Electric Propulsion for Station Keeping and Electric Orbit Raising on Eutelsat Platforms

Total Page:16

File Type:pdf, Size:1020Kb

Electric Propulsion for Station Keeping and Electric Orbit Raising on Eutelsat Platforms Electric Propulsion for Station Keeping and Electric Orbit Raising on Eutelsat Platforms 2015-b/IEPC-97 Presented at Joint Conference of 30th International Symposium on Space Technology and Science 34th International Electric Propulsion Conference and 6th Nano-satellite Symposium, Hyogo-Kobe, Japan July 4 – 10, 2015 C. Casaregola1 Eutelsat, Paris, 75015, France Abstract: With a fleet of 34 geostationary satellites and more than 30 years of service from space, Eutelsat is today Europe’s most long-standing satellite operator and one of the world’s leading satellite operators. The first two platforms using Electric Propulsion procured are SESAT-1 (EUTELSAT 16C) and KA-SAT, for which Electric Propulsion is limited to on-station operations. The successful demonstration of sustained capability of Electric Propulsion for these two platforms in addition to the extensive flight heritage with no significant anomalies demonstrated in the last decades on both commercial and scientific platforms, prove the high level of maturity reached by Electric Propulsion systems. Based on that and due to new attractive launch options, one full-electric platform - EUTELSAT 115 West B – has been procured and launched in March 2015. The launch of EUTELSAT 115 West B is a key milestone for telecom platforms as it makes Eutelsat the first Operator to use Electric Propulsion for a complete electric orbit raising. Two additional platforms – EUTELSAT 117 West B and EUTELSAT 172 B - are under procurement and will perform complete electric orbit raising as well. An overview of Eutelsat platforms using Electric Propulsion for station keeping and electric orbit raising is given in the paper. Nomenclature ADSL = Asymmetric Digital Subscriber Line CPS = Chemical Propulsion System EP = Electric Propulsion EOR = Electric Orbit Raising ESA = European Space Agency E/W = East West FAA = Federal Aviation Administration FU = Filter Unit GEO = Geostationary Orbit GPS = Global Positioning System GTO = Geostationary Transfer Orbit Isp = Specific Impulse MMH = MonoMethylHydrazine NTO = Nitrogen TetraOxide N/S = North South PPS = Plasma Propulsion System SPT = Stationary Plasma Thruster 1 Spacecraft Propulsion Mechanical and Thermal Systems Engineer, Department of Engineering; Eutelsat, [email protected] 1 Joint Conference of 30th ISTS, 34th IEPC and 6th NSAT, Kobe-Hyogo, Japan July 4 – 10, 2015 SSTO = Supersynchronous Transfer Orbit TOM = Thruster Orientation Mechanism TMA = Thruster Module Assembly XIPS = Xenon Ion Propulsion System XFC = Xenon Flow Control XPC = XIPS Power Controller WAAS = Wide Area Augmentation System I. Introduction ITH more than 30 years of service from space, Eutelsat is the Europe’s longest-standing satellite operator. WCreated as an international organisation in 1977, Eutelsat took shape in order to operate the first generation of communications satellites ordered by the European Space Agency (ESA) and to reflect Europe’s ambition to develop an industry able to build, launch and operate satellites. From its first satellite launched in 1983, today Eutelsat's fleet of 34 satellites covers Europe, Africa, the Middle East and large parts of the Asian and American continents. Additional six satellites are to be launched by 2017. Eutelsat’s in-orbit resources are positioned in geostationary orbit between 116.9° West and 172° East. From these premium orbital positions, the Eutelsat satellite fleet is able to serve two thirds of the globe, users in 150 countries in Europe, Africa, Asia and the Americas, from the East Coast of North and South America through to the Asia-Pacific coast. Eutelsat experience and quality of service have gained the confidence of a broad and growing portfolio of customers that include broadcasters, pay-TV operators, telecom operators, Internet service providers and government agencies. The procurement of the first Eutelsat telecom platforms using Electric Propulsion (EP) dates back on mid-90s with SESAT-1. Then, a second platform - KA-SAT – was procured and launched in 2010. Both these two platforms were put in their orbital slot by using either direct GEO insertion or by on-board chemical propulsion. Then Electric Propulsion has been used on both platforms only for on-station operations. Their records of operational and flight performance data have shown up to date satisfactory results with respect to Eutelsat requirements. Furthermore, in some cases, flight performances have been even better than the expected ones. However, for next years the use of Electric Propulsion on telecom platforms will be increased. Electric Propulsion used for full or partial orbit raising is becoming more and more frequent justified by the high level of maturity reached by EP systems and by the specific economics of the overall mission. With the launch of EUTELSAT 115 West B in March 2015, Eutelsat opened the door to a new era. Eutelsat is in fact the first operator that has launched a full-electric telecom platform performing a complete Electric Orbit Raising (EOR). Moreover, two additional platforms that will perform complete EOR – EUTELSAT 117 West B and EUTELSAT 172 B – are under procurement and will be launched in the fourth quarter of 2015 and in second quarter of 2017 respectively. II. Electric Propulsion for On-Station Operations on Eutelsat Platforms A. The SESAT-1 (EUTELSAT 16C) Spacecraft Procured at the end of 90s from ISS-Reshetnev (former NPO-PM) with payload manufactured by Thales Alenia Space (former Alcatel Alenia Space), SESAT-1 (Siberian-European SATellite) was designed to provide 18 Ku channels to satisfy the telecommunications needs in Central and Eastern Europe for a minimum operational lifetime of 10 years. SESAT-1– whose commercial name is today EUTELSAT 16C - was launched from Baikonour in April 2000 and was placed directly into geostationary orbit by a Proton K-BlockDM launcher. Figure 1 shows SESAT-1 in the stowed configuration. The propulsion subsystem is composed of a Xenon SPT Propulsion system for station keeping and orbit control and of hydrazine thrusters for attitude control. All components of the propulsion subsystem are Russian built. In detail, the Electric Propulsion system is composed of 4 tanks for Xenon storage, a pressure regulation unit able to deliver the Xenon to the thrusters and 8 SPT assemblies. A power supply provides the power to the subsystem, controlling the propellant feed lines as well as the selection of the operating thrusters. Each thruster assembly is composed of a Xenon flow control unit and Figure 1. SESAT-1 satellite a Hall effect thruster SPT 100 manufactured by Fakel. This 1.5 kW thruster is in the stowed configuration (Courtesy of NPO-PM) 2 Joint Conference of 30th ISTS, 34th IEPC and 6th NSAT, Kobe-Hyogo, Japan July 4 – 10, 2015 able to provide a nominal thrust of 83 mN at an Isp of 1520 s (anode voltage of 300 V) for a total impulse of 670 kNs equivalent to more than 2200 hours at nominal thrust. Each thruster is equipped with 2 redundant cathodes that are periodically cycled in accordance with the NPO-PM and Fakel recommendations. The SESAT-1 satellite in its in-orbit configuration with solar panels and communications antennas deployed is shown in Figure 2. After separation from the Proton-BlockDM and direct insertion in GEO, SESAT-1 station acquisition was performed by using the 4 SPTs (2 prime + 2 redundant) mounted on the E/W faces. Regular station keeping maneuvers to keep the satellite within its allocated orbital slot, i. e. ±0.1 degree N/S and E/W, are performed by other 4 inclined SPTs, 2 Figure 2. SESAT-1 satellite in the deployed configuration mounted on the North face and two mounted on the (Courtesy of NPO-PM) South face. Nominal on-station operations are performed by using 1 thruster at a time and no thruster operation during eclipse period ±1 hour for EW thrusters is possible. As regards the station keeping profile, 1 maneuver per day is generally performed 7 days out of 7. During Equinox, 2 maneuvers per day are performed. Typically, maneuvers near equinox are longer than the ones near solstice period. Spacecraft attitude control is performed by using hydrazine thrusters, a pair of thrusters for each axis. However, a low level pulsing is required by these thrusters as main attitude control requirement is during initial acquisition, station keeping burns and wheels unloading. To date, SESAT-1 has accumulated a total firing duration of almost 5600 hours, in which the most used SPT 100 thruster has been firing for almost 2000 hours and the most used cathode for almost 1000 hours. SESAT-1 was designed for 10 years lifetime and after 15 years of service it is still operating properly as expected. B. The KA-SAT Spacecraft KA-SAT was manufactured by Airbus Defence and Space (former EADS Astrium), based on the Eurostar E3000 platform, with a total weight of about 6.1 tons. It was launched from Baikonour by Proton Breeze M in December 2010 and was positioned at 9° East for a design lifetime of 15 years. KA-SAT is a high throughput telecommunications satellite able to provide broadband Internet access services across Europe and some parts of the Middle East and North Africa. KA-SAT’s revolutionary concept is based on a payload with 82 Ka-band spotbeams connected to a network of ten ground stations. This configuration enables frequencies to be reused, taking total throughput to beyond 90 Gbps and making it possible to deliver Internet connectivity for more than one million homes, at speeds comparable to ADSL. In Figure 3 the KA-SAT spacecraft in deployed configuration. KA-SAT propulsion system is composed of both Chemical Propulsion System (CPS) and Plasma Propulsion System (PPS). The CPS is used for all Figure 3. Artistic view of KA-SAT satellite in the transfer orbit maneuvers including the final deorbiting, deployed configuration E/W station keeping maneuvers, attitude control and (Courtesy of Airbus Defence and Space) wheels off-loading as necessary.
Recommended publications
  • October 2020 Worldwide Satellite Magazine
    Worldwide Satellite Magazine SatMagazineSatMagazine October 2020 SATELLITE ELEVATE YOUR VIRTUAL EXPECTATIONS! INNOVATION A Full Agenda, Providing Deep Insights into the Satellite Business Domain One-on-One Video Chat with Conference Attendees, Exhibitors, Sponsors and Speakers Connect With Experts Through Mutual Common Interests Meetings Find Industry Experts in Sessions, Exhibitions And Through Interest Group Search Build Your Event Calendar With Integrated Scheduling & Meeting Invitation Functions SATINNOVATION.COM October 6th-8th 2020 Experience Matters Ask us about Q- and V-band! Catch the Ka-band wave with CPI WATTS BANDWIDTH TECHNOLOGY 80-160 Ka Up to 2 GHz* GaN BUC or n More than 5,000 Ka-band HPAs and Solid State BUCs fielded SSPA n Largest selection of Ka-band amplifiers available 50-650 Ka Up to 4 GHz TWTA 800 Ka Up to 300 MHz Klystron PA n Field proven, outstanding reliability 180 Q Up to 2 GHz TWTA n Worldwide Ka-ready regional service centers 250 Pk V Up to 4.2 GHz TWTA *Two 1 GHz selectable bands Download our app! Search: CPI Satcom CPI SMP Satcom Products | www.cpii.com | [email protected] | +1 (669) 275-2744 Publishing Operations Senior Columnists This Issue’s Authors Silvano Payne, Publisher + Executive Writer Chris Forrester, Broadgate Publications Martyn Acreman HU Hai Simon Payne, Chief Technical Officer Karl Fuchs, iDirect Government Services Brad Bode Mike McNally Hartley G. Lesser, Editorial Director Bob Gough, Goonhilly Earth Station Rob Coleman Alex Miller Pattie Lesser, Executive Editor Rebecca M. Cowen-Hirsch, Inmarsat Kevin Corbley Tore Morten Olsen Donald McGee, Production Manager Ken Peterman, Viasat Chris Forrester Brian Rider Andy Bernard, Sales Director Giles Peeters, Track24 Defence Chris Formeller Bob Stanton Teresa Sanderson, Operations Director Koen Willems, ST Engineering Newtec Simon Gwozdz Dana Turse Sean Payne, Business Development Director Dan Makinster, Technical Advisor Features Advertiser Index The Forrester Report: OneWeb—One Step Forward… But… .
    [Show full text]
  • Secretariat Distr.: General 3 August 2015 English
    United Nations ST/SG/SER.E/744 Secretariat Distr.: General 3 August 2015 English Original: Spanish Committee on the Peaceful Uses of Outer Space Information furnished in conformity with the Convention on Registration of Objects Launched into Outer Space Note verbale dated 8 April 2015 from the Permanent Mission of Mexico to the United Nations (Vienna) addressed to the Secretary-General The Permanent Mission of Mexico to the United Nations (Vienna), in accordance with articles III and IV of the Convention on Registration of Objects Launched into Outer Space (General Assembly resolution 3235 (XXIX), annex), has the honour to inform the Secretary-General of the entry into its national registry of the Mexican satellite Eutelsat 115 West B (E115WB), whose owner is the company Satélites Mexicanos, S.A. de C.V. (Eutelsat Americas) (see annex). The satellite has already been registered in the database maintained by the Mexican Space Agency. V.15-05497 (E) 140815 170815 *1505497* ST/SG/SER.E/744 Annex Registration data on a space object launched by Mexico* E115WB (Satmex 7) State of registry: Mexico Name of the space object: E115WB (Satmex 7) Date and territory or location of launch: 1 March 2015 UTC/GMT-4 Launch Complex 40 (SLC-40), Cape Canaveral Air Force Station, Florida, United States of America Basic orbital parameters Geostationary orbit location: 114.9 degrees West Inclination: 0 ± 0.05 degrees Longitudinal tolerance: ± 0.05 degrees General function of space object: Communications satellite Date of decay/re-entry/deorbit: 20 December 2030 (expected date) Additional voluntary information for use in the Register of Objects Launched into Outer Space Space object owner or operator: Satélites Mexicanos, S.A.
    [Show full text]
  • Eutelsat S.A. €300,000,000 3.125% Bonds Due 2022 Issue Price: 99.148 Per Cent
    EUTELSAT S.A. €300,000,000 3.125% BONDS DUE 2022 ISSUE PRICE: 99.148 PER CENT The €300,000,000 aggregate principal amount 3.125% per cent. bonds due 10 October 2022 (the Bonds) of Eutelsat S.A. (the Issuer) will be issued outside the Republic of France on 9 October 2012 (the Bond Issue). Each Bond will bear interest on its principal amount at a fixed rate of 3.125 percent. per annum from (and including) 9 October 2012 (the Issue Date) to (but excluding) 10 October 2022, payable in Euro annually in arrears on 10 October in each year and commencing on 10 October 2013, as further described in "Terms and Conditions of the Bonds - Interest"). Unless previously redeemed or purchased and cancelled in accordance with the terms and conditions of the Bonds, the Bonds will be redeemed at their principal amount on 10 October 2022 (the Maturity Date). The Issuer may at its option, and in certain circumstances shall, redeem all (but not part) of the Bonds at par plus any accrued and unpaid interest upon the occurrence of certain tax changes as further described in the section "Terms and Conditions of the Bonds - Redemption and Purchase - Redemption for tax reasons". The Bondholders may under certain conditions request the Issuer to redeem all or part of the Bonds following the occurrence of certain events triggering a downgrading of the Bonds as further described in the Section "Terms and Conditions of the Bonds — Redemption and Purchase - Redemption following a Change of Control". The obligations of the Issuer in respect of principal and interest payable under the Bonds constitute direct, unconditional, unsecured and unsubordinated obligations of the Issuer and shall at all times rank pari passu among themselves and pari passu with all other present or future direct, unconditional, unsecured and unsubordinated obligations of the Issuer, as further described in "Terms and Conditions of the Bonds - Status".
    [Show full text]
  • Classification of Geosynchronous Objects
    esoc European Space Operations Centre Robert-Bosch-Strasse 5 D-64293 Darmstadt Germany T +49 (0)6151 900 www.esa.int CLASSIFICATION OF GEOSYNCHRONOUS OBJECTS Produced with the DISCOS Database Prepared by ESA’s Space Debris Office Reference GEN-DB-LOG-00211-OPS-GR Issue 20 Revision 0 Date of Issue 28 May 2018 Status Issued Document Type Technical Note Distribution ESA UNCLASSIFIED - Limited Distribution European Space Agency Agence spatiale europeenne´ Abstract This is a status report on geosynchronous objects as of 1 January 2018. Based on orbital data in ESA’s DISCOS database and on orbital data provided by KIAM the situation near the geostationary ring is analysed. From 1523 objects for which orbital data are available (of which 0 are outdated, i.e. the last available state dates back to 180 or more days before the reference date), 519 are actively controlled, 795 are drifting above, below or through GEO, 189 are in a libration orbit and 19 are in a highly inclined orbit. For 1 object the status could not be determined. Furthermore, there are 59 uncontrolled objects without orbital data (of which 54 have not been cata- logued). Thus the total number of known objects in the geostationary region is 1582. If you detect any error or if you have any comment or question please contact: Stijn Lemmens European Space Agency European Space Operations Center Space Debris Office (OPS-GR) Robert-Bosch-Str. 5 64293 Darmstadt, Germany Tel.: +49-6151-902634 E-mail: [email protected] Page 1 / 187 European Space Agency CLASSIFICATION OF GEOSYNCHRONOUS OBJECTS Agence spatiale europeenne´ Date 28 May 2018 Issue 20 Rev 0 Table of contents 1 Introduction 3 2 Sources 4 2.1 USSTRATCOM Two-Line Elements (TLEs) .
    [Show full text]
  • Britain Back in Space
    Spaceflight A British Interplanetary Society Publication Britain back in Space Vol 58 No 1 January 2016 £4.50 www.bis-space.com 1.indd 1 11/26/2015 8:30:59 AM 2.indd 2 11/26/2015 8:31:14 AM CONTENTS Editor: Published by the British Interplanetary Society David Baker, PhD, BSc, FBIS, FRHS Sub-editor: Volume 58 No. 1 January 2016 Ann Page 4-5 Peake on countdown – to the ISS and beyond Production Assistant: As British astronaut Tim Peake gets ready for his ride into space, Ben Jones Spaceflight reviews the build-up to this mission and examines the Spaceflight Promotion: possibilities that may unfold as a result of European contributions to Suszann Parry NASA’s Orion programme. Spaceflight Arthur C. Clarke House, 6-9 Ready to go! 27/29 South Lambeth Road, London, SW8 1SZ, England. What happens when Tim Peake arrives at the International Space Tel: +44 (0)20 7735 3160 Station, where can I watch it, listen to it, follow it, and what are the Fax: +44 (0)20 7582 7167 broadcasters doing about special programming? We provide the Email: [email protected] directory to a media frenzy! www.bis-space.com 16-17 BIS Technical Projects ADVERTISING Tel: +44 (0)1424 883401 Robin Brand has been busy gathering the latest information about Email: [email protected] studies, research projects and practical experiments now underway at DISTRIBUTION the BIS, the first in a periodic series of roundups. Spaceflight may be received worldwide by mail through membership of the British 18 Icarus Progress Report Interplanetary Society.
    [Show full text]
  • FCC-21-49A1.Pdf
    Federal Communications Commission FCC 21-49 Before the Federal Communications Commission Washington, DC 20554 In the Matter of ) ) Assessment and Collection of Regulatory Fees for ) MD Docket No. 21-190 Fiscal Year 2021 ) ) Assessment and Collection of Regulatory Fees for MD Docket No. 20-105 Fiscal Year 2020 REPORT AND ORDER AND NOTICE OF PROPOSED RULEMAKING Adopted: May 3, 2021 Released: May 4, 2021 By the Commission: Comment Date: June 3, 2021 Reply Comment Date: June 18, 2021 Table of Contents Heading Paragraph # I. INTRODUCTION...................................................................................................................................1 II. BACKGROUND.....................................................................................................................................3 III. REPORT AND ORDER – NEW REGULATORY FEE CATEGORIES FOR CERTAIN NGSO SPACE STATIONS ....................................................................................................................6 IV. NOTICE OF PROPOSED RULEMAKING .........................................................................................21 A. Methodology for Allocating FTEs..................................................................................................21 B. Calculating Regulatory Fees for Commercial Mobile Radio Services...........................................24 C. Direct Broadcast Satellite Regulatory Fees ....................................................................................30 D. Television Broadcaster Issues.........................................................................................................32
    [Show full text]
  • System Analysis and Design of the Geostationary Earth Orbit All-Electric Communication Satellites
    https://doi.org/10.1590/jatm.v13.1205 REVIEW ARTICLE System Analysis and Design of the Geostationary Earth Orbit All-Electric Communication Satellites Parsa Abbasrezaee1,* , Ali Saraaeb2 1.Sapienza University of Rome – Aerospace Engineering School – Rome – Italy. 2.Khaje Nasir Toosi University of Technology – Aerospace department – Tehran – Iran. *Corresponding author: [email protected] ABSTRACT With the help of gathered data and formulas extracted from a previous conference paper, the all-electric geostationary Earth orbit (GEO) communication satellite statistical design was conducted and further studied with analytic hierarchy process (AHP) and technique for order of preference by similarity to ideal solution (TOPSIS) methods. Moreover, with the help of previously determined system parameters, the orbital ascension, orbital maintenance and deorbiting specifications, calculations and simulations were persuaded. Furthermore, a parametric subsystem design was conducted to test the methods reliability and prove the feasibility of such approach. The parametric subsystem design was used for electrical power subsystem (EPS), attitude determination and control system (ADCS), electric propulsion, telemetry, tracking and control (TT&C) in conceptual subsystem design level, which highly relies on the satellite type and other specifications, were concluded in this paper; other subsystem designs were not of a significant difference to hybrid and chemical satellites. Eventually, the verification of the mentioned subsystems has been evaluated by contrasting the results with the Space mission engineering: the new SMAD, and subsystem design book reference. Keywords: All-electric; GEO; AHP and TOPSIS Method; Maintenance; Deorbiting; Parametric. INTRODUCTION From the previous conference paper, the contrast between all-electric geostationary Earth orbit (GEO) communication and other hybrid and chemical satellite design has shown that using all-electric satellite design has many advantages.
    [Show full text]
  • Federal Register/Vol. 86, No. 91/Thursday, May 13, 2021/Proposed Rules
    26262 Federal Register / Vol. 86, No. 91 / Thursday, May 13, 2021 / Proposed Rules FEDERAL COMMUNICATIONS BCPI, Inc., 45 L Street NE, Washington, shown or given to Commission staff COMMISSION DC 20554. Customers may contact BCPI, during ex parte meetings are deemed to Inc. via their website, http:// be written ex parte presentations and 47 CFR Part 1 www.bcpi.com, or call 1–800–378–3160. must be filed consistent with section [MD Docket Nos. 20–105; MD Docket Nos. This document is available in 1.1206(b) of the Commission’s rules. In 21–190; FCC 21–49; FRS 26021] alternative formats (computer diskette, proceedings governed by section 1.49(f) large print, audio record, and braille). of the Commission’s rules or for which Assessment and Collection of Persons with disabilities who need the Commission has made available a Regulatory Fees for Fiscal Year 2021 documents in these formats may contact method of electronic filing, written ex the FCC by email: [email protected] or parte presentations and memoranda AGENCY: Federal Communications phone: 202–418–0530 or TTY: 202–418– summarizing oral ex parte Commission. 0432. Effective March 19, 2020, and presentations, and all attachments ACTION: Notice of proposed rulemaking. until further notice, the Commission no thereto, must be filed through the longer accepts any hand or messenger electronic comment filing system SUMMARY: In this document, the Federal delivered filings. This is a temporary available for that proceeding, and must Communications Commission measure taken to help protect the health be filed in their native format (e.g., .doc, (Commission) seeks comment on and safety of individuals, and to .xml, .ppt, searchable .pdf).
    [Show full text]
  • Eutelsat S.A. €800,000,000 2.000 Per Cent Bonds Due 2 October 2025 Issue Price: 99.400 Per Cent
    EUTELSAT S.A. €800,000,000 2.000 PER CENT BONDS DUE 2 OCTOBER 2025 ISSUE PRICE: 99.400 PER CENT The €800,000,000 aggregate principal amount 2.000 per cent. bonds due 2 October 2025 (the Bonds , and each a Bond ) of Eutelsat S.A. (the Issuer ) will be issued on 2 October 2018 (the Bond Issue ). Each Bond will bear interest on its principal amount at a fixed rate of 2.000 per cent. per annum from (and including) 2 October 2018 (the Issue Date ) to (but excluding) 2 October 2025, payable in Euro annually in arrears on 2 October of each year and commencing on 2 October 2019, as further described in "Terms and Conditions of the Bonds – Interest". Unless previously redeemed or purchased and cancelled in accordance with their terms and conditions, the Bonds will be redeemed at their principal amount on 2 October 2025 (the Maturity Date ). The Issuer may, at its option, and in certain circumstances shall, redeem all (but not part) of the Bonds at par plus any accrued and unpaid interest upon the occurrence of certain tax changes as further described in "Terms and Conditions of the Bonds – Redemption and Purchase – Redemption for tax reasons". The Bonds may also be redeemed (i) at the option of the Issuer, in whole or in part, at any time, prior to the Maturity Date, as further described in "Terms and Conditions of the Bonds — Redemption and Purchase — Make Whole Redemption by the Issuer", (ii) at any time prior to the Maturity Date, in whole (but not in part), at par plus accrued interest, if eighty (80) per cent.
    [Show full text]
  • ESOG 120 Issue 8 – Rev
    TYPE APPROVAL AND CHARACTERIZATION PROCEDURES ESOG 120 Issue 8 – Rev. 1, May 2021 Antennas and Transmissions Team Antenna and VSAT Type Approval/Characterization ESOG 120 – Issue 8 - Rev. 1 May 2021 Antennas and VSATs Type Approval / Characterization Table of Contents Forward .................................................................................................................................. v 1 Overview of the ESOG modules ...................................................................................... 6 1.1 Volume I: Eutelsat S.A. system management and policies ........................................................ 6 1.2 Volume II: Eutelsat S.A. system operations and procedures ..................................................... 6 2 Introduction ................................................................................................................... 7 2.1 About this document .................................................................................................................. 7 2.2 Disclaimer ................................................................................................................................... 7 2.3 Eutelsat certification .................................................................................................................. 7 2.3.1 Type Approval ........................................................................................................................ 8 2.3.2 Characterization ....................................................................................................................
    [Show full text]
  • Classification of Geosynchronous Objects
    esoc European Space Operations Centre Robert-Bosch-Strasse 5 D-64293 Darmstadt Germany T +49 (0)6151 900 www.esa.int CLASSIFICATION OF GEOSYNCHRONOUS OBJECTS Produced with the DISCOS Database Prepared by T. Flohrer & S. Frey Reference GEN-DB-LOG-00195-OPS-GR Issue 18 Revision 0 Date of Issue 3 June 2016 Status ISSUED Document Type TN European Space Agency Agence spatiale europeenne´ Abstract This is a status report on geosynchronous objects as of 1 January 2016. Based on orbital data in ESA’s DISCOS database and on orbital data provided by KIAM the situation near the geostationary ring is analysed. From 1434 objects for which orbital data are available (of which 2 are outdated, i.e. the last available state dates back to 180 or more days before the reference date), 471 are actively controlled, 747 are drifting above, below or through GEO, 190 are in a libration orbit and 15 are in a highly inclined orbit. For 11 objects the status could not be determined. Furthermore, there are 50 uncontrolled objects without orbital data (of which 44 have not been cata- logued). Thus the total number of known objects in the geostationary region is 1484. In issue 18 the previously used definition of ”near the geostationary ring” has been slightly adapted. If you detect any error or if you have any comment or question please contact: Tim Flohrer, PhD European Space Agency European Space Operations Center Space Debris Office (OPS-GR) Robert-Bosch-Str. 5 64293 Darmstadt, Germany Tel.: +49-6151-903058 E-mail: tim.fl[email protected] Page 1 / 178 European Space Agency CLASSIFICATION OF GEOSYNCHRONOUS OBJECTS Agence spatiale europeenne´ Date 3 June 2016 Issue 18 Rev 0 Table of contents 1 Introduction 3 2 Sources 4 2.1 USSTRATCOM Two-Line Elements (TLEs) .
    [Show full text]
  • Space Propulsion Technology for Small Spacecraft
    Space Propulsion Technology for Small Spacecraft The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Krejci, David, and Paulo Lozano. “Space Propulsion Technology for Small Spacecraft.” Proceedings of the IEEE, vol. 106, no. 3, Mar. 2018, pp. 362–78. As Published http://dx.doi.org/10.1109/JPROC.2017.2778747 Publisher Institute of Electrical and Electronics Engineers (IEEE) Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/114401 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ PROCC. OF THE IEEE, VOL. 106, NO. 3, MARCH 2018 362 Space Propulsion Technology for Small Spacecraft David Krejci and Paulo Lozano Abstract—As small satellites become more popular and capa- While designations for different satellite classes have been ble, strategies to provide in-space propulsion increase in impor- somehow ambiguous, a system mass based characterization tance. Applications range from orbital changes and maintenance, approach will be used in this work, in which the term ’Small attitude control and desaturation of reaction wheels to drag com- satellites’ will refer to satellites with total masses below pensation and de-orbit at spacecraft end-of-life. Space propulsion 500kg, with ’Nanosatellites’ for systems ranging from 1- can be enabled by chemical or electric means, each having 10kg, ’Picosatellites’ with masses between 0.1-1kg and ’Fem- different performance and scalability properties. The purpose tosatellites’ for spacecrafts below 0.1kg. In this category, the of this review is to describe the working principles of space popular Cubesat standard [13] will therefore be characterized propulsion technologies proposed so far for small spacecraft.
    [Show full text]