WO 2017/049252 Al 23 March 2017 (23.03.2017) P O P C T

Total Page:16

File Type:pdf, Size:1020Kb

WO 2017/049252 Al 23 March 2017 (23.03.2017) P O P C T (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/049252 Al 23 March 2017 (23.03.2017) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 31/5513 (2006.01) A61P 25/14 (2006.01) kind of national protection available): AE, AG, AL, AM, C12N 15/861 (2006.01) A61P 25/28 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A61P 3/04 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (21) International Application Number: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, PCT/US2016/052384 KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (22) International Filing Date: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 17 September 2016 (17.09.201 6) OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, (25) Filing Language: English TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (26) Publication Language: English ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 62/220,077 17 September 2015 (17.09.2015) US kind of regional protection available): ARIPO (BW, GH, 62/220,087 17 September 2015 (17.09.2015) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: SWITCH BIO, INC. [US/US]; c/o Cooley TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, LLP, 500 Boylston Street, Boston, Massachusetts 021 16- DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, 3736 (US). LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, (72) Inventors: GREENBERG, Kenneth P.; 240 The Up GW, KM, ML, MR, NE, SN, TD, TG). lands, Berkeley, California 94705 (US). DAVID, Nath¬ aniel; 2946 California Street, San Francisco, California Declarations under Rule 4.17 : 941 15 (US). FINER, Mitchell H.; 150 Whitman Street, — as to applicant's entitlement to apply for and be granted a Stow, Massachusetts 01775 (US). patent (Rule 4.1 7(H)) (74) Agents: BRUKMAN, Alia K. et al; Cooley LLP, 1299 — as to the applicant's entitlement to claim the priority of the Pennsylvania Avenue, NW, Suite 700, Washington, Dis earlier application (Rule 4.1 7(in)) trict of Columbia 20004 (US). [Continued on nextpage] (54) Title: COMPOSITIONS AND METHODS FOR TREATING NEUROLOGICAL DISORDERS FiG. 1 2. Activate 'switch" with 1. Genetically insert bio-Inert molecule to therapeutic 'switch' silence nerve into peripheral nerves sarv Spinal cord o (57) Abstract: The present invention generally provides vectors, compositions, and methods of using the same for treating neurolo o gical disorders, including managing pain. The compositions and methods include the use of G protein-coupled receptors and ligand- gated ion channels to treat neurological indications including pain, epilepsy and satiety disorders. The compositions and methods o further include the use of synthetic ligands to activate the G protein-coupled receptors and ligand-gated ion channels in the treatment of neurological disease. w o 2017/049252 Al III III II II III I IIII II II III! I II I I il II I II Published: — with sequence listing part of description (Rule 5.2(a)) — with international search report (Art. 21(3)) — before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h)) COMPOSITIONS AND METHODS FOR TREATING NEUROLOGICAL DISORDERS [0001] This application claims priority to and benefit of U.S. Provisional Patent Application No. 62/220,077, filed on September 17, 2015 and of U.S. Provisional Patent Application No. 62/220,087, filed on September 17, 2015. The contents of both these applications are herein incorporated by reference in their entirety. DESCRIPTION OF THE TEXT FILE SUBMITTED ELECTRONICALLY [0002] The contents of the text file submitted electronically herewith are incorporated herein by reference in their entirety: A computer readable format copy of the Sequence Listing (filename: SWCH_004_01WO_SeqList_ST25.txt, date recorded: September 16, 2016, file size 14.6 kilobytes). TECHNICAL FIELD [0003] The present invention generally relates to viral vectors encoding receptors, compositions, and related methods of use for treating neurological disorders, including managing pain. BACKGROUND OF THE INVENTION [0004] Hundreds of millions of people worldwide are affected by neurological disorders. It is currently estimated that there are over 600 different neurological disorders that affect people. Approximately 6.2 million people die because of stroke each year with over 80% of deaths in low- and middle-income countries. More than 50 million people suffer from epilepsy worldwide. It is estimated that there are globally 35.6 million people with dementia with 7.7 million new cases every year. Alzheimer's disease is the most common cause of dementia and may contribute to 60-70% of cases. The prevalence of migraine is more than 10% worldwide. More than 110 million Americans alone suffer from chronic pain. The financial burden of neurological disorders is significant. In the United States alone, the cost to treat neurological disorders is estimated to be over $800 billion a year. The global cost of treating neurological disorders is estimated to exceed $6 trillion by the year 2030. [0005] Chronic pain is one type of neurological disorder. Unrelieved chronic pain is a critical health problem in the US and worldwide. A report by the Institute of Medicine estimated that 116 million Americans suffer from pain that persists for weeks to years, with resulting annual costs exceeding $560 million. There are no adequate long-term therapies for chronic pain sufferers, leading to significant cost for both society and the individual. Pain often results in disability and, even when not disabling, it has a profound effect on the quality of life. Pain treatment frequently fails even when the circumstances of care delivery are optimal, such as attentive, well-trained physicians; ready access to opioids; use of adjuvant analgesics; availability of patient-controlled analgesia; and evidence-based use of procedures like nerve blocks and IT pumps. [0006] The most commonly used therapy for chronic pain is the application of opioid analgesics and nonsteroidal anti-inflammatory drugs, but these drugs can lead to addiction and may cause side effects, such as drug dependence, tolerance, respiratory depression, sedation, cognitive failure, hallucinations, and other systemic side effects. Despite the wide usage of pharmaceuticals, there is a strikingly low success rate for its effectiveness in pain relief. A large randomized study with various medications found only one out of every two or three patients achieving at least 50% pain relief (Finnerup et al, 2005). A follow-up study using the most developed pharmacological treatments found the same results, indicating that there was no improvement in the efficacy of medications for pain (Finnerup et al., Pain, 150(3):573-81, 2010). [0007] More invasive options for the treatment of pain include nerve blocks and electrical stimulation. A nerve block is a local anesthetic injection usually in the spinal cord to interrupt pain signals to the brain, the effect of which only lasts from weeks to months. Nerve blocks are not the recommended treatment option in most cases (Mailis and Taenzer, Pain Res Manag. 17(3): 150-158, 2012). Electrical stimulation involves providing electric currents to block pain signals. Although the effect may last longer than a nerve block, complications arise with the electrical leads itself: dislocation, infection, breakage, or the battery dying. One review found that 40% of patients treated with electrical stimulation for neuropathy experienced one or more of these issues with the device (Wolter, 2014). [0008] The most invasive, and least preferred, method for managing pain is complete surgical removal of the nerve or section thereof that is causing the pain. This option is only recommended when the patient has exhausted the former and other less invasive, treatments and found them ineffective. Radiofrequency nerve ablation uses heat to destroy problematic nerves and provides a longer pain relief than a nerve block. However, one study found no difference between the control and treatment groups in partial radiofrequency lesioning of the DRG for chronic lumbosacral radicular pain (Geurts et al., 2003). Other surgical methods for surgically removing the pain nerves suffer from similar shortcomings and have serious side effects long-term, including sensory or motor deficits, or cause pain elsewhere. [0009] Methods for treating neurological disorders should be safe, efficient and cost- effective. Gene therapy could provide non-invasive treatment options for a variety of neurological diseases, including managing pain. However, to date, gene therapy methods have not found widespread use in the treatment of neurological diseases. The key to gene therapy is selecting safe and highly efficient gene delivery systems that can deliver therapeutic genes to overexpress or suppress relevant targets in specific cell types. [0010] However, few delivery systems have been shown to be safe and efficient; thus, the promise of gene therapy for treating neurological disorders, including managing pain, has yet to be realized. SUMMARY OF THE INVENTION [001 1] The present invention provides polynucleotides, vectors, and related compositions for use in the gene therapy of neurological disorders and diseases. In one embodiment, the neurological disorder is pain (e.g., chronic or acute pain).
Recommended publications
  • Cellular and Genetic Bases of Cold Nociception and Nociceptive Sensitization in Drosophila Larvae
    The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 12-2016 Cellular and genetic bases of cold nociception and nociceptive sensitization in Drosophila larvae Heather N. Turner Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Molecular and Cellular Neuroscience Commons Recommended Citation Turner, Heather N., "Cellular and genetic bases of cold nociception and nociceptive sensitization in Drosophila larvae" (2016). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 714. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/714 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. CELLULAR AND GENETIC BASES OF COLD NOCICEPTION AND NOCICEPTIVE SENSITIZATION IN DROSOPHILA LARVAE by Heather Nicole Turner, B.S. APPROVED: _________________________
    [Show full text]
  • © 2008 Canadian Medical Association Or Its Licensors
    Early release, published at www.cmaj.ca on April 2, 2012. Subject to revision. March 28, 2012 After not eating for up to 11 days and working out four hours daily, Damian Mangat, then 16 years old, was still dissatisfied with her weight when she came across a novel proposition. While part of an outpatient program at a hospital in Toronto, she met a slender girl who disclosed her technique for keeping thin: drink alcohol while consuming no food. Mangat decided to give it a try. “I thought ‘perfect, I already love to drink when I can get it, and now I won’t have to worry about the dizziness because now when I need energy I can just take a shot of something,” she says. “It seemed to work. It seemed to be the magic answer for me.” Such a coupling of an eating disorder with alcohol abuse has been coined “drunkorexia.” Mangat, now 40 and a mature student at a university in Toronto, says the practice is common among college-age women and she often hears talk of foregoing food to save calories for alcohol. “The thinking is first of all, I’ll save the calories,” she says. “Secondly, I’ll get drunk on less and I’ll look good in what I’m wearing, and then later if I do end up eating, I can always throw it up because the booze makes it easy to throw it up.” Drunkorexia is not recognized in any clinical inventory but shares pop- psychology status with a number of other troublesome behaviours such as orthorexia (an extreme preoccupation with eating foods perceived to be healthy and avoiding foods that are not), manorexia (the male version of anorexia nervosa) and bridorexia (when a bride- to-be fasts to ensure she can fit into a certain size dress).
    [Show full text]
  • Alcohol Responsibly and Ending Tobacco Use, Plus Caffeine - Dr
    MHE-110 – Chapter Nine – Drinking Alcohol Responsibly and Ending Tobacco Use, plus Caffeine - Dr. Dave Shrock Chapter Nine Alcohol - an overview Alcohol and ending Tobacco Use 13th pp. 239-240; 12th pp. 232-223 • alcohol is the most widely used drug in the United (including caffeine) States • 86% of Americans consume alcohol 13th edition, pp. • 10% are heavy drinkers…who consume half of all the 241-269 alcohol produced 12th edition: • no other form of addiction or disability costs the US pp. 231-261 more than alcohol use/abuse annually Excessive alcohol use causes 88,000 deaths annually (chapter eight) twice as many as illicit drugs • lost work time, illness, insurance, accidents, medical costs take a toll on all of us…25% of all medical costs in the US are alcohol related Alcohol: The world’s most what is alcohol? dangerous drug? 13th, pp. 239-240; 12th pp. 232-233 The Lancet Medical Journal - 1 November, 2016 • alcohol is a byproduct of fermentation • In a recent article published in of vegetable or fruit pulp or ‘mash’ the British medical journal The this produces a concentration of Lancet, when considering the alcohol up to 14% drug’s damage to: • distillation is a further process by •one’s self capturing the vapors from heating • one’s family the mash, and mix this with water • the environment • proof is the measure of % of alcohol, which means the % • economic cost of alcohol is half of the ‘proof rating’ • Alcohol is the world’s most • some alcohol is 152 proof, or 71% alcohol most beers are damaging drug to individuals 8 proof, or 4% alcohol.
    [Show full text]
  • Operant Nociception in Nonhuman Primates ⇑ Brian D
    PAINÒ 155 (2014) 1821–1828 www.elsevier.com/locate/pain Operant nociception in nonhuman primates ⇑ Brian D. Kangas , Jack Bergman Harvard Medical School, McLean Hospital, Belmont, MA, USA Sponsorships or competing interests that may be relevant to content are disclosed at the end of this article. article info abstract Article history: The effective management of pain is a longstanding public health concern. Morphine-like opioids have Received 22 April 2014 long been front-line analgesics, but produce undesirable side effects that can limit their application. Slow Received in revised form 10 June 2014 progress in the introduction of novel improved medications for pain management over the last 5 decades Accepted 16 June 2014 has prompted a call for innovative translational research, including new preclinical assays. Most current in vivo procedures (eg, tail flick, hot plate, warm water tail withdrawal) assay the effects of nociceptive stimuli on simple spinal reflexes or unconditioned behavioral reactions. However, clinical treatment Keywords: goals may include the restoration of previous behavioral activities, which can be limited by medica- Nociception assay tion-related side effects that are not measured in such procedures. The present studies describe an appa- Operant behavior Thermal pull ratus and procedure to study the disruptive effects of nociceptive stimuli on voluntary behavior in l-Opioids nonhuman primates, and the ability of drugs to restore such behavior through their analgesic actions. Opioid efficacy Squirrel monkeys were trained to pull a cylindrical thermode for access to a highly palatable food. Next, NOP agonists sessions were conducted in which the temperature of the thermode was increased stepwise until Squirrel monkey responding stopped, permitting the determination of stable nociceptive thresholds.
    [Show full text]
  • The Role of Substance P in Opioid Induced Reward
    The Role of Substance P in Opioid Induced Reward Item Type text; Electronic Dissertation Authors Sandweiss, Alexander Jordan Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 02/10/2021 14:53:26 Link to Item http://hdl.handle.net/10150/621568 THE ROLE OF SUBSTANCE P IN OPIOID INDUCED REWARD by Alexander J. Sandweiss __________________________ Copyright © Alexander J. Sandweiss 2016 A Dissertation Submitted to the Faculty of the DEPARTMENT OF PHARMACOLOGY In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2016 1 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by Alexander J. Sandweiss, titled The Role of Substance P in Opioid Induced Reward and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy. _______________________________________________________________ Date: June 13, 2016 Edward D. French, Ph.D. _______________________________________________________________ Date: June 13, 2016 Rajesh Khanna, Ph.D. _______________________________________________________________ Date: June 13, 2016 Victor H. Hruby, Ph.D. _______________________________________________________________ Date: June 13, 2016 Naomi Rance, M.D., Ph.D. _______________________________________________________________ Date: June 13, 2016 Todd W. Vanderah, Ph.D. Final approval and acceptance of this dissertation is contingent upon the candidate’s submission of the final copies of the dissertation to the Graduate College.
    [Show full text]
  • Central Targeting of Trigeminal Primary Afferent Nerve Terminals Via Intracisternal Injection of Rtx and Its Effect on Pain Behavior
    CENTRAL TARGETING OF TRIGEMINAL PRIMARY AFFERENT NERVE TERMINALS VIA INTRACISTERNAL INJECTION OF RTX AND ITS EFFECT ON PAIN BEHAVIOR By MELANIE M. WEXEL A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2008 1 © 2008 Melanie M. Wexel 2 To my Mom, for inspiring me to continue education 3 ACKNOWLEDGMENTS I thank my committee chair (John Neubert, DDS, PhD) and my committee members (Robert Caudle, PhD and Calegero Dolce, DDS, PhD). I would also like to thank Heather Rossi, Alan Jenkins, Jean Kaufman, and Wendi Malphurs for assisting with the laboratory experiments. Also, I would like to acknowledge the NIH grant #R21 DE16704-01A1 and the Southern Association of Orthodontics grant for financial support. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS ...............................................................................................................4 LIST OF FIGURES .........................................................................................................................6 LIST OF ABBREVIATIONS..........................................................................................................7 ABSTRACT.....................................................................................................................................8 CHAPTER 1 INTRODUCTION ....................................................................................................................9 Background...............................................................................................................................9
    [Show full text]
  • Virtual Proposals: Studying the Effects of Age on Pain Perception In
    The Journal of Biological Sciences Virtual Proposals: Studying the effects of age on pain perception in Drosophila melanogaster Jenny Pan, Taylor O’Rourke, Meghan Wachira, Manpreet Kaur, Ubaidah Khan Department of Biology, Rutgers University, Camden, N.J. 08102 Abstract of this paper, the elderly are defined as individuals 65 and Pain is described as an unpleasant sensory and emotional older. It is projected by the United States Census that by 2030, experience correlated with tissue damage. Pain can manifest nearly 20 percent of the US population will represent the itself into several forms such as acute and chronic. While elderly. As the elderly population grows, the percentage of aging is often accompanied with pain, little is known about chronic pain patients in this population will increase. how the aging process impacts each. Currently, there are However, a significant number of individuals that experience conflicting studies on how pain sensitivity changes over a chronic pain may go unidentified by medical professionals. lifetime. Various studies suggest that pain perception Chronic pain in elderly individuals is often not detected, decreases as an individual ages, while opposing studies leading to a lack of treatment of chronic pain states in these suggest that pain perception increases with age. Our study individuals (Kaye et al., 2010). In a geriatric nursing home, uses thermally induced noxious stimuli to test pain among researchers found that 66% of the residents dealt with various age-groups in Drosophila melanogaster. The short chronic pain, yet 34% of the cases were undetected by life span of D. melanogaster allows for age-related research to be conducted.
    [Show full text]
  • Evaluation of a Sustained-Release Formulation of Buprenorphine for Analgesia in Rats
    Journal of the American Association for Laboratory Animal Science Vol 50, No 2 Copyright 2011 March 2011 by the American Association for Laboratory Animal Science Pages 198–204 Evaluation of a Sustained-Release Formulation of Buprenorphine for Analgesia in Rats Patricia L Foley,1,* Haixiang Liang,2 and Andrew R Crichlow3 Preventing and minimizing pain in laboratory animals is a basic tenet of biomedical research and is warranted for ethical, legal, and scientific reasons. Postoperative analgesia is an important facet of pain management. A sustained-release formulation of buprenorphine was tested in rats for analgesic efficacy and plasma concentration over a 72-h time period. Rats were injected subcutaneously with either 1.2 mg/kg sustained-release formulation (Bup-SR), 0.2 mL/kg buprenorphine HCl (Bup-HCl), or an equivalent volume of sustained-release vehicle and tested in a thermal nociception model or a surgical postoperative pain model. In both models, Bup-SR showed evidence of providing analgesia for 2 to 3 d. Thermal latency response in rats that received the sustained-release formulation increased 28.4% and 15.6% compared with baseline values on days 1 and 2, respectively. Rats with a unicortical tibial defect and treated with Bup-SR showed similar willingness to bear weight on the hindlimbs as did negative-control animals (no surgery), demonstrated by counting vertical raises; rats treated with Bup-HCl had significantly fewer vertical raises than did control rats for 5 d after surgery. Plasma concentrations of buprenorphine remained over 1 ng/mL for 72 h after a single dose of Bup-SR.
    [Show full text]
  • A Genetic Screen for Wnt Signaling Factors That Regulate Drosophila Melanogaster Nociception
    A GENETIC SCREEN FOR WNT SIGNALING FACTORS THAT REGULATE DROSOPHILA MELANOGASTER NOCICEPTION A Thesis By PAUL RICHARD FREEMAN Submitted to the Graduate School At Appalachian State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 2017 Department of Biology A GENETIC SCREEN FOR WNT SIGNALING FACTORS THAT REGULATE DROSOPHILA MELANOGASTER NOCICEPTION A Thesis By PAUL RICHARD FREEMAN May 2017 APPROVED BY: ______________________________________ Dr. Andrew Bellemer Chairperson, Thesis Committee ______________________________________ Dr. Ece Karatan Member, Thesis Committee ______________________________________ Dr. Cortney Bouldin Member, Thesis Committee ______________________________________ Dr. Zack Murrell Chairperson, Department of Biology ______________________________________ Dr. Max C. Poole Dean, Research Graduate Studies Copyright by Paul Richard Freeman All Rights Reserved Abstract A GENETIC SCREEN FOR WNT SIGNALING FACTORS THAT REGULATE DROSOPHILA MELANOGASTER NOCICEPTION Paul Richard Freeman B.S., University of North Carolina at Pembroke M.S., Appalachian State University Chairperson: Dr. Andrew Bellemer The mechanisms that regulate the transduction of noxious stimuli and generation of appropriate behavioral responses in Drosophila melanogaster are not fully understood. In larvae, Class IV multidendritic neurons are highly branched sensory neurons that are responsible for detecting noxious chemical, thermal, or mechanical stimuli and generating appropriate behavioral responses. Recent studies have demonstrated involvement of Wnt signaling in regulating nociception and the development of chronic pain in vertebrate models, but the underlying cellular and molecular mechanisms are still not understood. In order to better understand the roles of Wnt signaling in Drosophila nociception, I have selected 53 Wnt signaling-related genes and obtained UAS-RNAi lines for each from the Drosophila TRIP collection for an RNAi screen for nociception defects.
    [Show full text]
  • Drunkorexia and Gender Role Conformity
    University of Northern Colorado Scholarship & Creative Works @ Digital UNC Dissertations Student Research 8-2020 Drunkorexia and Gender Role Conformity Sarah Zwetzig Follow this and additional works at: https://digscholarship.unco.edu/dissertations Recommended Citation Zwetzig, Sarah, "Drunkorexia and Gender Role Conformity" (2020). Dissertations. 694. https://digscholarship.unco.edu/dissertations/694 This Text is brought to you for free and open access by the Student Research at Scholarship & Creative Works @ Digital UNC. It has been accepted for inclusion in Dissertations by an authorized administrator of Scholarship & Creative Works @ Digital UNC. For more information, please contact [email protected]. © 2020 SARAH ZWETZIG ALL RIGHTS RESERVED UNIVERSITY OF NORTHERN COLORADO Greeley, Colorado The Graduate School DRUNKOREXIA AND GENDER ROLE CONFORMITY A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Sarah Zwetzig College of Education and Behavioral Sciences Department of Applied Psychology and Counselor Education August 2020 This Dissertation by: Sarah Zwetzig Entitled: Drunkorexia and Gender Role Conformity. has been approved as meeting the requirements for the Degree of Doctor of Philosophy in College of Education and Behavioral Sciences in Department of Applied Psychology and Counselor Education. Accepted by the Doctoral Committee: ___________________________________________________ Basilia Softas-Nall, Ph.D., Research Advisor ___________________________________________________
    [Show full text]
  • Pain in Flies
    NIH Public Access Author Manuscript Dev Dyn. Author manuscript; available in PMC 2012 January 16. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Dev Dyn. 2012 January ; 241(1): 16±26. doi:10.1002/dvdy.22737. Pokes, Sunburn, and Hot Sauce: Drosophila as an Emerging Model for the Biology of Nociception Seol Hee Im1 and Michael J. Galko1,2,3,* 1Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 2Genes and Development Graduate Program, University of Texas Graduate School of Biomedical Sciences, Houston, Texas 3Neuroscience Graduate Program, University of Texas Graduate School of Biomedical Sciences, Houston, Texas Abstract The word “nociception” is derived from the Latin “nocere,” which means “to harm.” Nociception refers to the sensory perception of noxious stimuli that have the potential to cause tissue damage. Since the perception of such potentially harmful stimuli often results in behavioral escape responses, nociception provides a protective mechanism that allows an organism to avoid incipient (or further) damage to the tissue. It appears to be universal in metazoans as a variety of escape responses can be observed in both mammalian and non-mammalian vertebrates, as well as diverse invertebrates such as leeches, nematodes, and fruit flies (Sneddon [2004] Brain Research Review 46:123–130; Tobin and Bargmann [2004] Journal of Neurobiology 61:161–174; Smith and Lewin [2009] Journal of Comparative Physiology 195:1089–1106). Several types of stimuli can trigger nociceptive sensory transduction, including noxious heat, noxious chemicals, and harsh mechanical stimulation. Such high-threshold stimuli induce the firing of action potentials in peripheral nociceptors, the sensory neurons specialized for their detection (Basbaum et al.
    [Show full text]
  • Review Scottish
    INNOVATION TECHNOLOGY HEALTHCARE PHARMACY Scottish Review BIOSIMILAR MEDICINES WHAT YOU NEED TO KNOW CPD AN UPDATE WORD ON THE STREET HOMELESSNESS AND PHARMACISTS DOLLY THE SHEEP A 20-YEAR LEGACY SUMMER SPECIAL 2017 HEALTH HAZARDS IN THE SPOTLIGHT ISSUE 116 - 2017 VISIT US AT WWW.SCOTHEALTHCARE.COM 5688 QIPP advertorial in Northern Ireland Healthcare Review (NIH) v1.qxp_QIPP Zeroderma advertorial 18/01/2017 13:43 Page 1 wIdER CHoICE, GREATER SAvINGS FRom THE ZERodERmA RANGE How much could you save on emollient prescribing? The Zeroderma emollient range offers a choice of four creams, one ointment, Survey shows benefits of ® 19% Zerodouble Emollient Gel cost saving one gel and two bath additives - per pack providing complete emollient therapy Results from a recent survey with over 300 members of ® for moisturising, washing and bathing. the Psoriasis Association using Zerodouble emollient Gel showed that 97% liked the feel of Zerodouble Gel, 91% All Zeroderma products are gentle on said it was as good as or better than their current emollient the skin and do not contain the harmful and 84% wanted to continue using Zerodouble Gel. irritant sodium lauryl sulfate (SlS). Zeroderm® ointment – convenient 37% Zeroderma products are similar in formulation cost saving to around 50% of emollients currently 3-in-1 emollient therapy per pack prescribed by CCGs and offer cost savings SLS-free Zeroderm® Ointment provides a rich of up to 37%, with no compromise on 3-in-1 emollient for the management of eczema and dry skin conditions. Zeroderm Ointment can patient care. Around 75% of formularies and be used as a skin cleanser, a bath additive and as a leave-on moisturiser.
    [Show full text]