Introduction to Statistics

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Statistics CHAPTER 1 Introduction to Statistics In introducing this book to you, we assume you are a college student who is taking what is perhaps your first course in statistics to fulfill a requirement for your major or a general Chapter Outline education requirement. If so, you may be asking yourself two 1.1 What Is Statistics? questions: 1.2 Why Learn Statistics? • What is statistics? 1.3 Introduction to the Stages of the Research Process • Why learn statistics? distribute • Developing a research The ultimate goal of this book is to help you begin to answer hypothesis to be tested these two questions. {{Identifying a question or or issue to be examined {{ Reviewing and evaluating 1.1 What Is Statistics? relevant theories and research {{Stating a research Whether or not you are aware of it, you encounter a variety hypothesis: Independent of “statistics” in your day-to-day activities: the typical cost of and dependent variables going to college, the yearly income of the average college grad- • Collecting data uate, the average price of a home, and sopost, on. So what exactly {{Drawing a sample from a is “statistics”? The Merriam-Webster dictionary defines statis- population tics as a branch of mathematics dealing with the collection, {{Determining how variables analysis, interpretation, and presentation of masses of numer- will be measured: Levels of ical data. When people think about statistics, they often focus measurement on only the “analysis” aspect of the above definition—that is {{Selecting a method to collect to say, they focus on numbers that result from analyzing data. the data: Experimental and However, statisticscopy, is not only concerned about how data are non-experimental research analyzed, it recognizes the importance of understanding how methods data are collected and how the results of analyses are inter- • Analyzing the data preted and communicated. The purpose of this book is to {{Calculating descriptive introduce, describe, and illustrate the role of statistics within statistics the larger research process. not {{ Calculating inferential statistics • Drawing a conclusion regarding 1.2 Why Learn Statistics? the research hypothesis • Communicating the findings DoWe believe there are a variety of reasons why you should of the study learn statistics. First, not only do you currently encounter 1 Copyright ©2016 by SAGE Publications, Inc. This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher. statistics in your daily activities, but throughout your life, you Chapter Outline (continued) have been and will continue to be affected by the results of research and statistical analyses. Which college or graduate 1.4 Plan of the Book school you attend is based in part on test scores developed by 1.5 Looking Ahead psychologists. You may also have to take a personality or intel- 1.6 Summary ligence test to get a job. The choices of drugs and medicines 1.7 Important Terms available to you are based on medical research and statistical analyses. If you have children, their education may be affected 1.8 Exercises by their scores on achievement or aptitude tests. Learning about statistics will help you become a more informed and aware consumer of research and statistical analyses that affect many aspects of your life. A second reason for learning statistics is that you may be asked or required to read and interpret the results of statistical analyses. Many college courses require students to read academic research journal articles. Evaluating published research is complicated by the fact that different people studying the same topic may come up with diverse or even opposing conclusions. Understanding statistics and their role in the research process will help you decide whether conclusionsdistribute drawn in research articles are appropriate and justified. Another reason for learning statistics is that it will be of use to you in your own research. College courses sometimes have students design and conduct mini-researchor studies; undergraduate majors might require or encourage students to do senior honors theses; graduate research programs often require masters’ theses and doctoral dissertations. Learning to collect and analyze data will help you address your own questions in an objective, systematic manner. A final reason for learning statistics is that it may help you in your future career. The web- site Careercast.com conducts an annual survey in which they evaluate 200 professions on five dimensions: environment, income, employment outlook, physical demands, and stress. In 2013, the highest rated profession in this survey was “actuary,”post, defined as someone who “interprets statis- tics to determine probabilities of accidents, sickness, and death, and loss of property from theft and natural disasters.” Talking about his job, one actuary noted, “I can count on one hand the number of days I’ve said, ‘I don’t want to go to work today’ . I’ve seen people come in to say thank you for the work I’ve done. That’s pretty powerful.” It is generally a good idea for students to maintain a healthy level of curiosity or even skepticism in regards to their education. However, we find that when it comes to learning statistics, the frame of mind of some students may be characterized as one of fear and anxiety. Although we understand these feelings, we hope the benefitscopy, associated with learning statistics will become clear to you and help you overcome any concerns you may have. 1.3 Introductionnot to the Stages of the Research Process Much of scientific research involves asking questions. Throughout this book, we will examine howDo contemporary researchers have asked and attempted to answer a broad range of questions 2 Fundamental Statistics for the Social and Behavioral Sciences Copyright ©2016 by SAGE Publications, Inc. This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher. regarding human attitudes and behavior. Below are research questions we will address in this chap- ter to introduce the stages of the research process: • Is students’ performance on tests more influenced by their learning strategies (how they learn) or their motivation (why they learn)? • Do college students and faculty differ in their beliefs about the prevalence of student aca- demic misconduct such as cheating and plagiarism? • Is the extent to which adolescents are exposed to violence in their community related to how they do in school? • Is one method of disciplining one’s children more effective than another? • Does playing online computer games affect one’s interpersonal relationships? • Does providing substance abuse treatment to drug users have an effect on safety in the workplace? How might you try to answer questions such as these? You could base your answers on your personal beliefs, or you could adopt the answers given to you by others.distribute But rather than relying on subjective beliefs and feelings, researchers test their ideas using science and the scientific method. The scientific method is a method of investigation that uses the objective and system- atic collection and analysis of empirical data to test theoriesor and hypotheses. At its simplest, this book will portray the scientific method as consisting of five main steps or phases: • developing a research hypothesis to be tested, • collecting data, • analyzing the data, • drawing a conclusion regarding thepost, research hypothesis, and • communicating the findings of the study. Accomplishing each of these five steps requires completing a number of tasks, as shown in Figure 1.1. Because this sequence of steps will be used throughout this book and will serve as the model for the wide assortment of research studies we will review and discuss, each step is briefly introduced below. It is important to understand that the research process depicted in Figure 1.1 represents an ideal way of doing research. The “real” way, as you may discover in your own efforts or from speaking withcopy, researchers, is often anything but a smooth ride but rather is filled with starts and stops, dead ends, and wrong turns. Developing a Research Hypothesis to Be Tested The notinitial stage—and the first step—of the research process is to develop a research hypothesis to be tested. A research hypothesis is a statement regarding an expected or predicted relationship between variables. A variable is a property or characteristic of an object, event, or person that can take on different values. One example of a variable is “U.S. state,” a variable with 50 possible values Do(Alabama, Arkansas, etc.). Chapter 1 | Introduction to Statistics 3 Copyright ©2016 by SAGE Publications, Inc. This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher. Figure 1.1 Steps in the Research Process Within the Scientific Method Develop a research hypothesis to be tested | Identify a question or issue of interest Review and evaluate relevant theory and research State a research hypothesis | Collect data | Draw a sample from a population Determine how the variables will be measured Select a method to collect the data distribute | Analyze the data | or Calculate descriptive statistics Calculate inferential statistics | Draw a conclusion regarding the research hypothesis | Communicate the findingspost, of the study Research hypotheses are usually developed through the completion of several tasks: • identifying a question or issue to be examined, • reviewing and evaluating relevant theories and research, and • stating a research hypothesis.copy, Each of these three tasks is described below. Identifying a Question or Issue to Be Examined Most research startsnot with a question posed by the researcher. These questions often come from the researcher’s own ideas and daily observations. Although this may not seem terribly scientific, there is an advantage in using one’s own experience as a starting point: People are generally much more motivated to explore a question or topic that concerns them personally.
Recommended publications
  • Education Quarterly Reviews
    Education Quarterly Reviews Allanson, Patricia E., and Notar, Charles E. (2020), Statistics as Measurement: 4 Scales/Levels of Measurement. In: Education Quarterly Reviews, Vol.3, No.3, 375-385. ISSN 2621-5799 DOI: 10.31014/aior.1993.03.03.146 The online version of this article can be found at: https://www.asianinstituteofresearch.org/ Published by: The Asian Institute of Research The Education Quarterly Reviews is an Open Access publication. It May be read, copied, and distributed free of charge according to the conditions of the Creative ComMons Attribution 4.0 International license. The Asian Institute of Research Education Quarterly Reviews is a peer-reviewed International Journal. The journal covers scholarly articles in the fields of education, linguistics, literature, educational theory, research, and methodologies, curriculum, elementary and secondary education, higher education, foreign language education, teaching and learning, teacher education, education of special groups, and other fields of study related to education. As the journal is Open Access, it ensures high visibility and the increase of citations for all research articles published. The Education Quarterly Reviews aiMs to facilitate scholarly work on recent theoretical and practical aspects of education. The Asian Institute of Research Education Quarterly Reviews Vol.3, No.3, 2020: 375-385 ISSN 2621-5799 Copyright © The Author(s). All Rights Reserved DOI: 10.31014/aior.1993.03.03.146 Statistics as Measurement: 4 Scales/Levels of Measurement 1 2 Patricia E. Allanson , Charles E. Notar 1 Liberty University 2 Jacksonville State University. EMail: [email protected] (EMeritus) Abstract This article discusses the basics of the “4 scales of MeasureMent” and how they are applicable to research or everyday tools of life.
    [Show full text]
  • Levels of Measurement and Types of Variables
    01-Warner-45165.qxd 8/13/2007 4:52 PM Page 6 6—— CHAPTER 1 evaluate the potential generalizability of research results based on convenience samples. It is possible to imagine a hypothetical population—that is, a larger group of people that is similar in many ways to the participants who were included in the convenience sample—and to make cautious inferences about this hypothetical population based on the responses of the sample. Campbell suggested that researchers evaluate the degree of similarity between a sample and hypothetical populations of interest and limit general- izations to hypothetical populations that are similar to the sample of participants actually included in the study. If the convenience sample consists of 50 Corinth College students who are between the ages of 18 and 22 and mostly of Northern European family back- ground, it might be reasonable to argue (cautiously, of course) that the results of this study potentially apply to a hypothetical broader population of 18- to 22-year-old U.S.col- lege students who come from similar ethnic or cultural backgrounds. This hypothetical population—all U.S.college students between 18 and 22 years from a Northern European family background—has a composition fairly similar to the composition of the conve- nience sample. It would be questionable to generalize about response to caffeine for pop- ulations that have drastically different characteristics from the members of the sample (such as persons who are older than age 50 or who have health problems that members of the convenience sample do not have). Generalization of results beyond a sample to make inferences about a broader popula- tion is always risky, so researchers should be cautious in making generalizations.
    [Show full text]
  • Chapter 1 Getting Started Section 1.1
    Chapter 1 Getting Started Section 1.1 1. (a) The variable is the response regarding frequency of eating at fast-food restaurants. (b) The variable is qualitative. The categories are the number of times one eats in fast-food restaurants. (c) The implied population is responses for all adults in the U.S. 3. (a) The variable is student fees. (b) The variable is quantitative because arithmetic operations can be applied to the fee values. (c) The implied population is student fees at all colleges and universities in the U.S. 5. (a) The variable is the time interval between check arrival and clearance. (b) The variable is quantitative because arithmetic operations can be applied to the time intervals. (c) The implied population is the time interval between check arrival and clearance for all companies in the five-state region. 7. (a) Length of time to complete an exam is a ratio level of measurement. The data may be arranged in order, differences and ratios are meaningful, and a time of 0 is the starting point for all measurements. (b) Time of first class is an interval level of measurement. The data may be arranged in order and differences are meaningful. (c) Class categories is a nominal level of measurement. The data consists of names only. (d) Course evaluation scale is an ordinal level of measurement. The data may be arranged in order. (e) Score on last exam is a ratio level of measurement. The data may be arranged in order, differences and ratios are meaningful, and a score of 0 is the starting point for all measurements.
    [Show full text]
  • Appropriate Statistical Analysis for Two Independent Groups of Likert
    APPROPRIATE STATISTICAL ANALYSIS FOR TWO INDEPENDENT GROUPS OF LIKERT-TYPE DATA By Boonyasit Warachan Submitted to the Faculty of the College of Arts and Sciences of American University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy In Mathematics Education Chair: Mary Gray, Ph.D. Monica Jackson, Ph.D. Jun Lu, Ph.D. Dean of the College of Arts and Sciences Date 2011 American University Washington, D.C. 20016 © COPYRIGHT by Boonyasit Warachan 2011 ALL RIGHTS RESERVED DEDICATION This dissertation is dedicated to my beloved grandfather, Sighto Chankomkhai. APPROPRIATE STATISTICAL ANALYSIS FOR TWO INDEPENDENT GROUPS OF LIKERT-TYPE DATA BY Boonyasit Warachan ABSTRACT The objective of this research was to determine the robustness and statistical power of three different methods for testing the hypothesis that ordinal samples of five and seven Likert categories come from equal populations. The three methods are the two sample t-test with equal variances, the Mann-Whitney test, and the Kolmogorov-Smirnov test. In additional, these methods were employed over a wide range of scenarios with respect to sample size, significance level, effect size, population distribution, and the number of categories of response scale. The data simulations and statistical analyses were performed by using R programming language version 2.13.2. To assess the robustness and power, samples were generated from known distributions and compared. According to returned p-values at different nominal significance levels, empirical error rates and power were computed from the rejection of null hypotheses. Results indicate that the two sample t-test and the Mann-Whitney test were robust for Likert-type data.
    [Show full text]
  • To Get SPSS to Conduct a One-Way Chi-Square Test on Your Data
    Biomeasurement 4e Dawn Hawkins SPSS24 HELP SHEET: Mann-Whitney U test (using legacy dialogs) CONTENTS 1. How to enter data to do a Mann-Whitney U test test. 2. How to do a Mann-Whitney U test test. 1. How to enter data to do a Mann-Whitney U test test. For general advice on data entry see the “How to enter data into SPSS” help sheet. Mann-Whitney U test tests are used on unrelated data: Data for the dependent variable go in one column and data for the independent variable goes in another. In this example, the dependent variable is BMD and the independent variable is SEX. BMD is bone-density measurement measured in grams per square centimetre of the neck of the femur which is a scale level of measurement). SEX is measured at the nominal level: either 1 (value label = female) or 2 (value label = male). Variable View Data View Data View (View – Value Labels off) (View – Value Labels on) Page 1 of 2 Dawn Hawkins: Anglia Ruskin University, January 2019 Biomeasurement 4e Dawn Hawkins 2. How to do a Mann-Whitney U test test… To get SPSS to conduct a Mann-Whitney U test test : Open your data file. Select: Analyze – Nonparametric Tests – Legacy Dialogs - 2 Independent Samples... This will bring up the Two-Independent-Samples Tests window. Select the variable that you want to analyse, and send it to the Test Variable List box (in the example above this is Bone Density Measurement). Select the independent variable, and send it to the Grouping Variable box (in the example above this is Sex).
    [Show full text]
  • Levels of Measurement
    8/16/18, 223 PM LO1-5 Distinguish between nominal, ordinal, interval, and ratio levels of measurement. LEVELS OF MEASUREMENT Data can be classified according to levels of measurement. The level of measurement determines how data should be summarized and presented. It also will indicate the type of statistical analysis that can be performed. Here are two examples of the relationship between measurement and how we apply statistics. There are six colors of candies in a bag of M&Ms. Suppose we assign brown a value of 1, yellow 2, blue 3, orange 4, green 5, and red 6. What kind of variable is the color of an M&M? It is a qualitative variable. Suppose someone summarizes M&M color by adding the assigned color values, divides the sum by the number of M&Ms, and reports that the mean color is 3.56. How do we interpret this statistic? You are correct in concluding that it has no meaning as a measure of M&M color. As a qualitative variable, we can only report the count and percentage of each color in a bag of M&Ms. As a second example, in a high school track meet there are eight competitors in the 400-meter run. We report the order of finish and that the mean finish is 4.5. What does the mean finish tell us? Nothing! In both of these instances, we have not used the appropriate statistics for the level of measurement. © Ron Buskirk/Alamy Stock Photo There are four levels of measurement: nominal, ordinal, interval, and ratio.
    [Show full text]
  • Statistics Lesson 1.2.Notebook January 07, 2016
    Statistics Lesson 1.2.notebook January 07, 2016 DATA CLASSIFICATION Data sets can consist of two types of data: Qualitative Data ­ data consisting of attributes, labels, or nonnumerical entries. Quantitative Data ­ data consisting of numerical measurements or counts. Suggested retail prices of several Honda vehicles. Model Suggested retail price Accord Sedan $21,680 Civic Hybrid $24,200 Civic Sedan $18,165 Crosstour $27,230 CR­V $22,795 Fit $15,425 Odyssey $28,675 Pilot $29,520 Ridgeline $29,450 a. Identify the two data sets. b. Decide whether each data set consists of numerical or nonnumerical entries. c. Specify the qualitative data and the quantitative data. 1 Statistics Lesson 1.2.notebook January 07, 2016 Another characteristic of data is its level of measurement. The level of measurement determines which statistical calculations are meaningful. The four levels of measurement, in order from lowest to highest, are nominal, ordinal, interval, and ratio. Nominal Level of Measurement ­ qualitative only. Data at this level are categorized using names, labels, or qualities. No mathematical computation are mad at this level. Ordinal Level of Measurement ­ Data is qualitative or quantitative. Data at this level can be arranged in order, or ranked, but differences between entries are not meaningful. EXAMPLE 2: Page 10 The two data sets shown are the top 5 grossing movies of 2012 and movie genres. The first data set lists the ranks of five movies. The set consists of ranks1, 2, 3, 4, and 5. These can be ranked in order so this data is at the ordinal level. The ranks have no mathematical meaning.
    [Show full text]
  • Scales of Measurement
    SCALES OF MEASUREMENT Level of measurement or scale of measure is a classification that describes the nature of information within the numbers assigned to variables. Psychologist Stanley Smith Stevens developed the best known classification with four levels or scales of measurement: nominal, ordinal, interval, and ratio. Stevens proposed his typology in a 1946 Science article titled "On the theory of scales of measurement". In this article, Stevens claimed that all measurement in science was conducted using four different types of scales that he called "nominal" "ordinal" "interval" and "ratio" unifying both "qualitative" (which are described by his "nominal" type) and "quantitative" (all the rest of his scales). The concept of scale types later received the mathematical rigor that it lacked at its inception with the work of mathematical psychologists Theodore Alper (1985, 1987), Louis Narens (1981a, b), and R. Duncan Luce (1986, 1987, 2001). As Luce (1997, p. 395) wrote; S. S. Stevens (1946, 1951, and 1975) claimed that what counted was having an interval or ratio scale. Subsequent research has given meaning to this assertion, but given his attempts to invoke scale type ideas it is doubtful if he understood it himself ... no measurement theorist I know accepts Stevens’ broad definition of measurement ... in our view, the only sensible meaning for 'rule' is empirically testable laws about the attribute. 1. Nominal Scale: A nominal scale of measurement deals with variables that are non-numeric or where the numbers have no value. The lowest measurement level you can use, from a statistical point of view, is a nominal scale. A nominal scale, as the name implies, is simply some placing of data into categories, without any order or structure.
    [Show full text]
  • Binary Logistic Regression
    Binary Logistic Regression The coefficients of the multiple regression model are estimated using sample data with k independent variables Estimated Estimated Estimated slope coefficients (or predicted) intercept value of Y ˆ Yi = b0 + b1 X 1i + b2 X 2i ++ bk X ki • Interpretation of the Slopes: (referred to as a Net Regression Coefficient) – b1=The change in the mean of Y per unit change in X1, taking into account the effect of X2 (or net of X2) 2 – b0 Y intercept. It is the same as simple regression. Binary Logistic Regression • Binary logistic regression is a type of regression analysis where the dependent variable is a dummy variable (coded 0, 1) • Why not just use ordinary least squares? ^ Y = a + bx – You would typically get the correct answers in terms of the sign and significance of coefficients – However, there are three problems 3 Binary Logistic Regression OLS on a dichotomous dependent variable: Yes = 1 No = 0 Y = Support Privatizing Social Security 1 10 X = Income 4 Binary Logistic Regression – However, there are three problems 1. The error terms are heteroskedastic (variance of the dependent variable is different with different values of the independent variables 2. The error terms are not normally distributed 3. And most importantly, for purpose of interpretation, the predicted probabilities can be greater than 1 or less than 0, which can be a problem for subsequent analysis. 5 Binary Logistic Regression • The “logit” model solves these problems: – ln[p/(1-p)] = a + BX or – p/(1-p) = ea + BX – p/(1-p) = ea (eB)X Where: “ln” is the natural logarithm, logexp, where e=2.71828 “p” is the probability that Y for cases equals 1, p (Y=1) “1-p” is the probability that Y for cases equals 0, 1 – p(Y=1) “p/(1-p)” is the odds ln[p/1-p] is the log odds, or “logit” 6 Binary Logistic Regression • Logistic Distribution P (Y=1) x • Transformed, however, the “log odds” are linear.
    [Show full text]
  • Examples of Scales of Measurement in Psychology
    Examples Of Scales Of Measurement In Psychology Pacific and expiscatory Roman infuscate so lethally that Mike interwound his moves. Unchastisable Tirrell always dilacerated his anaesthesiology if Tanner is coprolitic or lustrates disputably. Brocaded Roderigo escalates, his keepsake muffs sympathised senselessly. They are commonly used in psychology and education research. Thank you ride good explanation and giving some idea of scales. Cola has a lot of sugar in it. You could collect ordinal data by asking participants to select from four age brackets, the very best way to assure yourself that your measure has clear instructions, or Ratio. Measurement models represent an unobservable construct by formally incorporating a measurement theory into the measurement process. And Behaviors Interview Development reliability and validity in an enormous sample. Net, and, each cell represents the intersection of two variables. As for the findings in the current study, they find the mean or average of the data point. For example persons 1 and 4 are equally happy based on the third and. Measurement theory Frequently asked questions SAS. The scale in psychology work experience. What needs of such as indicating the scale and measuring growth of conceptual from work and clinical data set to. The same person is a nominal level determine what we sometimes causes that differences in posting a continuum and sushi second and. To respond, all type our data analysis. Deliver the best one our CX management software. One way to do noise is to parameterize the model so own any permissible transformation can be inverted by a corresponding change move the parameter estimates.
    [Show full text]
  • Study Designs and Their Outcomes
    © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC CHAPTERNOT FOR SALE 3 OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © JonesStudy & Bartlett Designs Learning, LLC and Their Outcomes© Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION “Natural selection is a mechanism for generating an exceedingly high degree of improbability.” —Sir Ronald Aylmer Fisher Peter Wludyka © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION OBJECTIVES ______________________________________________________________________________ • Define research design, research study, and research protocol. • Identify the major features of a research study. • Identify© Jonesthe four types& Bartlett of designs Learning,discussed in this LLC chapter. © Jones & Bartlett Learning, LLC • DescribeNOT nonexperimental FOR SALE designs, OR DISTRIBUTIONincluding cohort, case-control, and cross-sectionalNOT studies. FOR SALE OR DISTRIBUTION • Describe the types of epidemiological parameters that can be estimated with exposed cohort, case-control, and cross-sectional studies along with the role, appropriateness, and interpreta- tion of relative risk and odds ratios in the context of design choice. • Define true experimental design and describe its role in assessing cause-and-effect relation- © Jones &ships Bartlett along with Learning, definitions LLCof and discussion of the role of ©internal Jones and &external Bartlett validity Learning, in LLC NOT FOR evaluatingSALE OR designs. DISTRIBUTION NOT FOR SALE OR DISTRIBUTION • Describe commonly used experimental designs, including randomized controlled trials (RCTs), after-only (post-test only) designs, the Solomon four-group design, crossover designs, and factorial designs.
    [Show full text]
  • Quantitative Research Methods Distribute Student Learning Objectives Or
    7 Quantitative Research Methods distribute Student Learning Objectives or After studying Chapter 7, students will be able to do the following: 1. Describe the defining characteristics of quantitative research studies 2. List and describe the basic steps in conducting quantitative research studies 3. Identify and differentiate among variouspost, approaches to conducting quantitative research studies 4. List and describe the steps and procedures in conducting survey, correlational, causal-comparative, quasi-experimental, experimental, and single-subject research 5. Identify and discusscopy, the strengths and limitations of various approaches to conducting quantitative research 6. Identify and explain possible threats to both internal and external validity 7. Design quantitativenot research studies for a topic of interest Do his chapter focuses on research designs commonly used when conducting quantitative research studies. The general purpose of quantitative research is to T investigate a particular topic or activity through the measurement of variables in quantifiable terms. Quantitative approaches to conducting educational research differ in numerous ways from the qualitative methods we discussed in Chapter 6. You will learn about these characteristics, the quantitative research process, and the specifics of several different approaches to conducting quantitative research. Copyright ©2016 by SAGE Publications, Inc. This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher. 108 Part II • Designing A Research Study Characteristics of Quantitative Research Quantitative research relies on the collection and analysis of numerical data to describe, explain, predict, or control variables and phenomena of interest (Gay, Mills, & Airasian, 2009). One of the underlying tenets of quantitative research is a philosophical belief that our world is relatively stable and uniform, such that we can measure and understand it as well as make broad generalizations about it.
    [Show full text]