ORIGINAL RESEARCH published: 23 May 2018 doi: 10.3389/fnins.2018.00291 Performance Comparison of the Digital Neuromorphic Hardware SpiNNaker and the Neural Network Simulation Software NEST for a Full-Scale Cortical Microcircuit Model Sacha J. van Albada 1*, Andrew G. Rowley 2, Johanna Senk 1, Michael Hopkins 2, Maximilian Schmidt 1,3, Alan B. Stokes 2, David R. Lester 2, Markus Diesmann 1,4,5 and Steve B. Furber 2 1 Institute of Neuroscience and Medicine (INM-6), Institute for Advanced Simulation (IAS-6), JARA Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany, 2 Advanced Processor Technologies Group, School of Computer Science, University of Manchester, Manchester, United Kingdom, 3 Laboratory for Neural Circuit Theory, RIKEN Brain Science Institute, Wako, Japan, 4 Department of Physics, Faculty 1, RWTH Aachen University, Aachen, Germany, 5 Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Edited by: Aachen, Germany Jorg Conradt, Technische Universität München, Germany The digital neuromorphic hardware SpiNNaker has been developed with the aim Reviewed by: of enabling large-scale neural network simulations in real time and with low power Terrence C Stewart, consumption. Real-time performance is achieved with 1 ms integration time steps, and University of Waterloo, Canada Fabio Stefanini, thus applies to neural networks for which faster time scales of the dynamics can be Columbia University, United States neglected. By slowing down the simulation, shorter integration time steps and hence *Correspondence: faster time scales, which are often biologically relevant, can be incorporated. We here Sacha J. van Albada
[email protected] describe the first full-scale simulations of a cortical microcircuit with biological time scales on SpiNNaker.