System MCR-73-24? NASFI-2962- Yiml Technics1 Volume I October 1973
Total Page:16
File Type:pdf, Size:1020Kb
Final Volume I ~iport October m73 System MCR-73-24? NASFI-2962- Yiml Technics1 Volume I October 1973 SPACE SflLTI'LE soun ROCKET ROOSTER RECOVERY SYSTEM DEFINITION Approved Richard E. Brcckeen Program Manager Shuttle Booster Programs MARTIN MARIETTA CORPORATION DENVER DIVISION P.O. Box 179 Denver, Colorado 80201 This report is submitted in three volcmes to the Nationai Aero- nautics and Space Adninistration, !!arshall Space Flight Center, in partial fulfillment oE the requirements of Contract WS8- 29622. The objective cf this contractual effort has been to define per- formance requireiients, preiirninary designs, and development program plans for an airborne recovery systen for the Space Shuttle Solid Rockec Booster, with minimum total program costs being the prinary select ion criterion. - -...- Volume I, ent it iea .:z-. .-.,r;r:, ,,,,?.. -. -.-. Ski:: :s SsZid ,?x?e$ - a. ,3,1~2;.2~-?c-:=--,sj*; -. .<:.a-c- _ r--:.:- r:::., contains the results of all analyses perfomed during the study tern to define the performance requirements, preliminary designs, and development program plans for the SBB Recovery Subsgsten. Volumes I1 and 111 contain user's instructions for two computer programs developed in support--- - of- the contracc technical studies. Volume 11 is entitled ?;-: : .-r:-:2; ~GCB;~;- W~ZCZT I'Gc~ :dmfe ;~d./.'~r and Volume 111 is entitled S~lid,?cn;Eez 3rSc - - ';L~;~>* i;l;;:>----;nr ::s >.:~:csgi* @;p:*&.?. CONTENTS Page FOREWORD........................ ii SWY ........................ xiii INTRODUCTION ...................... 1-1 thru 1-3 .2.0 AIRrORNE SYSTE!4ANALYSIS ................ 2-1 2.1 Terminal Deceleration and Bescent (TD6D) ........ 2-i 2.1.1 Parachute Design Considerations ......... 2-2 2.1.2 Recovery System Baseline Design ......... 2-3 2.1.3 Parachute Parametrics .............. 2-8 2.1.4 Hybrid System Performance Trends ........ 2-11 2.1.5 Point Mass Simulation Analyses ......... 2-14 2.1.6 Parachute Dynamic Analysis ........... 2-19 2.1.7 Parachute Attenuation of Slapdown Loads ..... 2-22 2.2 Initial Deceleration and Stabilization ......... 2-28 2.2.1 SRBConfiguration. ............... 2-28 2.2.2 6 DOF Reentry Analysis ............. 2-33 thru 2-47 3.0 SRB IMPACT LOADS ANALYSIS (INCREMENT 11) ........ 3.1 Computer Program to Translate Slapdown Pressure Distributions to Concentrated Normal Loads ....... 3.1.1 General Description ............... 3.1.2 Program Inputs ................. 3.1.3 ProgramOutputs. ................ 3.2 Water Impact Failure Criteria ............. 3.2.1 Faitarecriteria ................ 3.2.2 DesignAllowables. ............... 3.3 Structural Response of 120-in. Drop Test Specimen ... 3.3.1 Tabulation of Drop Test Results ......... 3.3.2 Plots of Drop Test Results ........... 3.3.3 Conclusions ................... 3.4 Monolithic Versus Segmented Joint Case Design ..... 3.4.1 Suhsc.ale Model Test Specimens and Loading Conditions ................... 3.4.2 Subscale Test Results Extrapolated to Yield Strength .................... 3 .h. 3 Tubscale Yield .I llowables Ratioed to 142-in . Diameter .................... 3.4.4 Allowables Converted to Hoop Bending Moments . 3.4.5 Conclusions .................. tATER IXPACT REOUIR 31EXTS DEFINITION ......... 4-1 Attrition ....................... 4-1 4.1.1 Environmental Part .eters ............ 4-1 4.1.2 TDLD Parameters ................ 4-6 4.1.3 ?lonte Carlo Computer ?todel ........... 4-9 4.1.4 Iater Entry Conditions ............. 4-13 later Impact Loads Analysis .............. 4-18 4.2.1 Critical Impact Loading Conditions ....... 4-19 4.2.2 Impact Conditions Using Elonte Carlo Analyses . 4-21 4.2.3 ScaleTestModels ............... 4-22 4.2.4 Aft End Configuration Effects ......... 4-23 4.2.5 Attached Parachute Effects on Slapdown Loads . 4-26 4.2.6 Sea State Effects on Slapdown Loads ...... 4-27 4.2.7 Aft End Loads ................. 4-29 4.2.8 SRB Case and Forward Skirt Loads ........ 4-31 4.2.9 Loads Summary ................. 4-34 Component Strength Analysis .............. 4-35 4.3.1 Forward Skirt ................. 4-38 4.3.2 AftSkirt ................... 4-41 4.3.3 AftDome .................... 4-41 4.3.h Nozzleand Extension .............. 4-45 4.3.5 Casecenter Segments .............. 4-45 4.3.6 SRB Strength Analysis Uncertainties ...... 4-46 thru 4-60 PRELIMINARY DESIGN CONCEPTS AND CONSIDERATIONS 5-1 Baseline System Selection and Rationale .... 5-1 Baseline Sequence of Events .......... 5-2 Baseline General Arrangment ......... 5-2 Alternative Concepts ............. 5-8 5.4.1 Drogue ................. 5-8 5.4.2 Pilot Chute Deployment ......... 5-9 5.4.3 Hultiple Parachutes .......... 5-12 5.4.4 Hybrid Recovery System ... ..... 5-12 Recovery System Weights ............ 5-14 Flotation ................... 5-14 5.6.1 Basic Flotation Characteristics .... 5-15 5.6.2 Thermal Effects on Flatation ...... 5-19 Recovery Environmental Analysis ........ 5-30 t hru 5-32 CONCEPT EVALUATION AND SEtECTION ........... Approach ....................... Parametric Cost Trade8 ................ 6.2.1 Cost Analysis Uethodology ........... 6.2.2 Programmatic Parametrics ............ 6.2.3 Structural Conponent CostIPailure Parametrics .................. 6-10 6.2.4 Recovery SRB Syscem Cost Parametric8 ..... 6-21 6.2.5 Hybrid Retrorocket/Parachute Costs ...... 6-27 6.2.6 Total SRB Program Parcnwter Cost Results ... 6-36 Point Designs Cost Estimates ............. 6-36 Baseline Recovery System Selection Considerations . 6-45 t hru 6-49 RECOVERY SYSTM PROGRAM PLANS ............ 7-1 DEVEU)PtIENTTESTPLAN ............... 7-1 7.1.1 Decelerator Development ............ 7-12 7.1.2 Avionics Systems ............... 7-17 7.1.3 Interface Tests ................ 7-18 Qualification Test Plan ............... 7-19 7.2.1 Component Qualification ............ 7-20 7.2.2 System Qualification ............. 7-22 7.2.3 Maintainability Demonstration ......... 7-24 7.2.4 DDTBE Flight Test ............... 7-24 &nu£acturing Plan .................. 7-26 7.3.1 Fabrication .................. 7-30 Operations Plan ................... 7-31 7.4.1 Assembly and Chec'mut ............. 7-31 7.4.2 Launch .................... 7-31 7.4.3 Refurbish and Repair ............. 7-31 Logistics P! an .................... 7.. 36 7.5.1 Logistics Support Considerations ....... 7-45 7.5.2 Spares and Supply Support ............ 7-49 Facilities Plan ................... 7-5(! 7.6.1 Test Facilities ................ 7-51 7.6.2 Refurbish and Repair Facility ......... 7-51 7.6.3 Storage .................... 7-55 thru 7-57 CONCLUSIONS AND RECOMMENDATIONS ........... 8-1 Conclusions ..................... 8-1 Recommendations ................... 8-3 and 8-4 Xission Profile Defines Reco~erySystem Requirements in Reverse Sequence .................. xiv High a Reentry wS th Dispersions Neets IDSS Requirement ...................... Longitudinal cg Locatkon Determines Naximum and Deployment q ..................... Critical Loads Vary During Impact Sequence ...... Impact Parameter Probability Distributions Determined by Xonte Carlo Analysis ................ Baseline Recovery System Sequence ........... Optimum Descent Velocity Is 125 ips .......... Ribbon Parachutes for SRB Recovery .......... sR& Recovery Mission Profile .............. Baseline Recovery System within the State of the Art . Canopy Diarneter and Clustcr Size, Primary Dependent Variables ....................... Drogue May Not Be Necessary .............. Hybrid System May Reduce Recovery System Weight . :. Hybrid System Performance Best for Low Impact Velocities ...................... Main Parachute Loads Reduced by Increasing Drogue Size ......................... Single Parachute E-eriences Lower Opening Load .... Lower Reefing Efficiency Reduces Altitude Loss During Deployment ................... Successful Pilot Deployment from High a Reentry .... Initial and Disreefing Are Balanced .......... Parachute Elasticity Effects Are Minimal ....... Deployment Altitude-Dynamic Pressure Histories .... SRB Attitude Transition Accomplished in Three Seconds ........................ Parachute Reduces SRB Nose Velocity During Slapdown ............:.........-. Parachute Continues Descent During Slapdown ...... Parachute Retards SRB Attitude History During Slapdown ....................... SRB Baseline Configuration .............. Longitudinal CG Location Is Most Sensitive to Nozzle Extension Jettison ................... Supersonic Aerodynamic Uncertainties Are Hot Critical ....................... Subsonic Aerodynamic Uncertainties Define Maximum Reentrj Dispersions .................. Sw Baseline Reentry Trajectory ............ High a Trim Produces Maximum Total Drag ........ Dynamic Pressure Buildup Provides Damping Force .... SRB Experiences Large Attztude Rates at Max q ..... Longitudinal CG Location Determines Maximum and Deploymenrq ..................... Maximum Dynamic Pressure Insensitive to Most Dispersions ...................... Roll Rates at Deployment Altitudes. Correlated to Conditions at Maximum Dynamic Pressure ........ Parachute Deployment Will Requite Active Altitude Sensing Device .................... High a Reentry with Dispersions Meets IDIS . Requirements ..................... Normalized Keel Slapdown Pressure Distribution and Wetted Angle Curves .................. Normalized Radial Slapdown Pressure Distribution Curves ........................ 120-in. Drop Instrumentation Locations ........ 120-in. Drop Maximum Diameter Deflection ....... 120-in. Drop Maximum Hoop Bending Stresses ...... Slapdown Longitudinal and Circumferential Load Distribution ....................