water Article Two-Way Fluid–Solid Interaction Analysis for a Horizontal Axis Marine Current Turbine with LES Jintong Gu 1,2, Fulin Cai 1,*, Norbert Müller 2, Yuquan Zhang 3 and Huixiang Chen 2,4 1 College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China;
[email protected] 2 Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824, USA;
[email protected] (N.M.);
[email protected] (H.C.) 3 College of Energy and Electrical Engineering, Hohai University, Nanjing 210098, China;
[email protected] 4 College of Agricultural Engineering, Hohai University, Nanjing 210098, China * Correspondence: fl
[email protected]; Tel.: +86-139-5195-1792 Received: 2 September 2019; Accepted: 23 December 2019; Published: 27 December 2019 Abstract: Operating in the harsh marine environment, fluctuating loads due to the surrounding turbulence are important for fatigue analysis of marine current turbines (MCTs). The large eddy simulation (LES) method was implemented to analyze the two-way fluid–solid interaction (FSI) for an MCT. The objective was to afford insights into the hydrodynamics near the rotor and in the wake, the deformation of rotor blades, and the interaction between the solid and fluid field. The numerical fluid simulation results showed good agreement with the experimental data and the influence of the support on the power coefficient and blade vibration. The impact of the blade displacement on the MCT performance was quantitatively analyzed. Besides the root, the highest stress was located near the middle of the blade. The findings can inform the design of MCTs for enhancing robustness and survivability.