Joseph Von Fraunhofer (1787 - 1826) and The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sirius - Wikipedia Coordinates: 06 H 4 5 M 08.9 1 7 3 S, −1 6 ° 4 2 ′ 5 8.01 7 ″
12/2/2018 Sirius - Wikipedia Coordinates: 06 h 4 5 m 08.9 1 7 3 s, −1 6 ° 4 2 ′ 5 8.01 7 ″ Sirius Sirius (/ˈsɪriəs/, a romanization of Greek Σείριος, Seirios, lit. "glowing" or "scorching") is a star system Sirius A and B and the brightest star in the Earth's night sky. With a visual apparent magnitude of −1.46, it is almost twice as bright as Canopus, the next brightest star. The system has the Bayer designation Alpha Canis Majoris (α CMa). What the naked eye perceives as a single star is a binary star system, consisting of a white main-sequence star of spectral type A0 or A1, termed Sirius A, and a faint white dwarf companion of spectral type DA2, called Sirius B. The distance separating Sirius A from its companion varies between 8.2 and 31.5 AU.[24] Sirius appears bright because of its intrinsic luminosity and its proximity to Earth. At a distance of 2.6 parsecs (8.6 ly), as determined by the Hipparcos astrometry satellite,[2][25][26] the Sirius system is one of Earth's near neighbours. Sirius is gradually moving closer to the Solar System, so it will slightly increase in brightness over the next 60,000 years. After that time its distance will begin to increase and it will become fainter, but it will continue to be the brightest star in the Earth's night sky for the next 210,000 years.[27] The position of Sirius (circled). Sirius A is about twice as massive as the Sun (M☉) and has an absolute visual magnitude of 1.42. -
The Demographics of Massive Black Holes
The fifth element: astronomical evidence for black holes, dark matter, and dark energy A brief history of astrophysics • Greek philosophy contained five “classical” elements: °earth terrestrial; subject to °air change °fire °water °ether heavenly; unchangeable • in Greek astronomy, the universe was geocentric and contained eight spheres, seven holding the known planets and the eighth the stars A brief history of astrophysics • Nicolaus Copernicus (1473 – 1543) • argued that the Sun, not the Earth, was the center of the solar system • the Copernican Principle: We are not located at a special place in the Universe, or at a special time in the history of the Universe Greeks Copernicus A brief history of astrophysics • Isaac Newton (1642-1747) • the law of gravity that makes apples fall to Earth also governs the motions of the Moon and planets (the law of universal gravitation) ° thus the square of the speed of a planet in its orbit varies inversely with its radius ⇒ the laws of physics that can be investigated in the lab also govern the behavior of stars and planets (relative to Earth) A brief history of astrophysics • Joseph von Fraunhofer (1787-1826) • discovered narrow dark features in the spectrum of the Sun • realized these arise in the Sun, not the Earth’s atmosphere • saw some of the same lines in the spectrum of a flame in his lab • each chemical element is associated with a set of spectral lines, and the dark lines in the solar spectrum were caused by absorption by those elements in the upper layers of the sun ⇒ the Sun is made of the same elements as the Earth A brief history of astrophysics ⇒ the Sun is made of the same elements as the Earth • in 1868 Fraunhofer lines not associated with any known element were found: “a very decided bright line...but hitherto not identified with any terrestrial flame. -
Thestargazer
The StarGazer http://www.raclub.org/ Newsletter of the Rappahannock Astronomy Club No. 2 Vol. 7 August 2018–October 2018 Pilgrimage to the Great Refractor By Scott Busby “Time always takes from us those things we hold most dear” The Yerkes Observatory belongs to the Department of Astronomy and Astrophysics of the University of Chicago (UChicago). Established in 1897 on Lake Geneva in Williams Bay, Wisconsin, the observatory, situated on a 78-acre park site, houses all the Department’s activities. Most of the important history of Yerkes Observatory can be found at astro.uchicago.edu. I won’t elaborate too much on its history here; suffice it to say that this great observatory was the result of the hard work and dedication of George Ellery Hale (1868– 1938). Hale had a unique ability to talk wealthy tycoons into funding his astronomical endeavors—pun intended. We can thank him for some of the great telescopes of our time. Some of the more familiar are the 60- and 100-inch Hooker reflecting telescopes on Mount Wilson near Pasadena and his namesake, the Great 200-inch Hale reflecting telescope at Mount Palomar observatory near San Diego. On March 7, 2018, UChicago announced plans to wind down its activities at Yerkes Observatory. As a result, the observatory will close its doors to visitors and researchers on October 1, 2018, with no prospects and no immediate plans to reopen In the last month, my wife Debbie and I decided to take a trip to Williams Bay to visit the Yerkes Observatory and its great 40- The 40-Inch Alvan Clark & Sons Refractor Credit: inch refractor telescope. -
Fraunhofer Lines and the Composition of the Sun 1 Summary 2 Papers and Datasets 3 Scientific Background
Fraunhofer lines and the composition of the Sun 1 Summary The purpose of this lab is for you to examine the spectrum of the Sun, to learn about the composition of the Sun (it’s not just hydrogen and helium!), and to understand some basic concepts of spectroscopy. 2 Papers and datasets These documents are all available on the course web page. • Low resolution spectrum of the Sun (from the National Solar Observatory) • Absorption lines of various elements (from laserstars.org and NASA’s Goddard Space Flight Center) • Table of abundances in the Sun 3 Scientific background 3.1 Spectroscopy At its most basic level, spectroscopy is simply splitting light up into different wavelengths. The classic example is a prism: white light goes in, and a rainbow comes out. Spectroscopy for physics and astronomy usually drops the output onto some kind of detector that records the flux at different wavelengths as a “stripe” across the detector. In other words, the output is a data table that lists the measured flux as a function of pixel number. An critical aspect of spectroscopy is wavelength calibration: what wavelength corresponds to which pixel number? Note that that relationship does not have to be — and is often not — linear. That is, the mapping of wavelength to pixel is not a linear relationship, but something more complicated. 3.2 The Sun The Sun is mostly hydrogen and after that mostly helium. You have learned about the fusion processes in the Sun and in other stars that gradually convert hydrogen to helium and then, for some stars, onward to carbon, nitrogen, and oxygen (CNO cycle), and further upward through the periodic table to iron. -
SCIENTIFIC CASE: What Are the Stars Made Of?1
Ages: 15 to 17 years old SCIENTIFIC CASE: What are the stars made of?1 Team members Writer: ____________________________________________________ Computer technician: __________________________________________________ Reader: ____________________________________________________ Spokesperson: ____________________________________________________ Ambassador: ___________________________________________________ Context In 1671, Isaac Newton (1643-1727) described how, when a ray of sunlight goes through a crystal prism with a particular angle, it splits showing different colours.. Fig.1: Newton's Experimentum Crucis (Grusche 2015) -fragment | Fig.2: Prism splitting white light into spectral colours. 1 Educational material manufacturated by “Asociación Planeta Ciencias” under the initiative and coordination of the European Space Agency inside the CESAR program framework. Source: Wikimedia.org . Newton also explained that light coming from stars other than the Sun would also be separated by a prism in a similar fashion. Fig 3. Comparison between a Fig 4. Joseph von Fraunhofer (1787 - 1826) prism and a diffraction grating. Source: Museo Alemán de Munich Source: Wikimedia.org More than a century later, in the first years of the 19th Century, Joseph von Fraunhofer (1787-1826) took a big step – he replaced the prism by a more effective optical component: a diffraction grating. This grating had de ability to separate or diffract light into several, more distinguishable rays. That way, Fraunhofer could split sunlight with a better resolution and, when he did, he found out something extraordinary: light wasn't continuous, but had black lines along the spectrum. Fig 5. Fraunhofer's lines. Source: Wikimedia.org So, what do these black lines mean? The Sun emits light due to its high temperature but, on its way from the inside to space, elements in the star absorb part of that light. -
George Willis Ritchey: Astrophotographer by Robert Anderson
S P R I N G Q U A R T E R / M A R C H 2 0 1 9 George Willis Ritchey: Astrophotographer By Robert Anderson A century ago, Mount Wilson Observatory lost a brilliant astronomer — George Willis Ritchey. When George Ellery Hale left Yerkes Observatory in 1904 to create Mount Wilson, Ritchey was one of four staff members he brought with him. Hale knew he would be indispensable to the new endeavor. And Ritchey was. He designed and built almost every early telescope and optical component on the mountain. Yet for all his contributions, a clash of egos with Hale and charges of disloyalty lead to his dismissal on October 31, 1919. The story of this unpleasant affair is well told by astronomer Donald Osterbrock in his 1993 book, Pauper & Prince: Ritchey, Hale, and Big American Telescopes. It is also the best account of the master optician and his genius (from which much of the information in this article is derived). On the centennial of Ritchey’s On ecember th, , eorge itchey took his rst departure, let’s celebrate his amazing work instead. photograph with the new 60-inch Telescope on Mount Wilson. He chose the Orion Nebula. Perhaps the most Ritchey wore many hats. He was an astronomer, a photographed object in the night sky, recording details of telescope designer, and an expert optician. He took the its glowing gases is a true test of an astrophotographer’s technology of mirror grinding to new levels of perfection equipment and skills. Credit: Carnegie Observatories. —such that his 60-inch mirror grinding machine now rests in the Smithsonian. -
42879 Fraun.Indd
ANNUAL REPORT 2013 1 Cover photo: Turbine blade demonstrator component built at Fraunhofer Center for Coatings and Laser Applications. See page 11. The background photo appearing on this page and next: Custom tailored boron- doped diamond electrodes developed by Fraunhofer Center for Coatings and Laser Applications. See page 9. About Fraunhofer Fraunhofer USA is a non-profi t research and development organization that performs applied research under contract to government and industry with customers such as federal and state governments, multinational corpora- tions, as well as small to medium-sized companies. Fraunhofer USA is a subsidiary of Fraunhofer-Gesellschaft, a world leading applied R&D organization with 67 institu- ites and research units. Fraunhofer USA is comprised of seven research centers: • Fraunhofer Center for Coatings and Laser Applications (CCL) at Michigan State University • Fraunhofer Center for Energy Innovation (CEI) at the University of Connecticut • Fraunhofer Center for Experimental Software Engineering (CESE) affi liated with the University of Maryland • Fraunhofer Center for Laser Technology (CLT) affi liated with the University of Michigan • Fraunhofer Center for Molecular Biotechnology (CMB) affi liated with the University of Delaware • Fraunhofer Center for Manufacturing Innovation (CMI) at Boston University • Fraunhofer Center for Sustainable Energy Systems (CSE), affi liated with Massachusetts Institute of Technology These partnerships serve as a bridge between academic research and industrial needs. The Fraunhofer USA Digital Media Technologies offi ce and the Fraunhofer Heinrich Hertz Institute, USA offi ce pro- mote and support the products of their respective parent institutes from Germany, namely the Fraunhofer Institute for Integrated Circuits IIS, and the Fraunhofer Heinrich Hertz Institute HHI. -
Historyofthetelescope
HISTORY OF THE TELESCOPE Pedro Ré http://pedroreastrophotography.com/ Contents Joseph von Fraunhofer (1787 - 1826) and the Great Dorpat refractor .................................................. 3 Alvan Clark (1804-1887), George Bassett Clark (1827-1891) and Alvan Graham Clark (1832-1897): American makers of telescope optics. .................................................................................................. 13 William Parsons (1800-1867) e o Leviatã de Parsonstown (in Portuguese) ......................................... 21 O Telescópio de Craig (1852) (in Portuguese) ...................................................................................... 29 The 25-inch Newall Refractor ............................................................................................................... 37 The Kew Photoheliograph ..................................................................................................................... 43 O Grande Telescópio de Melbourne (in Portuguese) ........................................................................... 51 O Grande Refractor da Exposição de Paris (1900) (in Portuguese) ...................................................... 61 William Lassell’s (1799-1880) Telescopes and the discovery of Triton ................................................ 71 James Nasmyth’s (1808-1890) telescopes ............................................................................................ 77 The 36-inch Crosley Reflector .............................................................................................................. -
Key Requirement Parameters for Dispersion Elements in Optical/NIR
Key Requirement Parameters for dispersion elements in optical/NIR spectrometers Colin Cunningham UK Astronomy Technology Centre & Edinburgh, Glasgow & Heriot Watt Universities N.A.Sharp, NOAO/NSO/Kitt Peak FTS/AURA/NSF1 Isaac Newton 1672 2 James Gregory 1688 in St Andrews Scotland Correspondence of Scientific Men of the Seventeenth Century ..., Volume 2 By Stephen Jordan Rigaud 4 David Rittenhouse 178 Rittenhouse made perhaps the first diffraction grating using 50 hairs between two finely threaded screws, with an approximate spacing of about 100 lines per inch 5 William Wollaston 1802 Observed dark lines in the spectrum of the Sun 6 Joseph von Fraunhofer 1814 ©The Center for Occupational Research and Development 7 Basic Physics Measurement of the wavelength (or frequency) of light • Direct measurement of frequency – fundamental property if light – Frequency Counting eg Spectrum analyser – up to 100GHz – Energy Measurement E=hν Good for x-rays with CCDs and microwaves etc with superconducting devices • Wavelength Measurement by Interference through phase delays λ= cν, and c varies with material light propagates through ν does not change at a refractive boundary, as Photon energy is conserved, but the velocity of light varies with wavelength in some media = DISPERSION 8 This talk will be about Prisms, Gratings and Grisms Wavelength measurement methods not covered today: • Fabry-Perot interferometer • Fourier Transform Spectrometer • Digital Planar Holography 9 Dispersion is the phenomenon in which the phase velocity of a wave depends on -
Politics, Morality, and Misrepresentation in Physical Science
Politics, Morality, Innovation, and Misrepresentation in Physical Science and Technology Jed Z. Buchwald Physics in Perspective ISSN 1422-6944 Phys. Perspect. DOI 10.1007/s00016-016-0187-y 1 23 Your article is protected by copyright and all rights are held exclusively by Springer International Publishing. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Phys. Perspect. Ó 2016 Springer International Publishing DOI 10.1007/s00016-016-0187-y Physics in Perspective Politics, Morality, Innovation, and Misrepresentation in Physical Science and Technology Jed Z. Buchwald* The pressures of politics, the desire to be first in innovation, moral convictions, and the potential dangers of error are all factors that have long been at work in the history of science and technology. Every so often, the need to reach a result may require leaving out a few steps here and there. Historians think and argue best through stories, so what follows are several tales, each of which exemplifies one or more of these aspects, though some reach back nearly two hundred years. -
Telescopes Made in Berlin: from Carl Bamberg to Askania
TELESCOPES MADE IN BERLIN: FROM CARL BAMBERG TO ASKANIA Gudrun Wolfschmidt* Introduction Several important firms producing mechanical-optical instruments appeared during the nineteenth century. The center of astronomical instrument making was transferred from England to the German states, initiated by the blockade of 1806: chief players included Joseph von Fraunhofer (Optisch-mechanisches Institut Reichenbach, Utzschneider & Fraunhofer, founded in 1809),1 his successors, such as Ertel (founded in 1826) and Mahler (founded in 1826), and later the important firm Merz of Munich (from the 1840s). Independently, but also in Munich in 1855, Carl August von Steinheil (1801–1870) founded his optical- astronomical company “C. A. Steinheil und Söhne”. Germany was not a centralized country. During the nineteenth cen- tury, instrument makers also existed in Göttingen, Kassel, Braunschweig, Greifswald, Stralsund, Rathenow, Bonn, Köln and Wetzlar. Johann Georg Repsold (1770–1830) founded a mechanical workshop in Hamburg in 1799, which specialized in astronomical and geodetic instruments. He built a private observatory in 1802 and another observatory with a school for navigation in 1825. After his death his firm was continued by his sons Georg and Adolf, and later by their sons and grandsons until 1919. By 1836 the firm had started to cooperate with Steinheil—but also with Merz—concerning optics, and they delivered famous telescopes * I would like to thank the staff in the archives of the Deutsches Museum Munich and of the Archive of the Deutsches Technikmuseum Berlin for their help and advice. 1 In 1806 Joseph von Fraunhofer (1787–1826) in Munich joined the firm of Georg Friedrich von Reichenbach (1771–1826), the mechanical institute of Reichenbach & Liebherr, founded in 1802. -
A Short History of Hambur Y of Hambur Y of Hamburg Observatory
A short history of Hamburggg Observvvaaatoryyy Stuart R. Anderson & Dieter Engels This paper’s aim is to provide a short history of Hamburg Observatory, its astronomers and instruments, its contribution to astronomy and to the popularisation and educational development of astronomy in Germany. Introduction ‘Bergedorf’, and this name will sometimes be used in this paper, although its official name is Hamburger Sternwarte), a small community just east of the city of Hamburg in north- Hamburg Observatory is located in Bergedorf, near the port ern Germany. This was not always the case, however. Johann city of Hamburg, Germany. Its history throughout its ap- Georg Repsold (1770−1830) was a fireman in the city who proximately 170 years of existence has been interesting and also maintained lighthouse equipment in his own workshop. varied, and at one stage it was one of the largest observato- For extra income, he was permitted to use this workshop for ries in Europe. The observatory and its astronomers have private purposes and having taken lessons in astronomy produced some contributions of outstanding importance to and mathematics, had an interest in building astronomical astronomy, including the celebrated Schmidt corrector plate. observing instruments. In 1799, the Swiss Johann Caspar Several minor planets, comets and novae were discovered Horner received a commission to survey the Weser, Elbe and and catalogues of crucial significance were and continue to Eider rivers and needed good quality optical equipment. be produced. More re- Repsold’s workshop seemed well suited to the task, and the cently, research efforts order for the equipment awakened his astronomical inter- have turned to extraga- ests.