Visualization Techniques in SNN Simulators Hammouda Elbez, Kamel Benhaoua, Philippe Devienne, Pierre Boulet

Total Page:16

File Type:pdf, Size:1020Kb

Visualization Techniques in SNN Simulators Hammouda Elbez, Kamel Benhaoua, Philippe Devienne, Pierre Boulet Visualization Techniques in SNN Simulators Hammouda Elbez, Kamel Benhaoua, Philippe Devienne, Pierre Boulet To cite this version: Hammouda Elbez, Kamel Benhaoua, Philippe Devienne, Pierre Boulet. Visualization Techniques in SNN Simulators. 3rd International Conference on Multimedia Information Processing, CITIM’2018, Oct 2018, Mascara, Algeria. hal-02887481 HAL Id: hal-02887481 https://hal.archives-ouvertes.fr/hal-02887481 Submitted on 2 Jul 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Visualization Techniques in SNN Simulators Hammouda Elbez, Kamel Benhaoua Philippe Devienne, Pierre Boulet University of Oran1 Ahmed Ben Bella -LAPECI- Univ. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL - Mustapha Stambouli University Centre de Recherche en Informatique Signal et Automatique de Lille Mascara, Algeria F-59000 Lille, France fElbez.Hammouda, [email protected] fPhilippe.Devienne, [email protected] Abstract—Neural networks are one of the most well-known choice to use, can have an important influence on the user artificial intelligence technique. These networks have known a experience, the information that can be extracted from it huge evolution since their first proposal, represented by the and the ability to improve the performance of neuromorphic three known generations. On the other hand, neuromorphic architectures are a very promising way to overcome the limitation architectures. of the Von Neumann architecture and the end of Moore’s law. The aim of this work is to present the visualization tech- Neuromorphic architectures can lead to a huge energy consump- niques offered by the known SNN simulators and discuss tion decrease mostly due to the colocation of computation and their ability to produce visualizations suitable to analyze the storage. behaviour of the simulated networks in order to improve neu- These architectures implement spiking neural networks (SNNs), the third generation of artificial neural networks that romorphic architectures. This paper is structured as follows. model very finely biological neural networks. One of the main After a briefing introduction to neural networks and SNNs, problematics that prevents us from optimizing and getting the we present the state-of-the art of SNN simulators. We then best performance of SNNs and as a result the neuromorphic compare these simulators from the technical and visualization architectures development and production, is the lack of a clear points of view and discuss our findings. and complete understanding of their behavior, especially what makes learning efficient. One of the approaches to answer that II. NEURAL NETWORKS is analyzing by visualization of simulation traces of such networks and architectures. In this paper, we propose a comparison of the Neural networks are an architecture inspired from our brain, visualization techniques proposed by SNN simulators for analysis it contains a large number of simple interconnected units purposes. which simulate the neurons. Each unit (neuron) has multiple Index Terms—Neural Network, Data Science, Visualization, inputs and outputs neurons. The first generation of neural Simulation, Analysis, Neuromorphic Architectures, SNN. network was able to solve only linear problems, it is repre- sented by the formal mathematical models like McCulloch and I. INTRODUCTION Pitts neurons [1], Perceptron, Hopfield network and Boltzmann In the last years, neural networks have had a big impact machine. In the second generation where multi layer neural in many fields like image processing and decision making networks have been introduced, it was able to solve non-linear systems. Being able to understand and to model such networks problems by the use of continuous activation function, for was a key to achieve the remarkable performances which can example the MultiLayer Perceptron (MLP). be observed in the second generation of neural networks (Con- Being inspired from our brain, we can find the learning volutional Neural Networks, ConvNets). These performances term and this phenomenon exists also in this type of networks. come at the price of a huge energy consumption, especially In the life cycle of every neural network, there are mainly during learning. On the contrary, the brain is very power two phases which are: the learning (tuning) phase and the efficient, thus researchers have tried to design artificial neural use (production) phase. The learning phase consists of tuning networks whose behavior is more precisely modeled after the the network parameters using test dataset in order to get biological neural networks. These Spiking Neural Networks the best configuration with the lowest error rate and the use (SNNs) are indeed much more power efficient than ConvNets phase is the actual use of this network with real data. The and are suitable to electronic implementation, the so called learning in neural networks can be classified in more then one neuromorphic architectures. type, which are: supervised learning, unsupervised learning, Before any implementation, the need of passing by simu- half supervised learning and learning by strengthening. The lation is very important and for this type of networks, many supervised learning represents a learning way based on a simulators have been created and used over the last years to tested dataset that are labeled, which means that every entry get and test the suitable network configuration (or to simu- is composed from two information, the actual data and the late biological SNNs). Those simulators offer also a variety label that describes it. The unsupervised learning, this type of visualization techniques that can lead to very interesting does not provide a labeled learning dataset and learns by observations and improvements in network performance, the itself to classify the inputs into categories, this type is very combination of these visualization techniques and the best interesting in real life scenarios because it is very consuming to make a labeled dataset and having a network working with this type of learning increases its ability to adapt for many use cases, but may take more time in learning process compared to the first type of learning in order to achieve a good performance. Half supervised learning, this type exists because having labeled dataset is often a very consuming task in time and resources, that is why having a hybrid dataset (labeled and not labeled) can reduce negative points known in supervised and unsupervised types of learning (such as time and resource consumption). Learning by strengthening, which is a method used while the network is in the use phase, by keeping the tuning of this network up and running to Fig. 1. Neuron. increase its performance using the information that is actively processing. to process a big amount of data with a small number of A. Neuron spikes, they emulate data processing, plasticity and learning A neuron is the principal component of a neural network, in our brain. Spiking neural network is a network composed it has many input and output neurons. The functionality of of a big number of neurons connected by synapses (millions a single neuron is simple and useless alone, but the global of neurons and more synapses), the communication between activity of the million connected neurons is what makes those neurons are made by spikes that are considered as the it powerful. Scientists in biology, electronics and computer language of communication, the information is coded inside science field have tried to understand this component due a single spike and many neural information encoding have to its advantages and abilities. From the biological point of been proposed based on what is known in biology [5]. This view. Like it is shown in Fig. 1, a neuron is composed of: network has known the apparition of time notion, that is The membrane, which is considered as the core of the neuron considered as a very important factor in performance and where ions activity happens. Synapse, that is the interaction the information transfer process, some scientists have even space between two neurons to transfer information, this space proposed that time can actually hold information in this type uses liquid channels and ions for transportation. Dendrite, of network and considered as information coding technique which represent the element that is responsible for transmitting [6]. One of the reasons why this type of network has got the information after being received by the synapse into the attention lately, is the discovery of the memristor, this element membrane. Axone, that is the output support, used by the is capable of emulating the functionality of the synapse and neuron to send out the information, it can vary in length from helps implementing such networks in hardware which was not some millimeters to many meters. easy to implement before. [7] In the electronics field, scientists have tried to model such a component for use in hardware due to the advantages it offers, III. SNN SIMULATORS this type of architectures which are called neuromorphic are Simulation
Recommended publications
  • NEST Desktop
    NEST Conference 2019 A Forum for Users & Developers Conference Program Norwegian University of Life Sciences 24-25 June 2019 NEST Conference 2019 24–25 June 2019, Ås, Norway Monday, 24th June 11:00 Registration and lunch 12:30 Opening (Dean Anne Cathrine Gjærde, Hans Ekkehard Plesser) 12:50 GeNN: GPU-enhanced neural networks (James Knight) 13:25 Communication sparsity in distributed Spiking Neural Network Simulations to improve scalability (Carlos Fernandez-Musoles) 14:00 Coffee & Posters 15:00 Sleep-like slow oscillations induce hierarchical memory association and synaptic homeostasis in thalamo-cortical simulations (Pier Stanislao Paolucci) 15:20 Implementation of a Frequency-Based Hebbian STDP in NEST (Alberto Antonietti) 15:40 Spike Timing Model of Visual Motion Perception and Decision Making with Reinforcement Learning in NEST (Petia Koprinkova-Hristova) 16:00 What’s new in the NEST user-level documentation (Jessica Mitchell) 16:20 ICEI/Fenix: HPC and Cloud infrastructure for computational neuroscientists (Jochen Eppler) 17:00 NEST Initiative Annual Meeting (members-only) 19:00 Conference Dinner Tuesday, 25th June 09:00 Construction and characterization of a detailed model of mouse primary visual cortex (Stefan Mihalas) 09:45 Large-scale simulation of a spiking neural network model consisting of cortex, thalamus, cerebellum and basal ganglia on K computer (Jun Igarashi) 10:10 Simulations of a multiscale olivocerebellar spiking neural network in NEST: a case study (Alice Geminiani) 10:30 NEST3 Quick Preview (Stine Vennemo & Håkon Mørk)
    [Show full text]
  • Simulation with NEST, an Example of a Full-Scale Spiking Neuronal Network Model - Seminar Paper
    Simulation with NEST, an example of a full-scale spiking neuronal network model - seminar paper Till Schumann, CES, 293576 Computational and Systems Neuroscience (INM-6) 1 Introduction to Computational Neuroscience 1.1 Motivation Computational neuroscience is part of the computational biology, which, besides other meth- ods, relies on modeling to understand various aspects of biological systems. Computational neuroscience itself focuses on the nervous system. It is a growing field of research. With the fast development of computer systems and the growing availability of experimental data, computational simulations get more important. The computational power, which is available now and will be available in the next years, allows simulations of mammalian brains. Even a simulation of the human brain seems to be doable in the upcoming years. Modeling nervous systems helps us to understand the functionality of the human brain. It can help us to un- derstand different kinds of diseases like Alzheimer's and can help to develop novel therapies. Since the human brain is not accessible to direct experimental studies models of the brain are essential to understand its functionality. Computational modeling allows to construct neuron models that are based on cell-level data obtained from experiments. In contrast to the human, brain experimental data from animal experiments are widely available. Because of related structures these data is used to improve and validate models of the brain. In combination with neuronal simulations these data allows a first look into the functionality of nervous sys- tems. The paper The cell-type specific cortical microcircuit: relating structure and activity in a full-scale spiking network model shows the usability of current models and simulation tools.
    [Show full text]
  • NEST by Example: an Introduction to the Neural Simulation Tool NEST Version 2.6.0
    NEST by Example: An Introduction to the Neural Simulation Tool NEST Version 2.6.0 Marc-Oliver Gewaltig1, Abigail Morrison2, and Hans Ekkehard Plesser3, 2 1Blue Brain Project, Ecole Polytechnique Federale de Lausanne, QI-J, Lausanne 1015, Switzerland 2Institute of Neuroscience and Medicine (INM-6) Functional Neural Circuits Group, J¨ulich Research Center, 52425 J¨ulich, Germany 3Dept of Mathematical Sciences and Technology, Norwegian University of Life Sciences, PO Box 5003, 1432 Aas, Norway Abstract The neural simulation tool NEST can simulate small to very large networks of point-neurons or neurons with a few compartments. In this chapter, we show by example how models are programmed and simulated in NEST. This document is based on a preprint version of Gewaltig et al. (2012) and has been updated for NEST 2.6 (r11744). Updated to 2.6.0 Hans E. Plesser, December 2014 Updated to 2.4.0 Hans E. Plesser, June 2014 Updated to 2.2.2 Hans E. Plesser & Marc-Oliver Gewaltig, December 2012 1 Introduction NEST is a simulator for networks of point neurons, that is, neuron models that collapse the morphol- ogy (geometry) of dendrites, axons, and somata into either a single compartment or a small number of compartments (Gewaltig and Diesmann, 2007). This simplification is useful for questions about the dynamics of large neuronal networks with complex connectivity. In this text, we give a practical intro- duction to neural simulations with NEST. We describe how network models are defined and simulated, how simulations can be run in parallel, using multiple cores or computer clusters, and how parts of a model can be randomized.
    [Show full text]
  • THE NEURAL SIMULATION TOOL NEST Nd HPAC Platform Training
    THE NEURAL SIMULATION TOOL NEST 2nd HPAC Platform Training November 25, 2019 Jochen M. Eppler ([email protected]) SimLab Neuroscience Member of the Helmholtz Association OUTLINE Introduction Neuronal simulations Technological background Developing new models Performance This presentation is provided under the terms of the Creative Commons Attribution-ShareAlike License 4.0. Member of the Helmholtz Association November 25, 2019 Slide 1 NEST = NEURAL SIMULATION TOOL Point neurons and neurons with few electrical compartments Phenomenological synapse models (STDP, STP) + gap junctions, neuromodulation and structural plasticity Frameworks for rate models and binary neurons Support for neuroscience interfaces (MUSIC, libneurosim) Highly efficient C++ core with a Python frontend Hybrid parallelization (OpenMP+MPI) Same code from laptops to supercomputers Member of the Helmholtz Association November 25, 2019 Slide 2 NEST DESIGN GOALS High accuracy and flexibility Each neuron model is assigned an appropriate solver Exact integration is used for suitable neuron models Spikes are usually restricted to the computation time grid Spike interaction in continuous time for some models Constant quality assurance Automated unittest suite included in NEST build Continuous integration for all repository checkins Code review for all code contributions NEST’s development is always driven by scientific needs Member of the Helmholtz Association November 25, 2019 Slide 3 WHEN TO USE NEST? Growth Regulator/ Glu Glu factor Hormone Point neuron RTK mGluR GPCR NMDAR
    [Show full text]
  • NESTML: a Modeling Language for Spiking Neurons
    <Vorname Nachname [et. al.]>(Hrsg.): <Buchtitel>, Lecture Notes in Informatics (LNI), Gesellschaft fur¨ Informatik, Bonn <Jahr> 1 NESTML: a modeling language for spiking neurons Dimitri Plotnikov1, Bernhard Rumpe1, Inga Blundell2, Tammo Ippen2,3, Jochen Martin Eppler4 and Abigail Morrison2,4,5 Abstract: Biological nervous systems exhibit astonishing complexity. Neuroscientists aim to capture this com- plexity by modeling and simulation of biological processes. Often very complex models are nec- essary to depict the processes, which makes it difficult to create these models. Powerful tools are thus necessary, which enable neuroscientists to express models in a comprehensive and concise way and generate efficient code for digital simulations. Several modeling languages for computational neuroscience have been proposed [Gl10, Ra11]. However, as these languages seek simulator inde- pendence they typically only support a subset of the features desired by the modeler. In this article, we present the modular and extensible domain specific language NESTML, which provides neuro- science domain concepts as first-class language constructs and supports domain experts in creating neuron models for the neural simulation tool NEST. NESTML and a set of example models are publically available on GitHub. Keywords: Simulation, modeling, biological neural networks, neuronal modeling, neuroscience, NEST, NESTML, MontiCore, domain specific language, code generation, C++. 1 Introduction Classical neuroscience investigates the biophysical processes behind single neuron behav- ior and higher brain function. The first experimental studies of the nervous system were conducted already hundreds of years ago [Sh91], but observing single-cell activity in a cell culture or slice (in vitro) or in an intact brain (in vivo) is a technically challenging task.
    [Show full text]
  • Pycarl: a Pynn Interface for Hardware-Software Co-Simulation of Spiking Neural Network
    PyCARL: A PyNN Interface for Hardware-Software Co-Simulation of Spiking Neural Network Adarsha Balaji1, Prathyusha Adiraju2, Hirak J. Kashyap3, Anup Das1;2, Jeffrey L. Krichmar3, Nikil D. Dutt3, and Francky Catthoor2;4 1Electrical and Computer Engineering, Drexel University, Philadelphia, USA 2Neuromorphic Computing, Stichting Imec Nederlands, Eindhoven, Netherlands 3Cognitive Science and Computer Science, University of California, Irvine, USA 4ESAT Department, KU Leuven and IMEC, Leuven, Belgium Correspondence Email: [email protected], [email protected], [email protected] , Abstract—We present PyCARL, a PyNN-based common To facilitate faster application development and portability Python programming interface for hardware-software co- across research institutes, a common Python programming simulation of spiking neural network (SNN). Through PyCARL, interface called PyNN is proposed [8]. PyNN provides a we make the following two key contributions. First, we pro- vide an interface of PyNN to CARLsim, a computationally- high-level abstraction of SNN models, promotes code sharing efficient, GPU-accelerated and biophysically-detailed SNN simu- and reuse, and provides a foundation for simulator-agnostic lator. PyCARL facilitates joint development of machine learning analysis, visualization and data-management tools. Many SNN models and code sharing between CARLsim and PyNN users, simulators now support interfacing with PyNN — PyNEST [9] promoting an integrated and larger neuromorphic community. for the NEST simulator, PyPCSIM [4] for the PCSIM sim- Second, we integrate cycle-accurate models of state-of-the-art neuromorphic hardware such as TrueNorth, Loihi, and DynapSE ulator, and Brian 2 [10] for the Brian simulator. Through in PyCARL, to accurately model hardware latencies, which delay PyNN, applications developed using one simulator can be an- spikes between communicating neurons, degrading performance alyzed/simulated using another simulator with minimal effort.
    [Show full text]
  • Brian 2: an Intuitive and Efficient Neural Simulator
    bioRxiv preprint doi: https://doi.org/10.1101/595710; this version posted April 1, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Brian 2: an intuitive and efficient neural simulator Marcel Stimberg1*, Romain Brette1, and Dan F. M. Goodman2 1Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France 2Department of Electrical and Electronic Engineering, Imperial College London, UK Abstract To be maximally useful for neuroscience research, neural simulators must make it possible to define original models. This is especially important because a computational experiment might not only need descriptions of neurons and synapses, but also models of interactions with the environment (e.g. muscles), or the environment itself. To preserve high performance when defining new models, current simulators offer two options: low-level programming, or mark-up languages (and other domain specific languages). The first option requires time and expertise, is prone to errors, and contributes to problems with reproducibility and replicability. The second option has limited scope, since it can only describe the range of neural models covered by the ontology. Other aspects of a computational experiment, such as the stimulation protocol, cannot be expressed within this framework. “Brian” 2 is a complete rewrite of Brian that addresses this issue by using runtime code generation with a procedural equation-oriented approach. Brian 2 enables scientists to write code that is particularly simple and concise, closely matching the way they conceptualise their models, while the technique of runtime code generation automatically transforms high level descriptions of models into efficient low level code tailored to different hardware (e.g.
    [Show full text]
  • Brian 2, an Intuitive and Efficient Neural Simulator Marcel Stimberg1*, Romain Brette1†, Dan FM Goodman2†
    TOOLS AND RESOURCES Brian 2, an intuitive and efficient neural simulator Marcel Stimberg1*, Romain Brette1†, Dan FM Goodman2† 1Sorbonne Universite´, INSERM, CNRS, Institut de la Vision, Paris, France; 2Department of Electrical and Electronic Engineering, Imperial College London, London, United Kingdom Abstract Brian 2 allows scientists to simply and efficiently simulate spiking neural network models. These models can feature novel dynamical equations, their interactions with the environment, and experimental protocols. To preserve high performance when defining new models, most simulators offer two options: low-level programming or description languages. The first option requires expertise, is prone to errors, and is problematic for reproducibility. The second option cannot describe all aspects of a computational experiment, such as the potentially complex logic of a stimulation protocol. Brian addresses these issues using runtime code generation. Scientists write code with simple and concise high-level descriptions, and Brian transforms them into efficient low-level code that can run interleaved with their code. We illustrate this with several challenging examples: a plastic model of the pyloric network, a closed-loop sensorimotor model, a programmatic exploration of a neuron model, and an auditory model with real-time input. DOI: https://doi.org/10.7554/eLife.47314.001 *For correspondence: Introduction [email protected] Neural simulators are increasingly used to develop models of the nervous system, at different scales and in a variety of contexts (Brette et al., 2007). These simulators generally have to find a trade-off †These authors contributed equally to this work between performance and the flexibility to easily define new models and computational experi- ments.
    [Show full text]
  • Simulator NEST
    THE NEURAL SIMULATION TOOL NEST ST HPAC Platform TRAINING December , Jochen M. Eppler ([email protected]) SimLab NeurOSCIENCE Member OF THE Helmholtz Association OUTLINE INTRODUCTION NeurONAL SIMULATIONS TECHNOLOGICAL BACKGROUND DeVELOPING NEW MODELS Performance This PRESENTATION IS PROVIDED UNDER THE TERMS OF THE CrEATIVE Commons Attribution-ShareAlikE License .. Member OF THE Helmholtz Association December , Slide NEST = NEURAL SIMULATION TOOL Point NEURONS AND NEURONS WITH FEW ELECTRICAL COMPARTMENTS Phenomenological SYNAPSE MODELS (STDP, STP) + GAP junctions, NEUROMODULATION AND STRUCTURAL PLASTICITY FrAMEWORKS FOR RATE MODELS AND BINARY NEURONS Support FOR NEUROSCIENCE INTERFACES (MUSIC, LIBNEURosim) Highly EffiCIENT C++ CORE WITH A Python FRONTEND Hybrid PARALLELIZATION (OpenMP+MPI) Same CODE FROM LAPTOPS TO SUPERCOMPUTERS Member OF THE Helmholtz Association December , Slide NEST DESIGN GOALS High ACCURACY AND flEXIBILITY Each NEURON MODEL IS ASSIGNED AN APPROPRIATE SOLVER Exact INTEGRATION IS USED FOR SUITABLE NEURON MODELS SpikES ARE USUALLY RESTRICTED TO THE COMPUTATION TIME GRID SpikE INTERACTION IN CONTINUOUS TIME FOR SOME MODELS Constant QUALITY ASSURANCE Automated UNITTEST SUITE INCLUDED IN NEST BUILD Continuous INTEGRATION FOR ALL REPOSITORY CHECKINS Code REVIEW FOR ALL CODE CONTRIBUTIONS NEST’S DEVELOPMENT IS ALWAYS DRIVEN BY SCIENTIfiC NEEDS Member OF THE Helmholtz Association December , Slide WHEN TO USE NEST? Growth Regulator/ Glu Glu factor Hormone Point neuron RTK mGluR GPCR NMDAR Population model network model
    [Show full text]
  • A Maintainable Cython-Based Interface for the NEST Simulator
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Frontiers - Publisher Connector ORIGINAL RESEARCH ARTICLE published: 14 March 2014 NEUROINFORMATICS doi: 10.3389/fninf.2014.00023 CyNEST: a maintainable Cython-based interface for the NEST simulator Yury V. Zaytsev 1,2* and Abigail Morrison 1,3,4 1 Simulation Laboratory Neuroscience – Bernstein Facility for Simulation and Database Technology, Institute for Advanced Simulation, Jülich Aachen Research Alliance, Jülich Research Center, Jülich, Germany 2 Faculty of Biology, Albert-Ludwig University of Freiburg, Freiburg im Breisgau, Germany 3 Institute for Advanced Simulation (IAS-6), Theoretical Neuroscience and Institute of Neuroscience and Medicine (INM-6), Computational and Systems Neuroscience, Jülich Research Center and JARA, Jülich, Germany 4 Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany Edited by: NEST is a simulator for large-scale networks of spiking point neuron models (Gewaltig Yaroslav O. Halchenko, Dartmouth and Diesmann, 2007). Originally, simulations were controlled via the Simulation Language College, USA Interpreter (SLI), a built-in scripting facility implementing a language derived from Reviewed by: PostScript (Adobe Systems, Inc., 1999). The introduction of PyNEST (Eppler et al., Mikael Djurfeldt, KTH Royal Institute of Technology, Sweden 2008), the Python interface for NEST, enabled users to control simulations using Python. Laurent U. Perrinet, Centre National As the majority of NEST users found PyNEST easier to use and to combine with de la Recherche Scientifique, France other applications, it immediately displaced SLI as the default NEST interface. However, *Correspondence: developing and maintaining PyNEST has become increasingly difficult over time.
    [Show full text]
  • Performance Comparison of the Digital Neuromorphic Hardware Spinnaker and the Neural Network Simulation Software NEST for a Full-Scale Cortical Microcircuit Model
    ORIGINAL RESEARCH published: 23 May 2018 doi: 10.3389/fnins.2018.00291 Performance Comparison of the Digital Neuromorphic Hardware SpiNNaker and the Neural Network Simulation Software NEST for a Full-Scale Cortical Microcircuit Model Sacha J. van Albada 1*, Andrew G. Rowley 2, Johanna Senk 1, Michael Hopkins 2, Maximilian Schmidt 1,3, Alan B. Stokes 2, David R. Lester 2, Markus Diesmann 1,4,5 and Steve B. Furber 2 1 Institute of Neuroscience and Medicine (INM-6), Institute for Advanced Simulation (IAS-6), JARA Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany, 2 Advanced Processor Technologies Group, School of Computer Science, University of Manchester, Manchester, United Kingdom, 3 Laboratory for Neural Circuit Theory, RIKEN Brain Science Institute, Wako, Japan, 4 Department of Physics, Faculty 1, RWTH Aachen University, Aachen, Germany, 5 Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Edited by: Aachen, Germany Jorg Conradt, Technische Universität München, Germany The digital neuromorphic hardware SpiNNaker has been developed with the aim Reviewed by: of enabling large-scale neural network simulations in real time and with low power Terrence C Stewart, consumption. Real-time performance is achieved with 1 ms integration time steps, and University of Waterloo, Canada Fabio Stefanini, thus applies to neural networks for which faster time scales of the dynamics can be Columbia University, United States neglected. By slowing down the simulation, shorter integration time steps and hence *Correspondence: faster time scales, which are often biologically relevant, can be incorporated. We here Sacha J. van Albada [email protected] describe the first full-scale simulations of a cortical microcircuit with biological time scales on SpiNNaker.
    [Show full text]
  • NEST Conference 2020 — Program
    NEST Conference 2020 — Program Monday, 29 June (all times CEST) – Morning – Afternoon 08:45 Registration 09:05 Welcome & Introduction Susanne Kunkel Session 1 Chair: Markus Diesmann Session 2 Chair: Abigail Morrison 09:25 NEST user-level documentation: Why, 13:15 Thalamo-cortical spiking model of how and what’s next? incremental learning combining Sara Konradi perception, context and NREM-sleep- 09:45 New Fenix resources at the Jülich mediated noise-resilience Supercomputing Centre Chiara De Luca Alexander Patronis 14:00 Minibreak 09:55 Minibreak 14:05 An Integrated Model of Visual 10:00 Toward a possible integration of Perception and Reinforcement NeuronGPU in NEST Petia Koprinkova-Hristova Bruno Golosio 14:25 Partial Information Decomposition 10:45 Coffee breakout Contextual Neurons in NEST Sepehr Mahmoudian 14:45 Coffee breakout Workshop 1 Chair: Håkon Mørk Session 3 Chair: Hans Ekkehard Plesser 11:15 NEST multiscale co-simulation 15:15 deNEST: a declarative frontend for Wouter Klijn specifying networks and running simulations in NEST 12:15 Lunch break Tom Bugnon 15:35 Primate perisylvian cortex in NEST: from reflex to small world Harry Howard 15:55 Minibreak 16:00 Modeling robust and efficient coding in the mouse primary visual cortex using computational perturbations Stefan Mihalas 16:45 Wrap-up Hans Ekkehard Plesser 17:00 Mingle Tuesday, 30 June (all times CEST) – Morning – Afternoon Session 4 Chair: Dennis Terhorst Session 6 Chair: Jochen Eppler 09:00 A spiking neural network builder for 13:30 Dendrites in NEST systematic data-to-model
    [Show full text]