0713 Research 18
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mathematicians Fleeing from Nazi Germany
Mathematicians Fleeing from Nazi Germany Mathematicians Fleeing from Nazi Germany Individual Fates and Global Impact Reinhard Siegmund-Schultze princeton university press princeton and oxford Copyright 2009 © by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW All Rights Reserved Library of Congress Cataloging-in-Publication Data Siegmund-Schultze, R. (Reinhard) Mathematicians fleeing from Nazi Germany: individual fates and global impact / Reinhard Siegmund-Schultze. p. cm. Includes bibliographical references and index. ISBN 978-0-691-12593-0 (cloth) — ISBN 978-0-691-14041-4 (pbk.) 1. Mathematicians—Germany—History—20th century. 2. Mathematicians— United States—History—20th century. 3. Mathematicians—Germany—Biography. 4. Mathematicians—United States—Biography. 5. World War, 1939–1945— Refuges—Germany. 6. Germany—Emigration and immigration—History—1933–1945. 7. Germans—United States—History—20th century. 8. Immigrants—United States—History—20th century. 9. Mathematics—Germany—History—20th century. 10. Mathematics—United States—History—20th century. I. Title. QA27.G4S53 2008 510.09'04—dc22 2008048855 British Library Cataloging-in-Publication Data is available This book has been composed in Sabon Printed on acid-free paper. ∞ press.princeton.edu Printed in the United States of America 10 987654321 Contents List of Figures and Tables xiii Preface xvii Chapter 1 The Terms “German-Speaking Mathematician,” “Forced,” and“Voluntary Emigration” 1 Chapter 2 The Notion of “Mathematician” Plus Quantitative Figures on Persecution 13 Chapter 3 Early Emigration 30 3.1. The Push-Factor 32 3.2. The Pull-Factor 36 3.D. -
Uot History Freidland.Pdf
Notes for The University of Toronto A History Martin L. Friedland UNIVERSITY OF TORONTO PRESS Toronto Buffalo London © University of Toronto Press Incorporated 2002 Toronto Buffalo London Printed in Canada ISBN 0-8020-8526-1 National Library of Canada Cataloguing in Publication Data Friedland, M.L. (Martin Lawrence), 1932– Notes for The University of Toronto : a history ISBN 0-8020-8526-1 1. University of Toronto – History – Bibliography. I. Title. LE3.T52F75 2002 Suppl. 378.7139’541 C2002-900419-5 University of Toronto Press acknowledges the financial assistance to its publishing program of the Canada Council for the Arts and the Ontario Arts Council. This book has been published with the help of a grant from the Humanities and Social Sciences Federation of Canada, using funds provided by the Social Sciences and Humanities Research Council of Canada. University of Toronto Press acknowledges the finacial support for its publishing activities of the Government of Canada, through the Book Publishing Industry Development Program (BPIDP). Contents CHAPTER 1 – 1826 – A CHARTER FOR KING’S COLLEGE ..... ............................................. 7 CHAPTER 2 – 1842 – LAYING THE CORNERSTONE ..... ..................................................... 13 CHAPTER 3 – 1849 – THE CREATION OF THE UNIVERSITY OF TORONTO AND TRINITY COLLEGE ............................................................................................... 19 CHAPTER 4 – 1850 – STARTING OVER ..... .......................................................................... -
Full History of The
London Mathematical Society Historical Overview Taken from the Introduction to The Book of Presidents 1865-1965 ADRIAN RICE The London Mathematical Society (LMS) is the primary learned society for mathematics in Britain today. It was founded in 1865 for the promotion and extension of mathematical knowledge, and in the 140 years since its foundation this objective has remained unaltered. However, the ways in which it has been attained, and indeed the Society itself, have changed considerably during this time. In the beginning, there were just nine meetings per year, twenty-seven members and a handful of papers printed in the slim first volume of the ’s Society Proceedings. Today, with a worldwide membership in excess of two thousand, the LMS is responsible for numerous books, journals, monographs, lecture notes, and a whole range of meetings, conferences, lectures and symposia. The Society continues to uphold its original remit, but via an increasing variety of activities, ranging from advising the government on higher education, to providing financial support for a wide variety of mathematically-related pursuits. At the head of the Society there is, and always has been, a President, who is elected annually and who may serve up to two years consecutively. As befits a prestigious national organization, these Presidents have often been famous mathematicians, well known and respected by the mathematical community of their day; they include Cayley and Sylvester, Kelvin and Rayleigh, Hardy and Littlewood, Atiyah and Zeeman.1 But among the names on the presidential role of honour are many people who are perhaps not quite so famous today, ’t have theorems named after them, and who are largely forgotten by the majority of who don modern-day mathematicians. -
The Role of GH Hardy and the London Mathematical Society
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Historia Mathematica 30 (2003) 173–194 www.elsevier.com/locate/hm The rise of British analysis in the early 20th century: the role of G.H. Hardy and the London Mathematical Society Adrian C. Rice a and Robin J. Wilson b,∗ a Department of Mathematics, Randolph-Macon College, Ashland, VA 23005-5505, USA b Department of Pure Mathematics, The Open University, Milton Keynes MK7 6AA, UK Abstract It has often been observed that the early years of the 20th century witnessed a significant and noticeable rise in both the quantity and quality of British analysis. Invariably in these accounts, the name of G.H. Hardy (1877–1947) features most prominently as the driving force behind this development. But how accurate is this interpretation? This paper attempts to reevaluate Hardy’s influence on the British mathematical research community and its analysis during the early 20th century, with particular reference to his relationship with the London Mathematical Society. 2003 Elsevier Inc. All rights reserved. Résumé On a souvent remarqué que les premières années du 20ème siècle ont été témoins d’une augmentation significative et perceptible dans la quantité et aussi la qualité des travaux d’analyse en Grande-Bretagne. Dans ce contexte, le nom de G.H. Hardy (1877–1947) est toujours indiqué comme celui de l’instigateur principal qui était derrière ce développement. Mais, est-ce-que cette interprétation est exacte ? Cet article se propose d’analyser à nouveau l’influence d’Hardy sur la communauté britannique sur la communauté des mathématiciens et des analystes britanniques au début du 20ème siècle, en tenant compte en particulier de son rapport avec la Société Mathématique de Londres. -
Tyndall's History
A HISTORY OF THE DEPARTMENT OF PHYSICS IN BRISTOL 1876-1948 WITH PERSONAL REMINISCENCES by PROFESSOR A. M. TYNDALL, FRS AUGUST 1956 1 PART I In the early days of University College, Bristol, the subjects of Physics, Mathematics and Engineering, were so inter-related that it was some years before any one of them acquired complete departmental independence. Indeed, the Physics Department carried Electrotechnics - as Electrical Engineering was then called - until the foundation of the University in 1909. In an account of the birth and growth of the Department of Physics in the College, references to parallel developments in Mathematics and Engineering must therefore naturally be included. When the College was founded in 1876 and opened in the Autumn in a house in Park Row, it had procured by advertisement six members of an academic staff, including a Professor of Chemistry, a Lecturer in Physics and a Lecturer in Mathematics. It is recorded in the biography of Silvanus Phillips Thompson* that, having graduated at the Royal College of Mines some months earlier with Honours in Physics and Chemistry, he applied for the Chair in Chemistry. He was a Quaker and was already known to a member of the Fry family, whose sons he had coached during a University vacation. Though he was not successful in his application for the Chair in Chemistry, he was shortly afterwards offered the lectureship in Physics, which he accepted. The salary was £150 pa with a half-share in the fees of students enrolling in his classes. A grant of £125 was also made to ‘Physical Science, for apparatus to illustrate lectures’. -
G.J. Hyland a Physicist Ahead of His Time
Springer Biographies G.J. Hyland Herbert Fröhlich A Physicist Ahead of His Time Springer Biographies More information about this series at http://www.springer.com/series/13617 G.J. Hyland Herbert Fröhlich A Physicist Ahead of His Time With a foreword by Fanchon Fröhlich 123 G.J. Hyland ex-University of Warwick Coventry UK Springer Biographies ISBN 978-3-319-14850-2 ISBN 978-3-319-14851-9 (eBook) DOI 10.1007/978-3-319-14851-9 Library of Congress Control Number: 2015931922 Springer Cham Heidelberg New York Dordrecht London © Springer International Publishing Switzerland 2015 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. -
JOHN CEDRIC SHEPHERDSON John Cedric Shepherdson 1926–2015
JOHN CEDRIC SHEPHERDSON John Cedric Shepherdson 1926–2015 MODEST, METICULOUS, MASTERFUL. The first word seems to be mentioned by everyone who knew him. The second is obvious to anyone who reads his work and especially those who worked with him. The last is not adequately remarked on: his range was exceptional. His career comprised not so much in asking (and answering) groundbreaking questions, but more in answering questions others might (or should) have asked but did not; or even questioning what had been done and clarifying—and some- times correcting—in a way that gave the mathematics extra insights, solidity and depth. He was the master craftsman whose deft touch some- times perfected, sometimes mended, sometimes completed the work of others and thereby opened the way to the next stage. Yet his modesty meant that each of his achievements was initially known only to a small group, be it colleagues or friends or family. It also means that this mem- oir’s main aim is to continue the process of revelation that began at his memorial service in February 2015, where both family and colleagues were surprised to learn many things they had never known about him. John Cedric Shepherdson came from a long line of Yorkshire folk on both sides. The male line started out and, for a long time, did not move far from High Catton, about 9 miles east of York, while the female line came from Bradford. John’s great-great-grandfather, John Shepherdson, who was born in 1790 or 1791, was a carpenter, but the male line, from his only child, Henry Johnson Shepherdson (1814–95), on, were all teachers with one exception. -
Siegmund-Schultze R. Mathematicians Fleeing from Nazi Germany
Mathematicians Fleeing from Nazi Germany Mathematicians Fleeing from Nazi Germany Individual Fates and Global Impact Reinhard Siegmund-Schultze princeton university press princeton and oxford Copyright 2009 © by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW All Rights Reserved Library of Congress Cataloging-in-Publication Data Siegmund-Schultze, R. (Reinhard) Mathematicians fleeing from Nazi Germany: individual fates and global impact / Reinhard Siegmund-Schultze. p. cm. Includes bibliographical references and index. ISBN 978-0-691-12593-0 (cloth) — ISBN 978-0-691-14041-4 (pbk.) 1. Mathematicians—Germany—History—20th century. 2. Mathematicians— United States—History—20th century. 3. Mathematicians—Germany—Biography. 4. Mathematicians—United States—Biography. 5. World War, 1939–1945— Refuges—Germany. 6. Germany—Emigration and immigration—History—1933–1945. 7. Germans—United States—History—20th century. 8. Immigrants—United States—History—20th century. 9. Mathematics—Germany—History—20th century. 10. Mathematics—United States—History—20th century. I. Title. QA27.G4S53 2008 510.09'04—dc22 2008048855 British Library Cataloging-in-Publication Data is available This book has been composed in Sabon Printed on acid-free paper. ∞ press.princeton.edu Printed in the United States of America 10 987654321 Contents List of Figures and Tables xiii Preface xvii Chapter 1 The Terms “German-Speaking Mathematician,” “Forced,” and“Voluntary Emigration” 1 Chapter 2 The Notion of “Mathematician” Plus Quantitative Figures on Persecution 13 Chapter 3 Early Emigration 30 3.1. The Push-Factor 32 3.2. The Pull-Factor 36 3.D. -
Bringing the Riemann Zeta Function to the World's Attention
From SIAM News, Volume 37, Number 1, January/February 2004 Bringing the Riemann Zeta Function to the World’s Attention The Music of the Primes: Searching to Solve the Greatest Mystery in Mathematics. By Marcus du Sautoy, Harper Collins, New York, 2003, 352 pages, $24.95. At least three books about the Riemann hypothesis appeared during 2003. The dust jacket of the one under review identifies the author as a professor of mathematics at the University of Oxford, a research fellow at the Royal Society, and a frequent contributor on mathematics to The Times and to BBC radio.* The early chapters of his book provide—in aggressively nontechnical BOOK REVIEW terms—background information about the prime numbers, and the modern quest for information about their distribu- By James Case tion along the real number line. His account begins rather slowly, but the pace quickens as the focus shifts from ancient to more recent history. In the course of convincing the world of the value of mathematical proof, Euclid demonstrated that there are infinitely many primes, and that every nonprime has a unique factorization into primes. Eratosthenes, the librarian at Alexandria, was appar- ently the first to tabulate these “building blocks” of the natural number system. Using the “sieve method” for which he is still remembered, he reputedly identified several thousand primes. Because his table did not survive the fire that destroyed the great library of the ancient world, however, nobody knows for sure how many of them he actually found. Thereafter, the subject lay dormant until the likes of Fermat and Mersenne—armed with Arabic numerals and the techniques of modern arithmetic— revived it during the 17th century.