CONNECTIONS BETWEEN SCREW THEORY and CARTAN's CONNECTIONS Diego Colón ∗Laboratório De Automaç˜Ao E Controle

Total Page:16

File Type:pdf, Size:1020Kb

CONNECTIONS BETWEEN SCREW THEORY and CARTAN's CONNECTIONS Diego Colón ∗Laboratório De Automaç˜Ao E Controle Anais do XX Congresso Brasileiro de Automática Belo Horizonte, MG, 20 a 24 de Setembro de 2014 CONNECTIONS BETWEEN SCREW THEORY AND CARTAN'S CONNECTIONS Diego Colon´ ∗ ∗Laborat´orio de Automa¸c~aoe Controle - LAC/PTC, Escola Polit´ecnica da USP Av. Prof. Luciano Gualberto, trav 3, 158 Cidade Universit´aria, S~ao Paulo, BRAZIL Email: [email protected] Abstract| In this paper some relations that exist between expressions in Screw Theory of Robotics and Differential Geometry, from the point of view of Cartan, are presented. The ideas were inspired in books of Differential Geometry, Lie groups and Lie algebras and its applications. The Cartan's connection is the initial concept, followed by the covariant derivative. It is presented how kinematics and dynamics are obtained, in case of pure rotations and general movement in Euclidean space. The generalization of these concepts to Riemannian manifolds are then presented, and some conclusions are drawn concerning the possibility of kinematic chain calculations in such space (propagation of velocities). Finally, the idea of using connections and covariant derivatives are extended to multi-frame cases (as is common in Robotics) in Euclidean space. Keywords| Screw Theory, Riemannian geometry, Cartan's Connection. Resumo| Este artigo apresenta algumas rela¸c~oesexistentes entre express~oese formula¸c~oes em Rob´otica (em particular na Teoria das Helic´oides) com Geometria Diferencial do ponto de vista de Cartan. A id´eiade partida foi inspirada em livros de Geometria Diferential e suas aplica¸c~oes.A conex~ao de Cartan ´eo ponto de partida para a interpreta¸c~aoposterior, assim como a derivada covariante. Apresenta-se como a cinem´atica e a din^amica de sistemas de corpos r´ıgidos, com especial interesse para a ´area de modelagem de sistemas rob´oticos, s~aodeduzidas, inicialmente no caso de rota¸c~oes puras, e depois para o caso de movimento geral no espa¸coEuclidiano. Os conceitos s~ao generalizados para variedades Riemannianas, e conclus~oesimportantes sobre Rob´otica s~ao tiradas para estes espa¸cos (no que se refere a cadeias cinem´aticas). Finalmente, o uso de conex~oesde Cartan para sistemas com muitos frames de refer^encias (pelo menos um inercial) ´eapresentado. Palavras-chave| Teoria das Helic´oides, Geometria Riemanniana, Conex~ao de Cartan. 1 Introduction the space (Sharpe, 1997). Cartan's connection is a central concept in modern Particle Physics, as Concepts of Differential Geometry and Lie Groups it can represent eletromagnetic potential, gluons and Algebras have been used in Robotics for a (particles that carry the strong force) and many long time, with the first appearing in classical ref- others (Schwarz, 1996). In the case of Screw The- erences as (Craig, 1989), where transformation be- ory, moving frames are fields of screws, and Car- tween two reference frames are matrices in the ma- tan's connections are fields of twists. trix group SE(3) (or SE(2), if the manipulator's Connections are essential in the definition of movement is planar). More recently, Screw The- time derivatives in non-inertial moving frames (co- ory, that was developed by (Ball, 1876), started to variant derivative or total derivative), and by us- be applied, but the modern definitions of screws, ing covariant derivative, it is possible to rewrite twists and wrenches as elements of SE(3), se(3) Newton's law and Euler's equation in a form that and se∗(3), (respectively, a Lie group, its Lie al- is invariant in any non-inertial frame. This frame- gebra and Lie co-algebra), are far more recent work even predict that serious troubles must be (Sattinger and Weaver, 1986). Today, there are tackled in a possible generalization of Robotics to very complete references on the subject (Murray the Riemannian case, as it is easy to prove (and et al., 1994). will be done in this work) that no reference frame Cartan's connections are geometrical objects exists that can be used as base of a kinematic that are fundamental to modern Geometry and chain (propagation of velocities and accelerations) Physics, besides the concept of moving frames like is done in the Euclidean space. (Schwarz, 1996), (Choquet-Bruhat et al., 1989). The objective of this work is manifold, but In simple terms, given a manifold M (that could could be roughly divided in the following objec- be Riemannian), a moving frame associates to tives: 1) convince the reader that angular veloc- each point in M a reference frame (in general, non- ities and twists are generalized by the concept of inertial), and a Cartan's connection is a derivative Cartan's connection; 2) convince the reader that field of a moving frame that generalizes the con- the Newton/Euler's equations could be formu- cept of gradient. A common physical interpre- lated by using the concept of covariant derivative; tation (in Mechanics) is that a Cartan's connec- 3) To show that this way of formulating Screw tion generalizes the angular velocity of the mov- Theory is the correct way to generalize for the ing frame (or of a moving rigid body) to a Rie- case of Riemannian geometry, as well as show the mannian manifold, and it contains geometric in- problems that must be surpassed) and 4) Present formation, which is related to the curvature of some formulas (and its proofs) that this author 936 Anais do XX Congresso Brasileiro de Automática Belo Horizonte, MG, 20 a 24 de Setembro de 2014 could not find in the specialized literature. Con- space E3 that are representations of group SO(3) cepts and calculations will be presented to support and Lie algebra so(3) in the vector space E3. In itens 1), 2) and 3), as well as references. fact, kinematics and dynamics of points use repre- The point of departure of this work was the in- sentations in E3, but kinematics and dynamics of variant Newton-Euler's formulation of rigid body rigid bodies uses the adjoint representation, that dynamics presented by (Sattinger and Weaver, are Lie groups and algebras representations in the 1986), section 14, pages 44-48, that is adapted very Lie algebra (in this case so(3)), which is also and presented in section 2. It treats the kine- a vector space. Another important fact is the Lie matics and dynamics of a non-inertial frame (that algebra isomorphism between so(3) and R3, with could represent a rigid body) that only performs the Lie bracket [A; B] = AB − BA corresponding rotations around a fixed point. The precise no- to the vector product × of Analytic Geometry. tion of connections and covariant derivative is pre- The action of so(3) in E3 given by applying Ω in sented, as well as its dynamics. In section 3, it r0, (that is Ωr0), is equivalent to the vector prod- is presented the basic idea of the kinematic and uct ! × r0, where there is a isomorphism between dynamic in SE(3), which describes the complete vector ! and matrix Ω. The vector r_ 0 is called rel- movement of points and rigid bodies in the Eu- ative velocity, and equation (2) shows the trans- clidean three-dimensional space E3. The reader formation formula from the non-inertial frame to will easily recognize Screw Theory concepts, but the inertial one for the velocities. it is a preparation for the next sections. The matrix Ω(t) contains the information of In section 4, it is presented important con- how the (moving) frame S0 moves, and in the book cepts of Riemannian spaces, that are useful to (Sattinger and Weaver, 1986), it is said that it generalize Robotics to Riemannian space, and it is is a (Cartan's) connection, although the point of shown that the kinematics calculation are in trou- view to be presented here are not developed there ble in this case, due to the space curvature (there (and, as said before, the body is fixed by a point). is no inertial reference frame). In section 5, after Also, as the space is Euclidean, Cartan's connec- the results obtained in the previous sections, it is tion reduces to a Maurer-Cartan form restricted shown how to determine kinematics and dynam- to a curve R(t), that is a special kind of connection ics of manipulators (several frames) in Euclidean (from the didactic point of view, the understand- space (in the Cartan's connections context), and ing of Maurer-Cartan is a preparation for under- some formulas are proved (that are believed not to standing connections). be in the literature). Finally, in section 6, conclu- In order to further discuss Maurer-Cartan sions and directions of future works are presented. (see, for example, (Ivey and Landsberg, 2003)), it is important to remember the following: given a 2 Kinematics and Dynamics in SO(3) Lie group G, its Lie algebra g is the tangent space in the identity element I 2 G, like presented in fig- Following the steps of the book (Sattinger and ure 1 − a). Any tangent vector in G, represented Weaver, 1986), any point in the Euclidean space by a velocity Γ_ of a curve Γ(t), can be translated E3 is represented by a three dimensional vector r0 to the identity element I by a left multiplication in a non-inertial frame S0, and by a vector r in by Γ. This mapping is called left translation, and the inertial frame S. Both frames have the same the formula Γ_ = Γξ allows to represent any ve- origin. The transformation matrix between the locity Γ_ as elements of the Lie algebra g. It is two frames, that depends on time, is represented clear that it is the generalization, for an arbitrary by R = R(t), whose columns are the vectors of group, of the formula R_ = RΩ in SO(3) (body's S0 expressed in the coordinates of S.
Recommended publications
  • Screw and Lie Group Theory in Multibody Dynamics Recursive Algorithms and Equations of Motion of Tree-Topology Systems
    Multibody Syst Dyn DOI 10.1007/s11044-017-9583-6 Screw and Lie group theory in multibody dynamics Recursive algorithms and equations of motion of tree-topology systems Andreas Müller1 Received: 12 November 2016 / Accepted: 16 June 2017 © The Author(s) 2017. This article is published with open access at Springerlink.com Abstract Screw and Lie group theory allows for user-friendly modeling of multibody sys- tems (MBS), and at the same they give rise to computationally efficient recursive algo- rithms. The inherent frame invariance of such formulations allows to use arbitrary reference frames within the kinematics modeling (rather than obeying modeling conventions such as the Denavit–Hartenberg convention) and to avoid introduction of joint frames. The com- putational efficiency is owed to a representation of twists, accelerations, and wrenches that minimizes the computational effort. This can be directly carried over to dynamics formula- tions. In this paper, recursive O(n) Newton–Euler algorithms are derived for the four most frequently used representations of twists, and their specific features are discussed. These for- mulations are related to the corresponding algorithms that were presented in the literature. Two forms of MBS motion equations are derived in closed form using the Lie group formu- lation: the so-called Euler–Jourdain or “projection” equations, of which Kane’s equations are a special case, and the Lagrange equations. The recursive kinematics formulations are readily extended to higher orders in order to compute derivatives of the motions equations. To this end, recursive formulations for the acceleration and jerk are derived. It is briefly discussed how this can be employed for derivation of the linearized motion equations and their time derivatives.
    [Show full text]
  • An Historical Review of the Theoretical Development of Rigid Body Displacements from Rodrigues Parameters to the finite Twist
    Mechanism and Machine Theory Mechanism and Machine Theory 41 (2006) 41–52 www.elsevier.com/locate/mechmt An historical review of the theoretical development of rigid body displacements from Rodrigues parameters to the finite twist Jian S. Dai * Department of Mechanical Engineering, School of Physical Sciences and Engineering, King’s College London, University of London, Strand, London WC2R2LS, UK Received 5 November 2004; received in revised form 30 March 2005; accepted 28 April 2005 Available online 1 July 2005 Abstract The development of the finite twist or the finite screw displacement has attracted much attention in the field of theoretical kinematics and the proposed q-pitch with the tangent of half the rotation angle has dem- onstrated an elegant use in the study of rigid body displacements. This development can be dated back to RodriguesÕ formulae derived in 1840 with Rodrigues parameters resulting from the tangent of half the rota- tion angle being integrated with the components of the rotation axis. This paper traces the work back to the time when Rodrigues parameters were discovered and follows the theoretical development of rigid body displacements from the early 19th century to the late 20th century. The paper reviews the work from Chasles motion to CayleyÕs formula and then to HamiltonÕs quaternions and Rodrigues parameterization and relates the work to Clifford biquaternions and to StudyÕs dual angle proposed in the late 19th century. The review of the work from these mathematicians concentrates on the description and the representation of the displacement and transformation of a rigid body, and on the mathematical formulation and its progress.
    [Show full text]
  • Cartan Connections to Connections on fibre Bundles, and Some Modern Applications
    The works of Charles Ehresmann on connections: from Cartan connections to connections on fibre bundles, and some modern applications Charles-Michel Marle Universite´ Pierre et Marie Curie Paris, France The works of Charles Ehresmann on connections: from Cartan connections to connections on fibre bundles, and some modern applications – p. 1/40 Élie Cartan’s affine connections (1) Around 1923, Élie Cartan [1, 2, 3] introduced the notion of an affine connection on a manifold. That notion was previously used, in a less general setting, by H. Weyl [16] and rests on the idea of parallel transport due to T. Levi-Civita [11]. The works of Charles Ehresmann on connections: from Cartan connections to connections on fibre bundles, and some modern applications – p. 2/40 Élie Cartan’s affine connections (1) Around 1923, Élie Cartan [1, 2, 3] introduced the notion of an affine connection on a manifold. That notion was previously used, in a less general setting, by H. Weyl [16] and rests on the idea of parallel transport due to T. Levi-Civita [11]. A large part of [1, 2] is devoted to applications of affine connections to Newtonian and Einsteinian Mechanics. Cartan show that the principle of inertia (which is at the foundations of Mechanics), according to which a material point particle, when no forces act on it, moves along a straight line with a constant velocity, can be expressed locally by the use of an affine connection. Under that form, that principle remains valid in (curved) Einsteinian space-times. The works of Charles Ehresmann on connections: from Cartan connections to connections on fibre bundles, and some modern applications – p.
    [Show full text]
  • STORM: Screw Theory Toolbox for Robot Manipulator and Mechanisms
    2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) October 25-29, 2020, Las Vegas, NV, USA (Virtual) STORM: Screw Theory Toolbox For Robot Manipulator and Mechanisms Keerthi Sagar*, Vishal Ramadoss*, Dimiter Zlatanov and Matteo Zoppi Abstract— Screw theory is a powerful mathematical tool in Cartesian three-space. It is crucial for designers to under- for the kinematic analysis of mechanisms and has become stand the geometric pattern of the underlying screw system a cornerstone of modern kinematics. Although screw theory defined in the mechanism or a robot and to have a visual has rooted itself as a core concept, there is a lack of generic software tools for visualization of the geometric pattern of the reference of them. Existing frameworks [14], [15], [16] target screw elements. This paper presents STORM, an educational the design of kinematic mechanisms from computational and research oriented framework for analysis and visualization point of view with position, velocity kinematics and iden- of reciprocal screw systems for a class of robot manipulator tification of different assembly configurations. A practical and mechanisms. This platform has been developed as a way to bridge the gap between theory and practice of application of screw theory in the constraint and motion analysis for robot mechanisms. STORM utilizes an abstracted software architecture that enables the user to study different structures of robot manipulators. The example case studies demonstrate the potential to perform analysis on mechanisms, visualize the screw entities and conveniently add new models and analyses. I. INTRODUCTION Machine theory, design and kinematic analysis of robots, rigid body dynamics and geometric mechanics– all have a common denominator, namely screw theory which lays the mathematical foundation in a geometric perspective.
    [Show full text]
  • Pseudogroups Via Pseudoactions: Unifying Local, Global, and Infinitesimal Symmetry
    PSEUDOGROUPS VIA PSEUDOACTIONS: UNIFYING LOCAL, GLOBAL, AND INFINITESIMAL SYMMETRY ANTHONY D. BLAOM Abstract. A multiplicatively closed, horizontal foliation on a Lie groupoid may be viewed as a `pseudoaction' on the base manifold M. A pseudoaction generates a pseudogroup of transformations of M in the same way an ordinary Lie group action generates a transformation group. Infinitesimalizing a pseu- doaction, one obtains the action of a Lie algebra on M, possibly twisted. A global converse to Lie's third theorem proven here states that every twisted Lie algebra action is integrated by a pseudoaction. When the twisted Lie algebra action is complete it integrates to a twisted Lie group action, according to a generalization of Palais' global integrability theorem. Dedicated to Richard W. Sharpe 1. Introduction 1.1. Pseudoactions. Unlike transformation groups, pseudogroups of transfor- mations capture simultaneously the phenomena of global and local symmetry. On the other hand, a transformation group can be replaced by the action of an ab- stract group which may have nice properties | a Lie group in the best scenario. Here we show how to extend the abstraction of group actions to handle certain pseudogroups as well. These pseudogroups include: (i) all Lie pseudogroups of finite type (both transitive and intransitive) and hence the isometry pseudogroups of suitably regular geometric structures of finite type; (ii) all pseudogroups gen- erated by the local flows of a smooth vector field; and, more generally (iii) any pseudogroup generated by the infinitesimal action of a finite-dimensional Lie al- gebra. Our generalization of a group action on M, here called a pseudoaction, consists of a multiplicatively closed, horizontal foliation on a Lie groupoid G over arXiv:1410.6981v4 [math.DG] 3 Oct 2015 M.
    [Show full text]
  • Bulletin De La S
    BULLETIN DE LA S. M. F. F. BRICKELL R.S. CLARK Conformally riemannian structures. I Bulletin de la S. M. F., tome 90 (1962), p. 15-26 <http://www.numdam.org/item?id=BSMF_1962__90__15_0> © Bulletin de la S. M. F., 1962, tous droits réservés. L’accès aux archives de la revue « Bulletin de la S. M. F. » (http: //smf.emath.fr/Publications/Bulletin/Presentation.html) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Dull. Soc. math. France^ 90, 1962, p. i5 a 26. CONFORMALLY RIEMANNIAN STRUCTURES, I ; F. RRICKELL AND R. S. CLARK (Southampton). Introduction. — We define a conformally Riemannian structure on a differentiable (1) manifold M of dimension n to be a differentiable subor- dinate structure of the tangent bundle to M whose group G consists of the non-zero scalar multiples of the orthogonal n x n matrices. The method of equivalence of E. CARTAN [I], as described by S. CHERN [3], associates with a given conformal structure a certain principal fibre bundle on which a set of linear differential forms is denned globally. We obtain such a bundle and set of forms explicitly and show their relation to the normal conformal connection of E. CARTAN | 2]. The first paragraph contains an exposition of conformal connections in tlie light of C.
    [Show full text]
  • Chapter 1 Introduction and Overview
    Chapter 1 Introduction and Overview ‘ 1.1 Purpose of this book This book is devoted to the kinematic and mechanical issues that arise when robotic mecha- nisms make multiple contacts with physical objects. Such situations occur in robotic grasp- ing, workpiece fixturing, and the quasi-static locomotion of multilegged robots. Figures 1.1(a,b) show a many jointed multi-fingered robotic hand. Such a hand can both grasp and manipulate a wide variety of objects. A grasp is used to affix the object securely within the hand, which itself is typically attached to a robotic arm. Complex robotic hands can imple- ment a wide variety of grasps, from precision grasps, where only only the finger tips touch the grasped object (Figure 1.1(a)), to power grasps, where the finger mechanisms may make multiple contacts with the grasped object (Figure 1.1(b)) in order to provide a highly secure grasp. Once grasped, the object can then be securely transported by the robotic system as part of a more complex manipulation operation. In the context of grasping, the joints in the finger mechanisms serve two purposes. First, the torques generated at each actuated finger joint allow the contact forces between the finger surface and the grasped object to be actively varied in order to maintain a secure grasp. Second, they allow the fingertips to be repositioned so that the hand can grasp a very wide variety of objects with a range of grasping postures. Beyond grasping, these fingers’ degrees of freedom potentially allow the hand to manipulate, or reorient, the grasped object within the hand.
    [Show full text]
  • Cartan Connection Applied to Dynamic Calculation in Robotics
    Cartan connection applied to dynamic calculation in robotics Diego Colón, 1 Phone +55-11-3091-5650 Email [email protected] 1 Laboratório de Automação e Controle - LAC/PTC, Escola Politécnica da Universidade de São Paulo, São Paulo, Brazil Received: 31 January 2017 / Accepted: 6 June 2018 Abstract A Cartan connection is an important mathematical object in differential geometry that generalizes, to an arbitrary Riemannian space, the concept of angular velocity (and twists) of a non-inertial reference frame. In fact, this is an easy way to calculate the angular velocities (and twists) in systems with multiple reference frames, like a robot or a complex mechanism. The concept can also be used in different representations of rotations and twists, like in the Lie groups of unit quaternions and unit dual quaternions. In this work, the Cartan connection is applied to the kinematic and dynamic calculations of a systems of with multiple reference frames that could represent a robotic serial chain or mechanism. Differently from previous works, the transformation between frames is represented as unit quaternions, which are known to be better mathematical representations from the numerical point of view. It is also generalized to this new quaternion representation, previous results like the extended Newton’s equation, the covariant derivative and the Cartan connection. An example of application is provided. AQ1 Keywords Quaternions Robotics Lie groups Screw theory Technical Editor: Victor Juliano De Negri. 1. Introduction Concepts of differential geometry and Lie groups and Lie algebras have been used in many areas of engineering for a long time. More recently, a renewed interest could be verified in mechanism and robotics [1, 2, 10, 16, 23], where dual quaternions were used, and very complete reference books, like [3], appeared.
    [Show full text]
  • Exponential and Cayley Maps for Dual Quaternions
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by LSBU Research Open Exponential and Cayley maps for Dual Quaternions J.M. Selig Abstract. In this work various maps between the space of twists and the space of finite screws are studied. Dual quaternions can be used to represent rigid-body motions, both finite screw motions and infinitesimal motions, called twists. The finite screws are elements of the group of rigid-body motions while the twists are elements of the Lie algebra of this group. The group of rigid-body displacements are represented by dual quaternions satisfying a simple relation in the algebra. The space of group elements can be though of as a six-dimensional quadric in seven-dimensional projective space, this quadric is known as the Study quadric. The twists are represented by pure dual quaternions which satisfy a degree 4 polynomial relation. This means that analytic maps between the Lie algebra and its Lie group can be written as a cubic polynomials. In order to find these polynomials a system of mutually annihilating idempotents and nilpotents is introduced. This system also helps find relations for the inverse maps. The geometry of these maps is also briefly studied. In particular, the image of a line of twists through the origin (a screw) is found. These turn out to be various rational curves in the Study quadric, a conic, twisted cubic and rational quartic for the maps under consideration. Mathematics Subject Classification (2000). Primary 11E88; Secondary 22E99. Keywords. Dual quaternions, exponential map, Cayley map.
    [Show full text]
  • A New Formulation Method for Solving Kinematic Problems of Multiarm Robot Systems Using Quaternion Algebra in the Screw Theory Framework
    Turk J Elec Eng & Comp Sci, Vol.20, No.4, 2012, c TUB¨ ITAK˙ doi:10.3906/elk-1011-971 A new formulation method for solving kinematic problems of multiarm robot systems using quaternion algebra in the screw theory framework Emre SARIYILDIZ∗, Hakan TEMELTAS¸ Department of Control Engineering, Istanbul˙ Technical University, 34469 Istanbul-TURKEY˙ e-mails: [email protected], [email protected] Received: 28.11.2010 Abstract We present a new formulation method to solve the kinematic problem of multiarm robot systems. Our major aims were to formulize the kinematic problem in a compact closed form and avoid singularity problems in the inverse kinematic solution. The new formulation method is based on screw theory and quaternion algebra. Screw theory is an effective way to establish a global description of a rigid body and avoids singularities due to the use of the local coordinates. The dual quaternion, the most compact and efficient dual operator to express screw displacement, was used as a screw motion operator to obtain the formulation in a compact closed form. Inverse kinematic solutions were obtained using Paden-Kahan subproblems. This new formulation method was implemented into the cooperative working of 2 St¨aubli RX160 industrial robot-arm manipulators. Simulation and experimental results were derived. Key Words: Cooperative working of multiarm robot systems, dual quaternion, industrial robot application, screw theory, singularity-free inverse kinematic 1. Introduction Multiarm robot configurations offer the potential to overcome many difficulties by increased manipulation ability and versatility [1,2]. For instance, single-arm industrial robots cannot perform their roles in the many fields in which operators do the job with their 2 arms [3].
    [Show full text]
  • Internship Report
    Internship Report Assessment of influence of play in joints on the end effector accuracy in a novel 3DOF (1T-2R) parallel manipulator Vinayak J. Kalas (MSc – Mechanical Engineering, University of Twente) Advisors: ir. A.G.L. Hoevenaars (Delft Haptics Lab, Delft University of Technology) prof. dr. ir J.L. Herder (University of Twente) Acknowledgement I would like to express my sincere gratitude to my supervisor from TU Delft, Teun Hoevenaars, for his constant guidance that kept me on track with the defined objectives and helped me in having clarity of thought at different stages of my research. I would like to extend my appreciation to prof. Just Herder for his guidance and support. Finally, I would like to thank all the researchers at the Delft Haptics lab for interesting discussions and valuable inputs at various stages of the research. Preface This internship assignment was carried out at TU Delft and was a compulsory module as a part of my Master studies in Mechanical Engineering at the University of Twente. This internship was carried out for a period of 14 weeks, from 16th of November 2015 to 19th of February 2016, and during this period I was exposed to different research projects being carried out at the Delft Haptics lab, apart from in-depth knowledge of the project I was working on. The main objectives of this internship assignment were to get acquainted with Parallel Kinematics, which included deep understanding of Screw theory and its application to parallel manipulator analysis, and to get acquainted with various methods to assess the effects of play at the joints of parallel mechanisms on the end effector accuracy.
    [Show full text]
  • Time Derivatives of Screws with Applications to Dynamics and Stiffness Harvey Lipkin
    Time derivatives of screws with applications to dynamics and stiffness Harvey Lipkin To cite this version: Harvey Lipkin. Time derivatives of screws with applications to dynamics and stiffness. Mechanism and Machine Theory, Elsevier, 2005, 40 (3), 10.1016/j.mechmachtheory.2003.07.002. hal-01371131 HAL Id: hal-01371131 https://hal.archives-ouvertes.fr/hal-01371131 Submitted on 24 Sep 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License body systems, and a symposium in his honor well illustrates the breadth and variety of modern screw theory applications [14]. Comprehensive treatments in kinematics and mechanism theory are presented by Bottema and Roth [2], Hunt [11], and Phillips [18]. Although it would appear that the time derivative of screw quantity should be well under- stood, that is not the case. There is active discussion in the literature of: the general topic by [21,25,29];applications to acceleration analysis by [22,8], with historical background in [20]; applications to stiffness by [9,5,10,26,24];and applications to dynamics by [15,7,13,4,17,27].
    [Show full text]