 2. Bivalvia (bivalves) ~ clams and other two- shelled shellfish 3. Cephalopoda (cephalopods) ~ squids, octopuses and cuttlefish 1 Bodies of Mollusks • A mollusk has a soft body which is usually covered by a hard outer shell. • Exceptions: – Slugs and octopuses have lost their shells through evolution – Squids have very reduced shells Anatomy of a Mollusk • All mollusks have: – Foot ~ the muscular foot helps it move – Visceral mass ~ contains the gills, gut, and other organs – Mantle ~ covers the visceral mass to protect the mollusks without shells • Most mollusks have: – Shell ~ protects the mollusk from predators and keeps land mollusks from drying out. 2 Symmetry of Mollusks • Mollusks have bilateral symmetry. – The two halves of the body mirror each other. Anatomy of a Snail (gastropod) 3 Anatomy of a Clam (bivalve) Anatomy of a Squid (cephalopod) 4 Eating Behaviors • Bivalves (clams) ~ filter tiny plant and bacteria from the water • Gastropods (snails) ~ eat with a radula (tiny tongue covered with teeth. – The radula is used to scrape algae off rocks and pieces of leaves and seaweed • Cephalopods (squid) ~use tentacles to grab their prey and put it in their powerful jaws. Blue-ringed octopus 5 Market Squid Moon Snail chasing its food 6 Achatina fulica Giant African Land Snail The largest land snail known is the Giant African Land Snail. It can weigh up to 2 pounds and be 15 inches long. Commonly Eaten Mollusks cockles conch oysters clams scallops abalone whelks Mussels Pen shells 7.
    [Show full text]
  • Photoperiod and Temperature Interaction in the Helix Pomatia
    Photoperiod and temperature interaction in the determination of reproduction of the edible snail, Helix pomatia Annette Gomot Laboratoire de Zoologie et Embryologie, UA CNRS 687, Faculté des Sciences et Techniques et Centre Universitaire d'Héliciculture, Université de Franche-Comté, 25030 Besançon Cedex, France Summary. Snails were kept in self-cleaning housing chambers in an artificially con- trolled environment. Mating was frequent under long days (18 h light) and rare under short days (8 h light) regardless of whether the snails were kept at 15\s=deg\Cor 20\s=deg\C.An interaction between photoperiod and temperature was observed for egg laying. The number of eggs laid (45\p=n-\50/snail)and the frequency of egg laying (90\p=n-\130%)were greater in long than in short days (16\p=n-\35/snailand 27\p=n-\77%)but a temperature of 20\s=deg\C redressed, to some extent, the inhibitory effect of short days. At both temperatures only long photoperiods brought about cyclic reproduction over a period of 16 weeks, con- firming the synchronizing role of photoperiod on the neuroendocrine control of egg laying in this species of snail. Keywords: edible snail; mating; egg laying; photoperiod; temperature Introduction The effects of photoperiod and temperature, which influence most reproductive cycles of animals of temperate regions, have given rise to a certain number of observations for pulmonate gastropods. In basommatophorans, the influence of photoperiod and temperature on reproduction has been shown in four species of lymnaeids and planorbids (Imhof, 1973), in Melampus (Price, 1979), in Lymnaea stagnalis (Bohlken & Joosse, 1982; Dogterom et ai, 1984; Joosse, 1984) and in Bulinus truncatus (Bayomy & Joosse, 1987).
    [Show full text]
  • Biological and Biomechanical Principles of the Controlling
    Available online at www.worldscientificnews.com WSN 99 (2018) 71-83 EISSN 2392-2192 Biological and biomechanical principles of the controlling molluscs Melanoides tuberculata (Müller 1774) and Tarebia granifera (Lamarck, 1822) in reservoirs of strategic importance Marenkov Oleh*, Batalov Kyrylo, Kriachek Olena Department of General Biology and Water Bioresources, Oles Honchar Dnipro National University, P.M.B. 49050, Dnipro, Ukraine *E-mail address: [email protected] ABSTRACT The article presents the results of complex laboratory investigations on the biological and biomechanical ways of control of Melanoides tuberculata (Müller 1774) and Tarebia granifera (Lamarck, 1822) molluscs in simulated conditions close to the conditions of the cooling pond of the Zaporizhia Nuclear Power Plant. It was determined that molluscs have naturalized in the Zaporizhia Nuclear Power Plant cooling pond, quickly increased their number and created a threat to hydraulic structures. Taking into account biological features of Thiaridae mollusks and technical and ecological features of Zaporizhia NPP, we carried out a series of experiments using biological control measures (the use of predatory species of hydrobionts) and mechanical means for controlling mollusks. Representatives of different taxons of the Animalia Kingdom were selected as predatory species of hydrobionts, which potentially can consume gastropods: Mollusca, Crustaceans and Fish. It has been found experimentally that the use of marbled crayfish Procambarus virginalis (Lyko, 2017), pumpkinseed Lepomis gibbosus (Linnaeus, 1758) and Botia lohachata Chaudhuri, 1912 has not given positive results in the development of measures to control the number of molluscs. Positive results were obtained in a series of experiments with predatory mollusc assassin snail Clea helena (von dem Busch, 1847), but it was noted that in the presence of more accessible feeds, assassin snail Clea helena (von dem Busch, 1847) consumes smaller quantities of Thiaridae mollusks.
    [Show full text]