Borrelia Burgdorferi Induces TLR1 and TLR2 in Human Microglia and Peripheral Blood Monocytes but Differentially Regulates HLA-Class II Expression
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Duffy, and Mnss Group Systems
Blood Groups – Duffy, and MNSs Group Systems Qun Lu, MD Assistant Professor Division of Transfusion Medicine Department of Pathology and Laboratory Medicine UCLA, School of Medicine Los Angeles, California 2009-03-12 Duffy Blood Group System History . 1950: Mrs. Duffy, a multiply transfused hemophiliac woman, developed an antibody not reacting with the known RBC antigens. Corresponding antigen was named after Mrs. Duffy . 1951: Fyb antibody was described in a woman with 3 pregnancies. 1955: Majority of blacks tested Fy(a-b-) . 1975: Fy(a-b-) RBCs were shown to resist infection by malaria organism Plasmodium vivax. Later: more Duffy antigens (Fy3, Fy4, Fy5, Fy6) were discovered . ISBT: 008 for the Duffy Blood Group Duffy Antigens . Most common: Fya and Fyb. Present at 6 weeks of gestation, well developed at birth – anti- Fy can cause hemolytic disease of newborn . Duffy antigens can be destroyed by enzymes such as ficin, papain, bromelain, chymotrypsin, ZZAP . When compared to Rh or Kell antigens, Duffy antigens are not very immunogenic. So, anti-Fya or anti-Fyb is not common. Fy (a-b-) is not Fy null, but homozygous for Fyb gene, they express Fyb antigen in other tissues, but not on RBCs → only will produce anti-Fya, not anti-Fyb. Fy (a-b-) is negative for Fy6 antigen which is the receptor for P. vivax (Fy6 is + when Fya + or Fyb+) Duffy Antigens . Phenotype Frequencies Chinese Phenotype Whites % Blacks % % Fy (a+b-) 17 9 90.8 Fy (a+b+) 49 1 8.9 Fy (a-b+) 34 22 0.3 Fy (a-b-) rare 68 0 White donor population: Fya: 66% Caucasians, 10% Blacks, 99% Asians Fya – units: 35% Fyb: 83% Caucasians, 23% Blacks, 18.5% Asians Fyb – units: 15% Fy3: 100% Caucasians, 32% Blacks, 99.9% Asians Duffy Antigens . -
Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only. -
Cox Inhibitors and Thromboregulation
CLINICAL IMPLICATIONS OF BASIC RESEARCH Clinical Implications shown the importance of eicosanoids in preserving of Basic Research the dynamic balance among thrombosis, hemostasis, and the fluidity of blood. Recently, Cheng et al.1 presented compelling evi- dence that cell–cell interactions, principally between platelets and endothelial cells, that are mediated by ei- COX INHIBITORS cosanoids have a role in thrombosis. Using genetical- AND THROMBOREGULATION ly engineered mice that either overexpressed or lacked essential components of the eicosanoid pathway — ROM a historical perspective, there is perhaps no namely, receptors for prostacyclin (a platelet inhibitor Fmore interesting therapeutic saga than that of as- and vasodilator) or thromboxane A2 (a platelet agonist pirin, which began as a folk remedy, distilled from wil- and vasoconstrictor) — they found that the response low bark, and became a lifesaving preventive treatment of the intima of carotid vessels to mechanical injury is for ischemic cardiovascular disease. Aspirin primarily exuberant and leads to obstruction in mice lacking the inhibits the cyclooxygenase (COX)-dependent synthe- prostacyclin receptor. However, this response is muted sis of eicosanoids, which are the end products of me- in mice lacking the thromboxane A2 receptor or both tabolism of essential fatty acids and include prosta- receptors. In mice lacking the prostacyclin receptor cyclin and thromboxane A2. Numerous studies have (a defect that mimics the effects of COX-2–selective Endothelial cell Resting platelet Thromboxane A2 Soluble Stimulation CD39 Arachidonic acid Stimulated platelet COX inhibitor ATP and ADP Prostacyclin Nitric oxide AMP Carbon monoxide CD39 Resting platelet Figure 1. Effect on Platelet Reactivity of the Eicosanoids Thromboxane A2 and Prostacyclin, the Biologic Gases Nitric Oxide and Carbon Monoxide, and the Ectonucleotidase CD39. -
Overexpression of LAMP3/TSC403/DC-LAMP Promotes Metastasis in Uterine Cervical Cancer
Research Article Overexpression of LAMP3/TSC403/DC-LAMP Promotes Metastasis in Uterine Cervical Cancer Hiroyuki Kanao,1 Takayuki Enomoto,1 Toshihiro Kimura,1 Masami Fujita,1 Ryuichi Nakashima,1 Yutaka Ueda,1 Yuko Ueno,1 Takashi Miyatake,1 Tatsuo Yoshizaki,1 Gregory S. Buzard,2 Akira Tanigami,3 Kiyoshi Yoshino,1 and Yuji Murata1 1Department of Obstetrics and Gynecology, Osaka University Faculty of Medicine, Osaka, Japan; 2Basic Research Program, Science Applications International Corporation-Frederick, Frederick, Maryland; and 3Fujii Memorial Research Institute, Otsuka Pharmaceutical, Co., Ltd, Shiga, Japan Abstract amino-acid protein that is the third member of the lysosome- associated membrane glycoprotein (LAMP) family; thus, the LAMP3 (DC-LAMP, TSC403, CD208) was originally isolated as a gene specifically expressed in lung tissues. LAMP3 is located HUGO Gene Nomenclature Committee has designated this gene on a chromosome 3q segment that is frequently amplified in and its protein LAMP3/LAMP3, respectively. We will use the some human cancers, including uterine cervical cancer. LAMP3 nomenclature for the protein and LAMP3 for the gene Because two other members of the LAMP family of lysosomal throughout, although DC-LAMP has been used more frequently membrane glycoproteins, LAMP1 and LAMP2, were previ- in the literature. LAMP3 is a member of the LAMP family. ously implicated in potentially modulating the interaction of LAMP1 and LAMP2 are located primarily in the lysosomal vascular endothelial and cancer cells, we hypothesized that membrane and are rarely present on the surface of normal cells LAMP3 might also play an important part in metastasis. To (3). They are the major carriers for poly-N-acetyllactosamines, x clarify the metastatic potential of LAMP3 in cervical cancers, including those with sialyl-Le termini (4, 5), which are critical we transfected a LAMP3 expression vector into a human ligands for the E-selectin present on endothelial cells and x uterine cervical cancer cell line, TCS. -
Proteomic and Functional Characterisation of LILRA3: Role In
Proteomic and Functional Characterisation of LILRA3: Role in Inflammation Terry Hung-Yi Lee A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Faculty of Medicine The University of New South Wales 2014 PLEASE TYPE THE UNIVERSITY OF NEW SOUTH WALES Thosis/Dissertatlon Sh09t Surname or Fam1ly name L l .... f.- First name / 'f (Z (1. 1 Other name/s H "'" ~ - \'I Abbre111at1on lor degree as given in the University calendar. Pt> .fh •I "!.1 '.j 17 J/ 0 School f t. t,...., ..> I <>f lVI e.~, u1 f <J t.r-UJ Faculty: M e. o1; c.• " e Tlrte Pr,te.;) ""l(. (j. f' il ,: ..... d .;" "' u"'"r &- d·er;..c&.L J .<\ ~ l/<.tf. Al: ~ " ' ~ ..... , ...., ~~~"""'" " "'~" Abstract 350 word s ma•imum: (PLEASE TYPE) Se e (f'JicJE' -------- Declaration relating to disposition of project thos tsldissortation I hereby grant to the Un1vers1ty of New South Wales or rts agents the nght to areh1ve and to make avatlabte my theSIS or dissertation '" whole or 1n part 1n the University libranes in all forms of media. now or here after known. subject to the provisions of the Copyright Act 1968 I retain all property nghts such as patent nghts I also retain the right to use in future works (such as artldes or bOOks) all or pan of this thesis or dlssenat1on I also authonse Un1vers1ty Microfilms to use the 350 word abstract of my thesis In Dissertation Abstracts International (this is appticable to doctoral ~~· ~l.A I Po .~.. <j 'I fJs JV VJignatur~ J1 Witness Date The Un1vers1ty recogn•ses that there may be exceptional circumstances requinng restrictions on copying or conditions on use. -
Anti-LYN Monoclonal Antibody, Clone 2285DU33.4.2.2 (DCABY-1218) This Product Is for Research Use Only and Is Not Intended for Diagnostic Use
Anti-LYN monoclonal antibody, clone 2285DU33.4.2.2 (DCABY-1218) This product is for research use only and is not intended for diagnostic use. PRODUCT INFORMATION Antigen Description Non-receptor tyrosine-protein kinase that transmits signals from cell surface receptors and plays an important role in the regulation of innate and adaptive immune responses, hematopoiesis, responses to growth factors and cytokines, integrin signaling, but also responses to DNA damage and genotoxic agents. Functions primarily as negative regulator, but can also function as activator, depending on the context. Required for the initiation of the B-cell response, but also for its down- regulation and termination. Plays an important role in the regulation of B-cell differentiation, proliferation, survival and apoptosis, and is important for immune self-tolerance. Acts downstream of several immune receptors, including the B-cell receptor, CD79A, CD79B, CD5, CD19, CD22, FCER1, FCGR2, FCGR1A, TLR2 and TLR4. Plays a role in the inflammatory response to bacterial lipopolysaccharide. Mediates the responses to cytokines and growth factors in hematopoietic progenitors, platelets, erythrocytes, and in mature myeloid cells, such as dendritic cells, neutrophils and eosinophils. Acts downstream of EPOR, KIT, MPL, the chemokine receptor CXCR4, as well as the receptors for IL3, IL5 and CSF2. Plays an important role in integrin signaling. Regulates cell proliferation, survival, differentiation, migration, adhesion, degranulation, and cytokine release. Down- regulates signaling pathways by phosphorylation of immunoreceptor tyrosine-based inhibitory motifs (ITIM), that then serve as binding sites for phosphatases, such as PTPN6/SHP-1, PTPN11/SHP-2 and INPP5D/SHIP-1, that modulate signaling by dephosphorylation of kinases and their substrates. -
ITGB6-Knockout Suppresses Cholangiocarcinoma Cell Migration and Invasion with Declining PODXL2 Expression
International Journal of Molecular Sciences Article ITGB6-Knockout Suppresses Cholangiocarcinoma Cell Migration and Invasion with Declining PODXL2 Expression Yurie Soejima 1,*,† , Miho Takeuchi 1, Nao Miyamoto 1, Motoji Sawabe 1 and Toshio Fukusato 2,† 1 Department of Molecular Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; [email protected] (M.T.); [email protected] (N.M.); [email protected] (M.S.) 2 General Medical Education and Research Center, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 178-8605, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-3-5803-5375 † These authors contributed equally to this work. Abstract: Intrahepatic cholangiocarcinoma (iCCA) is a heterogeneous bile duct cancer with a poor prognosis. Integrin αvβ6 (β6) has been shown to be upregulated in iCCA and is associated with its subclassification and clinicopathological features. In the present study, two ITGB6-knockout HuCCT1 CCA cell lines (ITGB6-ko cells) were established using the clustered regulatory interspaced short palindromic repeats (CRISPR), an associated nuclease 9 (Cas9) system, and single-cell cloning. RNA sequencing analysis, real-time polymerase chain reaction (PCR), and immunofluorescent methods were applied to explore possible downstream factors. ITGB6-ko cells showed significantly decreased expression of integrin β6 on flow cytometric analysis. Both cell lines exhibited significant inhibition of cell migration and invasion, decreased wound-healing capability, decreased colony formation ability, and cell cycle dysregulation. RNA sequencing and real-time PCR analysis revealed a remarkable Citation: Soejima, Y.; Takeuchi, M.; decrease in podocalyxin-like protein 2 (PODXL2) expression in ITGB6-ko cells. -
Elements of Immunoglobulin E Network Associate with Aortic Valve Area in Patients with Acquired Aortic Stenosis
biomedicines Communication Elements of Immunoglobulin E Network Associate with Aortic Valve Area in Patients with Acquired Aortic Stenosis Daniel P. Potaczek 1,2,† , Aleksandra Przytulska-Szczerbik 2,†, Stanisława Bazan-Socha 3 , Artur Jurczyszyn 4, Ko Okumura 5, Chiharu Nishiyama 6, Anetta Undas 2,7,‡ and Ewa Wypasek 2,8,*,‡ 1 Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, 35043 Marburg, Germany; [email protected] 2 Krakow Center for Medical Research and Technology, John Paul II Hospital, 31-202 Krakow, Poland; [email protected] (A.P.-S.); [email protected] (A.U.) 3 Department of Internal Medicine, Jagiellonian University Medical College, 31-066 Krakow, Poland; [email protected] 4 Department of Hematology, Jagiellonian University Medical College, 31-501 Krakow, Poland; [email protected] 5 Atopy Research Center, Juntendo University School of Medicine, Tokyo 113-8421, Japan; [email protected] 6 Laboratory of Molecular Biology and Immunology, Department of Biological Science and Technology, Tokyo University of Science, Tokyo 125-8585, Japan; [email protected] 7 Institute of Cardiology, Jagiellonian University Medical College, 31-202 Krakow, Poland 8 Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, 30-705 Krakow, Poland * Correspondence: [email protected]; Tel.: +48-12-614-31-35 † These first authors contributed equally to this work. ‡ These last authors contributed equally to this work. Abstract: Allergic mechanisms are likely involved in atherosclerosis and its clinical presentations, Citation: Potaczek, D.P.; Przytulska-Szczerbik, A.; Bazan-Socha, such as coronary artery disease (CAD). -
Supplementary Table 1: Adhesion Genes Data Set
Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like, -
Flow Reagents Single Color Antibodies CD Chart
CD CHART CD N° Alternative Name CD N° Alternative Name CD N° Alternative Name Beckman Coulter Clone Beckman Coulter Clone Beckman Coulter Clone T Cells B Cells Granulocytes NK Cells Macrophages/Monocytes Platelets Erythrocytes Stem Cells Dendritic Cells Endothelial Cells Epithelial Cells T Cells B Cells Granulocytes NK Cells Macrophages/Monocytes Platelets Erythrocytes Stem Cells Dendritic Cells Endothelial Cells Epithelial Cells T Cells B Cells Granulocytes NK Cells Macrophages/Monocytes Platelets Erythrocytes Stem Cells Dendritic Cells Endothelial Cells Epithelial Cells CD1a T6, R4, HTA1 Act p n n p n n S l CD99 MIC2 gene product, E2 p p p CD223 LAG-3 (Lymphocyte activation gene 3) Act n Act p n CD1b R1 Act p n n p n n S CD99R restricted CD99 p p CD224 GGT (γ-glutamyl transferase) p p p p p p CD1c R7, M241 Act S n n p n n S l CD100 SEMA4D (semaphorin 4D) p Low p p p n n CD225 Leu13, interferon induced transmembrane protein 1 (IFITM1). p p p p p CD1d R3 Act S n n Low n n S Intest CD101 V7, P126 Act n p n p n n p CD226 DNAM-1, PTA-1 Act n Act Act Act n p n CD1e R2 n n n n S CD102 ICAM-2 (intercellular adhesion molecule-2) p p n p Folli p CD227 MUC1, mucin 1, episialin, PUM, PEM, EMA, DF3, H23 Act p CD2 T11; Tp50; sheep red blood cell (SRBC) receptor; LFA-2 p S n p n n l CD103 HML-1 (human mucosal lymphocytes antigen 1), integrin aE chain S n n n n n n n l CD228 Melanotransferrin (MT), p97 p p CD3 T3, CD3 complex p n n n n n n n n n l CD104 integrin b4 chain; TSP-1180 n n n n n n n p p CD229 Ly9, T-lymphocyte surface antigen p p n p n -
Analysis of RNA Expression Profiles Identifies Dysregulated Vesicle Trafficking Pathways in Creutzfeldt-Jakob Disease
Molecular Neurobiology (2019) 56:5009–5024 https://doi.org/10.1007/s12035-018-1421-1 Analysis of RNA Expression Profiles Identifies Dysregulated Vesicle Trafficking Pathways in Creutzfeldt-Jakob Disease Anna Bartoletti-Stella1 & Patrizia Corrado2 & Nicola Mometto2 & Simone Baiardi2 & Pascal F. Durrenberger3 & Thomas Arzberger4,5 & Richard Reynolds6 & Hans Kretzschmar5 & Sabina Capellari1,2 & Piero Parchi1,7 Received: 18 July 2018 /Accepted: 1 November 2018 /Published online: 16 November 2018 # Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract Functional genomics applied to the study of RNA expression profiles identified several abnormal molecular processes in experimental prion disease. However, only a few similar studies have been carried out to date in a naturally occurring human prion disease. To better characterize the transcriptional cascades associated with sporadic Creutzfeldt-Jakob disease (sCJD), the most common human prion disease, we investigated the global gene expression profile in samples from the frontal cortex of 10 patients with sCJD and 10 non-neurological controls by microarray analysis. The comparison identified 333 highly differentially expressed genes (hDEGs) in sCJD. Functional enrichment Gene Ontology analysis revealed that hDEGs were mainly associated with synaptic transmission, including GABA (q value = 0.049) and glutamate (q value = 0.005) signaling, and the immune/ inflammatory response. Furthermore, the analysis of cellular components performed on hDEGs showed a compromised regu- lation of vesicle-mediated transport with mainly up-regulated genes related to the endosome (q value = 0.01), lysosome (q value = 0.04), and extracellular exosome (q value < 0.01). A targeted analysis of the retromer core component VPS35 (vacuolar protein sorting-associated protein 35) showed a down-regulation of gene expression (p value= 0.006) and reduced brain protein levels (p value= 0.002). -
CD Markers Are Routinely Used for the Immunophenotyping of Cells
ptglab.com 1 CD MARKER ANTIBODIES www.ptglab.com Introduction The cluster of differentiation (abbreviated as CD) is a protocol used for the identification and investigation of cell surface molecules. So-called CD markers are routinely used for the immunophenotyping of cells. Despite this use, they are not limited to roles in the immune system and perform a variety of roles in cell differentiation, adhesion, migration, blood clotting, gamete fertilization, amino acid transport and apoptosis, among many others. As such, Proteintech’s mini catalog featuring its antibodies targeting CD markers is applicable to a wide range of research disciplines. PRODUCT FOCUS PECAM1 Platelet endothelial cell adhesion of blood vessels – making up a large portion molecule-1 (PECAM1), also known as cluster of its intracellular junctions. PECAM-1 is also CD Number of differentiation 31 (CD31), is a member of present on the surface of hematopoietic the immunoglobulin gene superfamily of cell cells and immune cells including platelets, CD31 adhesion molecules. It is highly expressed monocytes, neutrophils, natural killer cells, on the surface of the endothelium – the thin megakaryocytes and some types of T-cell. Catalog Number layer of endothelial cells lining the interior 11256-1-AP Type Rabbit Polyclonal Applications ELISA, FC, IF, IHC, IP, WB 16 Publications Immunohistochemical of paraffin-embedded Figure 1: Immunofluorescence staining human hepatocirrhosis using PECAM1, CD31 of PECAM1 (11256-1-AP), Alexa 488 goat antibody (11265-1-AP) at a dilution of 1:50 anti-rabbit (green), and smooth muscle KD/KO Validated (40x objective). alpha-actin (red), courtesy of Nicola Smart. PECAM1: Customer Testimonial Nicola Smart, a cardiovascular researcher “As you can see [the immunostaining] is and a group leader at the University of extremely clean and specific [and] displays Oxford, has said of the PECAM1 antibody strong intercellular junction expression, (11265-1-AP) that it “worked beautifully as expected for a cell adhesion molecule.” on every occasion I’ve tried it.” Proteintech thanks Dr.