Pandanaceae of the Island of Yapen, Papua
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Fossil Pollen Record of the Pandanaceae
The Fossil Pollen Record of the Pandanaceae DAVID M. JARZEN Paleobiology Division National Museum of Natural Sciences National Museums of Canada Ottawa, Canada Abstract The fossil record of pollen comparable to the family Pandanaceae and sometimes directly comparable with the extant genus Pandanus extends back to the latest Upper Cretaceous. The family which once had a wide geographic distribution on all continents except Australia, has, since the mid-Tertiary, become restricted to the Old World tropics and subtropics. Introduction The monocotyledon genus Pandanus Rumph. ex L. comprises about 600 species of trees, shrubs and less frequently subshrubs. Several, such as P. epiphyticus Martelli and P. altico/a Holt. and St. John from Malaya and Borneo are truly epiphytic though facultatively so, also occurring on boulders of limestone or sand stone (Stone, 1978). The tree habit is the most common, and such pandans form a conspicuous part of the vegetation of many tropical shorelines. The pandans (or screw-pines) are distributed throughout the palaeotropics, with species occurring on nearly all tropical and marginally subtropical islands of the Pacific, the northern tropical regions of Australia, tropical Southeast Asia, Indonesia, the Philippines, southern India and islands of the Indian Ocean, the Malagasy Republic and East and West Africa (Stone, 1976). The genus does not occur naturally in the neotropics. Map 1 illustrates the overall distribution of the genus, as well as the known fossil pollen reports of Pandanaceae. The pandans are dioecious, with the staminate plants, particularly of the forest species, being less frequently collected than the pistillate plants, due to the brief, ephemeral staminate anthesis. -
Notes on Grasses (Poaceae) in Hawai‘I: 2
Records of the Hawaii Biological Survey for 2009 –2010. Edited by Neal L. Evenhuis & Lucius G. Eldredge. Bishop Museum Occasional Papers 110: 17 –22 (2011) Notes on grasses (Poaceae ) in Hawai‘i : 31. neil snoW (Hawaii Biological survey, Bishop museum, 1525 Bernice street, Honolulu, Hawai‘i, 96817-2704, Usa; email: [email protected] ) & G errit DaViDse (missouri Botanical Garden, P.o. Box 299, st. louis, missouri 63166-0299, Usa; email: [email protected] ) additional new records for the grass family (Poaceae) are reported for Hawai‘i, including five state records, three island records, one corrected island report, and one cultivated species showing signs of naturalization. We also point out minor oversights in need of cor - rection in the Flora of North America Vol. 25 regarding an illustration of the spikelet for Paspalum unispicatum . Herbarium acronyms follow thiers (2010). all cited specimens are housed at the Herbarium Pacificum (BisH) apart from one cited from the missouri Botanical Garden (mo) for Paspalum mandiocanum, and another from the University of Hawai‘i at mānoa (HaW) for Leptochloa dubia . Anthoxanthum odoratum l. New island record this perennial species, which is known by the common name vernalgrass, occurs natu - rally in southern europe but has become widespread elsewhere (allred & Barkworth 2007). of potential concern in Hawai‘i is the aggressive weedy tendency the species has shown along the coast of British columbia, canada, where it is said to be rapidly invad - ing moss-covered bedrock of coastal bluffs, evidently to the exclusion of native species (allred & Barkworth 2007). the species has been recorded previously on kaua‘i, moloka‘i, maui, and Hawai‘i (imada 2008). -
Pandanus Ific Food Leaflet N° Pac 6 ISSN 1018-0966
A publication of the Healthy Pacific Lifestyle Section of the Secretariat of the Pacific Community Pandanus ificifoodileafieiin° Pac i6 ISSN 1018-0966 n parts of the central and northern Pacific, pandanus is a popular food item used in a variety of interesting ways. However, on many other IPacific Islands, pandanus is not well-known as a food. There are many varieties of pandanus, but only In Kiribati, pandanus is called the ‘tree of life’ as it some have edible fruits and nuts. The plants have provides food, shelter and medicine. In the Marshall a distinctive shape and the near-coastal species, Islands, it is called the ‘divine tree’, like coconut, Pandanus tectorius, is found on most Pacific Islands. because of its important role in everyday life. Pandanus The bunches of fruit have many sections called ‘keys’, is also an important staple food in the Federated States which weigh from around 60 to 200 grams each. of Micronesia (FSM), Tuvalu, Tokelau and Papua New (The botanical term for these keys is phalanges, which Guinea. Dried pandanus was once an important food means ‘finger bones’.) People often eat the keys raw, for voyagers on outrigger canoes, enabling seafarers of but the juicy pulp can also be extracted and cooked long ago to survive long journeys. or preserved. The nuts of some varieties are also eaten. In some countries, a number of pandanus varieties are conserved in genebank collections. This leaflet focuses on the Pandanus tectorius species of pandanus. However, other species, such as The pandanus plant plays an important role in Pandanus conoideus and Pandanus jiulianettii, which everyday life in the Pacific. -
Species Richness of Yapen Island for Sustainable Living Benefit in Papua, Indonesia
ECOLOGICAL ENGINEERING & ENVIRONMENTAL TECHNOLOGY Ecological Engineering & Environmental Technology 2021, 22(1), 92–99 Received: 2020.12.11 https://doi.org/10.12912/27197050/132090 Accepted: 2020.12.28 ISSN 2719-7050, License CC-BY 4.0 Published: 2021.01.05 Species Richness of Yapen Island for Sustainable Living Benefit in Papua, Indonesia Anton Silas Sinery1,3, Jonni Marwa1, Agustinus Berth Aronggear2, Yohanes Yosep Rahawarin1, Wolfram Yahya Mofu1, Reinardus Liborius Cabuy1* 1 Department of Forestry, Faculty of Forestry, University of Papua, Jl. Gunung Salju Amban, Manokwari, West Papua Province, Indonesia 2 Papua Forestry and Conservation Service, Jl. Tanjung Ria, Jayapura Papua Province, Indonesia 3 Environmental Study Center, University of Papua, Jl. Gunung Salju Amban, Manokwari, West Papua Province, Indonesia * Corresponding author’s email: [email protected] ABSTRACT The objective of this study was to precisely identify the types of forest resources utilization in two local communi- ties. All forest plants used were identified and classified based on their types and classes during data collection. Semi-structural interviews through questionnaires were undertaken to obtain daily information. The results showed that there were a total of 64 forest plant life forms and categories extracted for various reasons. Most of the subject forest plants were found in the surrounding lowland tropical forest, the dominant categories were monocotyledons followed by dicotyledons, pteridophytes, and thallophytes. A strong positive correlation was determined between the frequency of species use and the benefit value that was gained (0.6453), while a strong negative correlation was observed between the value of plant’s benefit and the difficulty of access to those plants (-0.2646). -
Pandanaceae) During Ripening: a Native Berries of Papua, Indonesia
Pak. J. Bot., 52(2), DOI: http://dx.doi.org/10.30848/PJB2020-2(1) MORPHOMETRIC CHARACTERISTIC, NUTRITIONAL VALUE AND ANTIOXIDANT ACTIVITY OF SARARANGA SINUOSA HEMSLEY (PANDANACEAE) DURING RIPENING: A NATIVE BERRIES OF PAPUA, INDONESIA VITA PURNAMASARI1, NELLY LUNGA2 AND SIMON B WIDJANARKO3* 1 Ph.D. student at Department of Agroindustrial Technology, Faculty of Agricultural Technology, University of Brawijaya and Department of Biology, Faculty of Mathematics and Natural Sciences, Cenderawasih University, Campus UNCEN Waena, Jayapura, Papua, Indonesia 2 Department of Biology, Faculty of Mathematics and Natural Sciences, Cenderawasih University, Campus UNCEN Waena, Jayapura, Papua, Indonesia 3 Department of Agricultural Product Technology, Faculty of Agricultural Technology, University of Brawijaya, Malang, East Java, Indonesia *Corresponding author’s email: [email protected]. Abstract Fruit of Sararanga sinousa Hemsley is called as “Anggur Papua” or “grape Papua” by local people. S. sinousa is endemic to Papua and its fruits are classified as berries. Morphometric characteristic (weight and diameter), nutritional values: namely proximate composition, soluble solids content, titratable acidity, pH, pectin, ascorbic acid and analysis of antioxidant activity (DPPH assay) of the fruits at three different ripening stages were determined. The weight and diameter of S. sinousa fruit did not differ at different ripening stage viz. At greenish-white, orange-red and red fruit stages. The nutritional value of S. sinousa fruit showed that proteins content, fat and pH remained unchanged as colour of fruit developed from greenish-white to orange-red and red. However, total carbohydrates, soluble solids content, ratio of soluble solids content: titratable acidity, pectin and ascorbic acid were increased significantly, despite the decrease of TA. -
Threatened Endemic Plants of Palau
THREA TENED ENDEMIC PLANTS OF PALAU BIODI VERSITY CONSERVATION LESSONS LEARNED TECHNICAL SERIES 19 BIODIVERSITY CONSERVATION LESSONS LEARNED TECHNICAL SERIES 19 Threatened Endemic Plants of Palau Biodiversity Conservation Lessons Learned Technical Series is published by: Critical Ecosystem Partnership Fund (CEPF) and Conservation International Pacific Islands Program (CI-Pacific) PO Box 2035, Apia, Samoa T: + 685 21593 E: [email protected] W: www.conservation.org The Critical Ecosystem Partnership Fund is a joint initiative of l’Agence Française de Développement, Conservation International, the Global Environment Facility, the Government of Japan, the MacArthur Foundation and the World Bank. A fundamental goal is to ensure civil society is engaged in biodiversity conservation. Conservation International Pacific Islands Program. 2013. Biodiversity Conservation Lessons Learned Technical Series 19: Threatened Endemic Plants of Palau. Conservation International, Apia, Samoa Authors: Craig Costion, James Cook University, Australia Design/Production: Joanne Aitken, The Little Design Company, www.thelittledesigncompany.com Photo credits: Craig Costion (unless cited otherwise) Cover photograph: Parkia flowers. © Craig Costion Series Editors: Leilani Duffy, Conservation International Pacific Islands Program Conservation International is a private, non-profit organization exempt from federal income tax under section 501c(3) of the Internal Revenue Code. OUR MISSION Building upon a strong foundation of science, partnership and field demonstration, -
Strengthening of Floristic Diversity in the KFRI Sub Centre Campus Through Planting and Weed Management
KFRI RESEARCH REPORT NO. 443 ISSN 0970-8103 Strengthening of floristic diversity in the KFRI Sub Centre campus through planting and weed management U.M. Chandrashekara Forest Ecology Division Kerala Forest Research Institute (An Institution of Kerala State Council for Science, Technology and Environment) Peechi, Thrissur, Kerala. September,2012 Abstract of Project Proposal Code KFRI 506/2006 Title Strengthening of floristic diversity in the KFRI Sub Centre campus through planting and weed management Objectives 1. To revise the flora of KFRI Sub Centre Campus 2. To adopt water and soil conservation methods for providing suitable habitats for the growth and establishment of seedlings/ propagules Project period April 2006- March 2012 Funded by KFRI Plan Grant Scientific personnel U.M. Chandrashekara CONTENTS ABSTRACT 1 INTRODUCTION 2 MATERIALS AND METHOD 3 RESULTS AND DISCUSSION 3 Floristic study 3 Soil and water management 50 Protection 51 CONCLUSION 52 ACKNOWLEDGEMENTS 53 REFERENCES 53 ABSTRACT A taxonomic survey was carried out to assess the diversity of angiosperm taxa in the campus of Kerala Forest Research Sub Centre at Nilambur. The data were collected during April 2006 to March 2012. A total of 1643 taxa belonging to 152 families were recorded in which 1452 taxa represented species (sub species and natural varities included) and the rest represented cultivars and hybrids. Orchidaceae, Euphorbiaceae and Acanthaceae were families having highest number of taxa, 131, 92 and 71 respectively. Increasing anthropogenic influences on the environment, especially urbanization, have caused negative changes in natural ecosystems in and around Nilambur. In this context, the KFRI Sub Centre campus is an important green campus with its floral richness. -
Micropechis Ikaheka (Elapidae) in Papua, Indonesia: a Study of Diet and Cannibalism
Herpetology Notes, volume 8: 323-328 (2015) (published online on 26 May 2015) Micropechis ikaheka (Elapidae) in Papua, Indonesia: A Study of Diet and Cannibalism Keliopas Krey1,2,*, Mark O’Shea3, Achmad Farajallah1, Dede Setiadi1 and Bambang Suryobroto1 Introduction vegetation, discarded rubbish from cocoa, coconut or palm oil industries, holes in fallen palm trees, under Snakes are primary predators in many terrestrial, tree buttresses, and in rocky crevices (Hudson, 1988; aquatic, and marine communities. As predators, the lives O’Shea, 1994b; O’Shea, 1996; Krey and Farajallah, of wild snakes are therefore closely related to feeding 2013). ecology. Feeding ecology is related not only to food Micropechis ikaheka exhibits a very generalized diet availability but also to the body sizes of the predators (Shine and Keogh, 1996), comprising lizards, snakes, and prey (Cundall and Greene, 2000). Studying the frogs, and small mammals. Some specific dietary items diet of a snake species is critical to our knowledge of have been reported, including the New Guinea ground the ecology of the snake at individual, population and boa Candoia aspera (O’Shea, 1994a), and skinks community levels. Ecological studies of snake diets are Sphenomorphus jobiensis (McDowell, 1984; Shine and also very important for a better understanding of the Keogh, 1996) and S. simus (Krey, 2009). relationships between snakes and other organisms in the O’Shea (1994b) reported cannibalism in the species, ecosystem (Su et al., 2005). in captivity. He described a small female predated by The New Guinea small-eyed snake, Micropechis a larger female. This case of cannibalism, in a group ikaheka (Lesson 1830), is one of the most venomous of freshly-caught snakes destined for venom research, terrestrial snakes of continental New Guinea, occuring demonstrates a feeding behaviour that may also occur from lowland wetlands and plantations to mid-montane in wild populations. -
A Preliminary List of the Vascular Plants and Wildlife at the Village Of
A Floristic Evaluation of the Natural Plant Communities and Grounds Occurring at The Key West Botanical Garden, Stock Island, Monroe County, Florida Steven W. Woodmansee [email protected] January 20, 2006 Submitted by The Institute for Regional Conservation 22601 S.W. 152 Avenue, Miami, Florida 33170 George D. Gann, Executive Director Submitted to CarolAnn Sharkey Key West Botanical Garden 5210 College Road Key West, Florida 33040 and Kate Marks Heritage Preservation 1012 14th Street, NW, Suite 1200 Washington DC 20005 Introduction The Key West Botanical Garden (KWBG) is located at 5210 College Road on Stock Island, Monroe County, Florida. It is a 7.5 acre conservation area, owned by the City of Key West. The KWBG requested that The Institute for Regional Conservation (IRC) conduct a floristic evaluation of its natural areas and grounds and to provide recommendations. Study Design On August 9-10, 2005 an inventory of all vascular plants was conducted at the KWBG. All areas of the KWBG were visited, including the newly acquired property to the south. Special attention was paid toward the remnant natural habitats. A preliminary plant list was established. Plant taxonomy generally follows Wunderlin (1998) and Bailey et al. (1976). Results Five distinct habitats were recorded for the KWBG. Two of which are human altered and are artificial being classified as developed upland and modified wetland. In addition, three natural habitats are found at the KWBG. They are coastal berm (here termed buttonwood hammock), rockland hammock, and tidal swamp habitats. Developed and Modified Habitats Garden and Developed Upland Areas The developed upland portions include the maintained garden areas as well as the cleared parking areas, building edges, and paths. -
Austronesians in Papua: Diversification and Change in South Halmahera–West New Guinea
Austronesians in Papua: Diversification and change in South Halmahera–West New Guinea by David Christopher Kamholz A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Linguistics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Andrew Garrett, Chair Professor Larry Hyman Professor Johanna Nichols Fall 2014 Austronesians in Papua: Diversification and change in South Halmahera–West New Guinea Copyright 2014 by David Christopher Kamholz 1 Abstract Austronesians in Papua: Diversification and change in South Halmahera–West New Guinea by David Christopher Kamholz Doctor of Philosophy in Linguistics University of California, Berkeley Professor Andrew Garrett, Chair This dissertation presents a new subgrouping of South Halmahera–West New Guinea (SHWNG) languages. The 38 SHWNG languages form a small, poorly known branch of Austronesian. The Austronesian family originated in Taiwan and later spread into In- donesia, across New Guinea, and to the remote Pacific. In New Guinea, approximately 3500 years ago, Austronesian speakers first came into contact with so-called Papuan languages—the non-Austronesian languages indigenous to New Guinea, comprising more than 20 families. The Austronesian languages still extant from this initial spread into New Guinea fall into two branches: SHWNG and Oceanic. In great contrast to Oceanic, only a few SHWNG languages are well-described, and almost nothing has been reconstructed at the level of Proto-SHWNG. Contact with Papuan languages has given the SHWNG lan- guages a typological profile quite different from their linguistic forebears. Chapter 1 puts the SHWNG languages in context, describing their significance for Aus- tronesian and their broader relevance to historical linguistics. -
(P. Beauv., Pandanaceae) Leaves
Available on line www.jocpr.com Journal of Chemical and Pharmaceutical Research __________________________________________________ J. Chem. Pharm. Res., 2011, 3(2):98-104 ISSN No: 0975-7384 CODEN(USA): JCPRC5 Microscopic Characters and Phytochemical screening of Pandanus candelabrum (P. Beauv., Pandanaceae) Leaves 1G.O. Alade , 1O.R. Omobuwajo* and 2J.O. Moody 1Department of Pharmacognosy and Herbal Medicine, Niger Delta University, Wilberforce Island, Nigeria 2Department of Pharmacognosy, University of Ibadan, Ibadan, Nigeria ______________________________________________________________________________ ABSTRACT Microscopy and phytochemical screening of the leaves of Pandanus candelabrum were studied. Microscopical examination of the leaves showed paracytic stomata which are more numerous on the lower surface with prisms of calcium oxalate cystals. Preliminary phytochemical screening of the 80 % ethanol extract of the leaves revealed the presence of anthraquinones, saponins and traces of tannins and alkaloids. Keywords : Microscopy, Pandanus candelabrum, Phytochemical screening. ______________________________________________________________________________ INTRODUCTION In developing countries, communities rely heavily on traditional herbal medicines in order to meet their primary health care needs. In many industrialized coutries herbal medicines are gaining popularity as alternative and complimentary therapies [1]. Due to some morphological similarities and lack of correct identification, crude drugs are often adulterated or substituted in commerce which obviously results in the loss of drug efficacy [1]. Correct identification of herbal drug is the foundation of the safe use of plant based natural health products. Consumers have a right to expect that these products can be used with confidence regarding safety and quality [2]. Superficial resemblance of plant species within the same family [3] and the problem of adulteration in medicinal plants arise due to the potential use of different species for similar ailments [4]. -
Benstonea Sp) from RIAU, INDONESIA USING THREE DNA BARCODES
RESEARCH ARTICLE SABRAO Journal of Breeding and Genetics 49 (4) 346-360, 2017 IDENTIFICATION OF PANDAN PLANT (Benstonea sp) FROM RIAU, INDONESIA USING THREE DNA BARCODES DEWI INDRIYANI ROSLIM1 1Genetic Laboratory, Department of Biology, Faculty of Mathematics and Natural Sciences, University of Riau, Binawidya Campus, Jl HR Soebrantas Km 12.5, Panam, Pekanbaru, Riau, Indonesia *Corresponding author’s email: [email protected] SUMMARY Pandan from Riau is one of the important plants in Kajuik Lake located in Langgam, Riau Province of Indonesia, although its scientific name has not been recognized. This study reports the use of three DNA barcodes: matK, rbcL, and trnL-trnF intergenic spacer; to determine the Pandan’s taxonomic status. The methods included DNA isolation, PCR, electrophoresis, and sequencing. The software BLASTn, BioEdit, and MEGA were used to analyze the data. The matK, rbcL, and trnL-trnF intergenic spacer sequences obtained were 639 bp, 539 bp, and 1014 bp in size, respectively. The results showed that although the identification had already been performed using two standard DNA barcodes sequences for plants, i.e. the matK and rbcL, and also the trnL-trnF intergenic spacer sequence which was commonly used as a DNA barcode in Pandanaceae and abundantly available in GenBank, none of them had 100% similarity to Pandan from Riau. In addition, the dendrogram generated from those sequences showed that Pandan from Riau had the closest relationship with a few species of Benstonea rather than Pandanus, Martellidendron, and Freycinetia. It can be concluded that the scientific name of Pandan from Riau can only be determined up to the genus level, i.e.