Pseudogroups Via Pseudoactions: Unifying Local, Global, and Infinitesimal Symmetry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Density of Thin Film Billiard Reflection Pseudogroup in Hamiltonian Symplectomorphism Pseudogroup Alexey Glutsyuk
Density of thin film billiard reflection pseudogroup in Hamiltonian symplectomorphism pseudogroup Alexey Glutsyuk To cite this version: Alexey Glutsyuk. Density of thin film billiard reflection pseudogroup in Hamiltonian symplectomor- phism pseudogroup. 2020. hal-03026432v2 HAL Id: hal-03026432 https://hal.archives-ouvertes.fr/hal-03026432v2 Preprint submitted on 6 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Density of thin film billiard reflection pseudogroup in Hamiltonian symplectomorphism pseudogroup Alexey Glutsyuk∗yzx December 3, 2020 Abstract Reflections from hypersurfaces act by symplectomorphisms on the space of oriented lines with respect to the canonical symplectic form. We consider an arbitrary C1-smooth hypersurface γ ⊂ Rn+1 that is either a global strictly convex closed hypersurface, or a germ of hy- persurface. We deal with the pseudogroup generated by compositional ratios of reflections from γ and of reflections from its small deforma- tions. In the case, when γ is a global convex hypersurface, we show that the latter pseudogroup is dense in the pseudogroup of Hamiltonian diffeomorphisms between subdomains of the phase cylinder: the space of oriented lines intersecting γ transversally. We prove an analogous local result in the case, when γ is a germ. -
Geometric Manifolds
Wintersemester 2015/2016 University of Heidelberg Geometric Structures on Manifolds Geometric Manifolds by Stephan Schmitt Contents Introduction, first Definitions and Results 1 Manifolds - The Group way .................................... 1 Geometric Structures ........................................ 2 The Developing Map and Completeness 4 An introductory discussion of the torus ............................. 4 Definition of the Developing map ................................. 6 Developing map and Manifolds, Completeness 10 Developing Manifolds ....................................... 10 some completeness results ..................................... 10 Some selected results 11 Discrete Groups .......................................... 11 Stephan Schmitt INTRODUCTION, FIRST DEFINITIONS AND RESULTS Introduction, first Definitions and Results Manifolds - The Group way The keystone of working mathematically in Differential Geometry, is the basic notion of a Manifold, when we usually talk about Manifolds we mean a Topological Space that, at least locally, looks just like Euclidean Space. The usual formalization of that Concept is well known, we take charts to ’map out’ the Manifold, in this paper, for sake of Convenience we will take a slightly different approach to formalize the Concept of ’locally euclidean’, to formulate it, we need some tools, let us introduce them now: Definition 1.1. Pseudogroups A pseudogroup on a topological space X is a set G of homeomorphisms between open sets of X satisfying the following conditions: • The Domains of the elements g 2 G cover X • The restriction of an element g 2 G to any open set contained in its Domain is also in G. • The Composition g1 ◦ g2 of two elements of G, when defined, is in G • The inverse of an Element of G is in G. • The property of being in G is local, that is, if g : U ! V is a homeomorphism between open sets of X and U is covered by open sets Uα such that each restriction gjUα is in G, then g 2 G Definition 1.2. -
Cartan Connections to Connections on fibre Bundles, and Some Modern Applications
The works of Charles Ehresmann on connections: from Cartan connections to connections on fibre bundles, and some modern applications Charles-Michel Marle Universite´ Pierre et Marie Curie Paris, France The works of Charles Ehresmann on connections: from Cartan connections to connections on fibre bundles, and some modern applications – p. 1/40 Élie Cartan’s affine connections (1) Around 1923, Élie Cartan [1, 2, 3] introduced the notion of an affine connection on a manifold. That notion was previously used, in a less general setting, by H. Weyl [16] and rests on the idea of parallel transport due to T. Levi-Civita [11]. The works of Charles Ehresmann on connections: from Cartan connections to connections on fibre bundles, and some modern applications – p. 2/40 Élie Cartan’s affine connections (1) Around 1923, Élie Cartan [1, 2, 3] introduced the notion of an affine connection on a manifold. That notion was previously used, in a less general setting, by H. Weyl [16] and rests on the idea of parallel transport due to T. Levi-Civita [11]. A large part of [1, 2] is devoted to applications of affine connections to Newtonian and Einsteinian Mechanics. Cartan show that the principle of inertia (which is at the foundations of Mechanics), according to which a material point particle, when no forces act on it, moves along a straight line with a constant velocity, can be expressed locally by the use of an affine connection. Under that form, that principle remains valid in (curved) Einsteinian space-times. The works of Charles Ehresmann on connections: from Cartan connections to connections on fibre bundles, and some modern applications – p. -
Topological Description of Riemannian Foliations with Dense Leaves
TOPOLOGICAL DESCRIPTION OF RIEMANNIAN FOLIATIONS WITH DENSE LEAVES J. A. AL¶ VAREZ LOPEZ*¶ AND A. CANDELy Contents Introduction 1 1. Local groups and local actions 2 2. Equicontinuous pseudogroups 5 3. Riemannian pseudogroups 9 4. Equicontinuous pseudogroups and Hilbert's 5th problem 10 5. A description of transitive, compactly generated, strongly equicontinuous and quasi-e®ective pseudogroups 14 6. Quasi-analyticity of pseudogroups 15 References 16 Introduction Riemannian foliations occupy an important place in geometry. An excellent survey is A. Haefliger’s Bourbaki seminar [6], and the book of P. Molino [13] is the standard reference for riemannian foliations. In one of the appendices to this book, E. Ghys proposes the problem of developing a theory of equicontinuous foliated spaces parallel- ing that of riemannian foliations; he uses the suggestive term \qualitative riemannian foliations" for such foliated spaces. In our previous paper [1], we discussed the structure of equicontinuous foliated spaces and, more generally, of equicontinuous pseudogroups of local homeomorphisms of topological spaces. This concept was di±cult to develop because of the nature of pseudogroups and the failure of having an in¯nitesimal characterization of local isome- tries, as one does have in the riemannian case. These di±culties give rise to two versions of equicontinuity: a weaker version seems to be more natural, but a stronger version is more useful to generalize topological properties of riemannian foliations. Another relevant property for this purpose is quasi-e®ectiveness, which is a generalization to pseudogroups of e®ectiveness for group actions. In the case of locally connected fo- liated spaces, quasi-e®ectiveness is equivalent to the quasi-analyticity introduced by Date: July 19, 2002. -
Bulletin De La S
BULLETIN DE LA S. M. F. F. BRICKELL R.S. CLARK Conformally riemannian structures. I Bulletin de la S. M. F., tome 90 (1962), p. 15-26 <http://www.numdam.org/item?id=BSMF_1962__90__15_0> © Bulletin de la S. M. F., 1962, tous droits réservés. L’accès aux archives de la revue « Bulletin de la S. M. F. » (http: //smf.emath.fr/Publications/Bulletin/Presentation.html) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Dull. Soc. math. France^ 90, 1962, p. i5 a 26. CONFORMALLY RIEMANNIAN STRUCTURES, I ; F. RRICKELL AND R. S. CLARK (Southampton). Introduction. — We define a conformally Riemannian structure on a differentiable (1) manifold M of dimension n to be a differentiable subor- dinate structure of the tangent bundle to M whose group G consists of the non-zero scalar multiples of the orthogonal n x n matrices. The method of equivalence of E. CARTAN [I], as described by S. CHERN [3], associates with a given conformal structure a certain principal fibre bundle on which a set of linear differential forms is denned globally. We obtain such a bundle and set of forms explicitly and show their relation to the normal conformal connection of E. CARTAN | 2]. The first paragraph contains an exposition of conformal connections in tlie light of C. -
Cartan Connection Applied to Dynamic Calculation in Robotics
Cartan connection applied to dynamic calculation in robotics Diego Colón, 1 Phone +55-11-3091-5650 Email [email protected] 1 Laboratório de Automação e Controle - LAC/PTC, Escola Politécnica da Universidade de São Paulo, São Paulo, Brazil Received: 31 January 2017 / Accepted: 6 June 2018 Abstract A Cartan connection is an important mathematical object in differential geometry that generalizes, to an arbitrary Riemannian space, the concept of angular velocity (and twists) of a non-inertial reference frame. In fact, this is an easy way to calculate the angular velocities (and twists) in systems with multiple reference frames, like a robot or a complex mechanism. The concept can also be used in different representations of rotations and twists, like in the Lie groups of unit quaternions and unit dual quaternions. In this work, the Cartan connection is applied to the kinematic and dynamic calculations of a systems of with multiple reference frames that could represent a robotic serial chain or mechanism. Differently from previous works, the transformation between frames is represented as unit quaternions, which are known to be better mathematical representations from the numerical point of view. It is also generalized to this new quaternion representation, previous results like the extended Newton’s equation, the covariant derivative and the Cartan connection. An example of application is provided. AQ1 Keywords Quaternions Robotics Lie groups Screw theory Technical Editor: Victor Juliano De Negri. 1. Introduction Concepts of differential geometry and Lie groups and Lie algebras have been used in many areas of engineering for a long time. More recently, a renewed interest could be verified in mechanism and robotics [1, 2, 10, 16, 23], where dual quaternions were used, and very complete reference books, like [3], appeared. -
Cartan Connection and Curvature Forms
CARTAN CONNECTION AND CURVATURE FORMS Syafiq Johar syafi[email protected] Contents 1 Connections and Riemannian Curvature 1 1.1 Affine Connection . .1 1.2 Levi-Civita Connection and Riemannian Curvature . .2 1.3 Riemannian Curvature . .3 2 Covariant External Derivative 4 2.1 Connection Form . .4 2.2 Curvature Form . .5 2.3 Explicit Formula for E = TM ..................................5 2.4 Levi-Civita Connection and Riemannian Curvature Revisited . .6 3 An Application: Uniformisation Theorem via PDEs 6 1 Connections and Riemannian Curvature Cartan formula is a way of generalising the Riemannian curvature for a Riemannian manifold (M; g) of dimension n to a differentiable manifold. We start by defining the Riemannian manifold and curvatures. We begin by defining the usual notion of connection and the Levi-Civita connection. 1.1 Affine Connection Definition 1.1 (Affine connection). Let M be a differentiable manifold and E a vector bundle over M. A connection or covariant derivative at a point p 2 M is a map D : Γ(E) ! Γ(T ∗M ⊗ E) with the 1 properties for any V; W 2 TpM; σ; τ 2 Γ(E) and f 2 C (M), we have that DV σ 2 Ep with the following properties: 1. D is tensorial over TpM i.e. DfV +W σ = fDV σ + DW σ: 2. D is R-linear in Γ(E) i.e. DV (σ + τ) = DV σ + DV τ: 3. D satisfies the Leibniz rule over Γ(E) i.e. if f 2 C1(M), we have DV (fσ) = df(V ) · σ + fDV σ: Note that we did not require any condition of the metric g on the manifold, nor the bundle metric on E in the abstract definition of a connection. -
Arxiv:1911.13147V5 [Math.DG] 27 Jan 2021
Cartan geometries and multiplicative forms Francesco Cattafi ∗ Abstract In this paper we show that Cartan geometries can be studied via transitive Lie groupoids endowed with a special kind of vector-valued multiplicative 1-forms. This viewpoint leads us to a more general notion, that of Cartan bundle, which encompasses both Cartan geometries and G-structures. MSC2010: 58A10, 53C05, 53C10, 53C15, 58H05 1 Introduction The history of Cartan geometries is well known and dates back to the XIX century, when mathematicians began a sistematic study of non-euclidean geometries. In this perspective, the idea of Felix Klein was to shift the attention from the geometric objects to their symmetries: the slogan of his so-called Erlangen program was that each “geometry” should be described by a specific group of transformations. Later, Elie´ Cartan took these geometries as standard models and used them to give rise to his espaces g´en´eralis´es. The research in this field then progressed on two paths. On the one hand, many authors used Cartan’s ideas to obtain important results on relevant examples, such as parabolic geometries (see [5]). On the other hand, people used Cartan’s approach to develop a general framework for studying these geometries; the standard modern reference is the famous book Differential Geometry: Cartan’s generalisation of Klein’s Erlangen program [19] by Richard Sharpe. Our interest in these topics sparked from a different area in geometry. Recently, the concept of Pfaffian groupoid have been introduced [18] in order to understand the structure behind the jet groupoid of a Lie pseudogroup. -
Phenomena at the Border Between Quantum Physics and General Relativity
Phenomena at the border between quantum physics and general relativity by Valentina Baccetti A thesis submitted to the Victoria University of Wellington in fulfilment of the requirements for the degree of Doctor of Philosophy in the School of Mathematics, Statistics and Operations Research. Victoria University of Wellington 2014 Abstract In this thesis we shall present a collection of research results about phenomena that lie at the interface between quantum physics and general relativity. The motivation behind our research work is to find alternative ways to tackle the problem of a quantum theory of/for gravitation. In the general introduction, we shall briefly recall some of the characteristics of the well-established approaches to this problem that have been developed since the beginning of the middle of the last century. Afterward we shall illustrate why one would like to engage in alternative paths to better understand the problem of a quantum theory of/for gravitation, and the extent to which they will be able to shed some light into this problem. In the first part of the thesis, we shall focus on formulating physics without Lorentz invariance. In the introduction to this part we shall describe the motiva- tions that are behind such a possible choice, such as the possibility that the physics at energies near Planck regime may violate Lorentz symmetry. In the following part we shall first consider a minimalist way of breaking Lorentz invariance by renouncing the relativity principle, that corresponds to the introduction of a preferred frame, the aether frame. In this case we shall look at the transformations between a generic inertial frame and the aether frame still requiring the transformations to be linear. -
An Analogue of the Variational Principle for Group and Pseudogroup Actions Tome 63, No 3 (2013), P
R AN IE N R A U L E O S F D T E U L T I ’ I T N S ANNALES DE L’INSTITUT FOURIER Andrzej BIS´ An analogue of the Variational Principle for group and pseudogroup actions Tome 63, no 3 (2013), p. 839-863. <http://aif.cedram.org/item?id=AIF_2013__63_3_839_0> © Association des Annales de l’institut Fourier, 2013, tous droits réservés. L’accès aux articles de la revue « Annales de l’institut Fourier » (http://aif.cedram.org/), implique l’accord avec les conditions générales d’utilisation (http://aif.cedram.org/legal/). Toute re- production en tout ou partie de cet article sous quelque forme que ce soit pour tout usage autre que l’utilisation à fin strictement per- sonnelle du copiste est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/ Ann. Inst. Fourier, Grenoble 63, 3 (2013) 839-863 AN ANALOGUE OF THE VARIATIONAL PRINCIPLE FOR GROUP AND PSEUDOGROUP ACTIONS by Andrzej BIŚ Abstract. — We generalize to the case of finitely generated groups of home- omorphisms the notion of a local measure entropy introduced by Brin and Katok [7] for a single map. We apply the theory of dimensional type characteristics of a dynamical system elaborated by Pesin [25] to obtain a relationship between the topological entropy of a pseudogroup and a group of homeomorphisms of a met- ric space, defined by Ghys, Langevin and Walczak in [12], and its local measure entropies. -
REGULARITY of PSEUDOGROUP ORBITS 1. Introduction Lie Pseudogroups, Roughly Speaking, Are Infinite Dimensional Counterparts of Lo
October 11, 2004 14:39 Proceedings Trim Size: 9in x 6in orbits REGULARITY OF PSEUDOGROUP ORBITS PETER J. OLVER ¤ School of Mathematics University of Minnesota Minneapolis, MN 55455, USA E-mail: [email protected] JUHA POHJANPELTO Department of Mathematics, Oregon State University, Corvallis, OR 97331, USA E-mail: [email protected] Let G be a Lie pseudogroup acting on a manifold M. In this paper we show that under a mild regularity condition the orbits of the induced action of G on the bundle J n(M; p) of nth order jets of p-dimensional submanifolds of M are immersed submanifolds of J n(M; p). 1. Introduction Lie pseudogroups, roughly speaking, are in¯nite dimensional counterparts of local Lie groups of transformations. The ¯rst systematic study of pseu- dogroups was carried out at the end of the 19th century by Lie, whose great insight in the subject was to place the additional condition on the local transformations in a pseudogroup that they form the general solution of a system of partial di®erential equations, the determining equations for the pseudogroup. Nowadays these Lie or continuous pseudogroups play an important role in various problems arising in geometry and mathemat- ical physics including symmetries of di®erential equations, gauge theories, Hamiltonian mechanics, symplectic and Poisson geometry, conformal ge- ometry of surfaces, conformal ¯eld theory and the theory of foliations. Since their introduction a considerable e®ort has been spent on develop- ¤Work partially supported by grant DMS 01-03944 of the National Science Foundation. 1 October 11, 2004 14:39 Proceedings Trim Size: 9in x 6in orbits 2 ing a rigorous foundation for the theory of Lie pseudogroups and the invari- ants of their action, and on their classi¯cation problem, see e.g. -
DIFFERENTIAL GEOMETRY of CARTAN CONNECTIONS Dmitri V
Publ. Math. Debrecen 47/3-4 (1995), 349{375 DIFFERENTIAL GEOMETRY OF CARTAN CONNECTIONS Dmitri V. Alekseevsky Peter W. Michor Erwin Schr¨odingerInternational Institute of Mathematical Physics, Wien, Austria Table of contents 1. Introduction . 1 2. Cartan connections and generalized Cartan connections . 3 3. The relation between principal Cartan connections and principal connections 7 4. Flat Cartan connections . 12 5. Flat Cartan connections associated with a flat G-structure . 16 6. The canonical Cartan connection for a G-structure of first or second order 20 1. Introduction In this article a general theory of Cartan connections is developed and some applications are indicated. The starting idea is to consider a Cartan connection as a deformation of a local Lie group structure on the manifold, i.e. a 1-form λ with values in a Lie algebra h which is non degenerate and satisfies the Maurer- Cartan equation. Such a Maurer-Cartan form λ may be considered as a flat Cartan connection. Many notions and results of the geometry of group manifolds are still valid in this more general setting. More precisely, for a Lie subalgebra g of h we define a Cartan connection of type h=g on a manifold P of dimension n = dim h as a h-valued 1-form κ : TP ! h which defines an isomorphism κx : TxP ! h for any x 2 P and such that [ζX ; ζY ] = ζ[X;Y ] holds for X 2 h and Y 2 g, where the linear mapping ζ : h ! X(P ) from h into −1 the Lie algebra X(P ) of vector fields on P is given by ζX (x) = κx (X).