Hematopoietic Cytokines, Transcription Factors and Lineage Commitment

Total Page:16

File Type:pdf, Size:1020Kb

Hematopoietic Cytokines, Transcription Factors and Lineage Commitment Oncogene (2002) 21, 3295 ± 3313 ã 2002 Nature Publishing Group All rights reserved 0950 ± 9232/02 $25.00 www.nature.com/onc Hematopoietic cytokines, transcription factors and lineage commitment Jiang Zhu1,2 and Stephen G Emerson*,1,2 1Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, PA 19104, USA; 2Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, PA 19104, USA The past two decades have witnessed signi®cant advances achieved by using many fewer stem cell-enriched cells, in our understanding of the cellular physiology and isolated by any one of a variety of methods, either from molecular regulation of hematopoiesis. At the heart of bone marrow, peripheral blood or fetal liver. Most stem cell self-renewal and lineage commitment decisions recently, careful studies suggest that within the subset lies the relative expression levels of lineage-speci®c of cells previously viewed as uniquely hematopoietic transcription factors. The expression of these transcrip- stem cells may lie a subset with truly multi-lineage tion factors in early stem cells may be promiscuous and hematopoietic potential, capable of giving rise to many ¯uctuate, but ultimately comes under the in¯uence of non-hematopoietic lineages as well, including myocytes, extracellular regulatory signals in the form of hemato- epithelial cells, hepatocytes, and neurons. poietic cytokines. In this review, we ®rst summarize our The phenotypic speci®cation has become progres- current understanding of the phenotypic characterization sively more sophisticated over the past two decades. of hematopoietic stem cells. Next, we describe key Although the precise relationship between cell surface known transcription factors which govern stem cell self- phenotype and cellular plasticity within the stem cell renewal and lineage commitment decisions. Finally, we compartment is still not clear, the murine Sca-1+ C- review data concerning the role of speci®c cytokines in kit+ Lin7 (SKL) population clearly contain most, if in¯uencing these decisions. From this review, a picture not all of the cells with HSC potential, and the same is emerges in which stem cell fate decisions are governed by likely true of the equivalent population in humans. the integrated eects of intrinsic transcription factors This SKL population is further characterized by the and external signaling pathways initiated by regulatory dierential expression of CD34 and CD38, with SKL cytokines. cells being functionally divided between CD34+ and Oncogene (2002) 21, 3295 ± 3313. DOI: 10.1038/sj/ CD347/lo sub-populations. The CD34+ cells provided onc/1205318 immediate radioprotection for lethally irradiated recipient mice while CD347/lo cells were responsible Keywords: transcription factor; cytokines; hematopoi- for long-term reconstitution of both myeloid and esis lymphoid lineages (Osawa et al., 1996). The authors postulated that CD34+ sub-population basically con- sists of multilineage progenitor cells with low self- renewal capacity, while the real stem cells are The cell biology of primitive stem cells contained in CD347/lo fraction. Similarly, it was recently reported that only the descendants from Diverse results from many experimental systems CD38+CD347 SKL cells, but not from CD34+ SKL indicate that the proliferative and self-renewal capacity cells could be easily detected in the re-constituted BM of a given hematopoietic cell, as well as the diversity of cells in lethally irradiated secondary, and tertiary lineages to which it can dierentiate, decrease progres- recipients over a long term (Zhao et al., 2000). sively with dierentiation (Figure 1). In the now Developmentally, there are two waves of hematopoi- classical view, the earliest cell in this hierarchy is the esis, so probably with two corresponding origins for pluripotent hematopoietic stem cell (HSC), whose HSCs (Ciau-Uitz et al., 2000). Primitive hematopoiesis, existence was demonstrated by serial bone marrow distinguished from de®nitive hematopoiesis by large transplantation (BMT) experiments. In these studies, all and nucleated erythrocytes and speci®cally expressed lineages of derived hematopoiesis could be successfully fetal hemoglobin isoforms, occurs as a transient wave reconstituted in lethally irradiated tertiary recipient preceding the advent of de®nitive hematopoiesis. mice by bone marrow cells from secondary recipients. Primitive hematopoiesis in the mouse begins within Furthermore, successful reconstitution could also be the blood islands in yolk sac around 7.5 days post coitum (d.p.c.). Independently, the stem cells for de®nitive hematopoiesis originate within embryonic SP/AGM (splanchnopleur, aorta, gonads, and mesone- *Correspondence: SG Emerson, Division of Hematology/Oncology, phros) during 9.5 to 11.5 d.p.c. in mouse and 30 to 37 Departments of Medicine and Pediatrics, Maloney 510, 3600 Spruce Street, University of Pennsylvania School of Medicine, Philadelphia, days of gestation in the human, where the hemato- PA 19104, USA; E-mail: [email protected] poietic cells are found adhering to the ventral wall of Transcriptional regulation of hematopoiesis J Zhu and SG Emerson 3296 Figure 1 Transcriptional regulation of early hematopoietic stem cell development. HSCs, as one progeny of hemangioblasts or hemogenic endothelium, are faced with the cell fate choice either to self-renew or to dierentiate into committed common lymphoid or common myeloid hematopoietic precursors. The transcription factors involved in each development direction are depicted dorsal aorta (Medvinsky and Dzierzak, 1996). Only tion factors and surface markers, including SCL, these de®nitive hematopoietic stem/progenitor cells GATA-2, C-kit, AA-4.1, CD34, Flit-3 ligand, Sca-1, originating from AGM, but not primitive HSCs' are VEGFR-1 and -2, only with the exception of CD45. able to repopulate the entire hematopoietic system in Actually endothelial speci®c receptor VEGFR-2 was the lethally irradiated adult recipient mice (Cumano recently found a key marker for isolating hematopoie- and Godin, 2001). De®nitive HSCs expand in number tic reconstituting cell in NOD/SCID mice from human in the AGM, and then migrate to and colonize fetal circulating CD34+ cells (Ziegler et al., 1999). This close liver and spleen where they continue to dierentiate relationship between HSC and endothelial development into recognizable hematopoietic precursors. After birth, can be further visualized in embryonic stem cell de®nitive hematopoiesis is primarily con®ned to bone cultures. During the in vitro embryo body development marrow, and in some pathological conditions also to of mouse, the blast colony-forming cells (BL-CFC) extramedullary sites such as spleen, liver, and occa- develop within 4 days in the presence of vascular sionally lung and brain. endothelial growth factor (VEGF) and are lost quickly. Because both endothelial and hematopoietic cells These BL-CFCs within embryonic bodies can produce seemed to simultaneously derive from clusters of adherent endothelial cells, and primitive or de®nitive phenotypically similar cells within the yolk sac, it has erythroid cells, as well as macrophages and neutrophils been suggested that hematopoietic and endothelial cells recognized by morphology examination. These BL- share an immediate embryonic parental cell, either a CFCs may thus indeed be the in vitro counterpart to hemangioblast that serves as the common precursor for the long-hypothesized hemangioblasts (Choi et al., hematopoietic and endothelial lineages, or a hemogenic 1998). It is also possible that hemangioblasts may endothelium that gives rise to hematopoietic stem cells persist after birth. Shi et al. (1998) showed evidence (see Figure 1). Although de®nitive hematopoietic stem/ indicating that the endothelial cells lining the Dacron progenitor cells do not resemble endothelial cells graft implanted in the aorta were actually derived from morphologically, they do share a number of transcrip- the pre-transplanted BM cells 8 weeks before. They Oncogene Transcriptional regulation of hematopoiesis J Zhu and SG Emerson 3297 also showed that some of CD34+ BM cells could be hematopoietic lineages were expressed normally in induced to endothelial cells in vitro culture system with SCL-null embryonic stem cell lines. However, hemato- cytokines like VEGF. poietic-restricted genes, including transcription factors One of the most exciting ®ndings in the past 2 ± 3 GATA-1, EKLF (erythroid kruppel-like factor), and years has been that cells with the phenotype of PU.1 as well as globin genes and MPO (myeloperox- hematopoietic stem cells, but derived from non- idase), were only expressed in wild type and SCL- hematopoietic tissues such as brain and muscle, can heterozygous ES cells. SCL protein shares homology eciently repopulate hematopoiesis in lethally-irra- within a restricted region of 56 amino acids with a diated mice (Bjornson et al., 1999; Jackson et al., number of bHLH transcription factors, and it is 1999). Conversely, numerous laboratories have found capable of binding to E-box motif of DNA that transplanted BM cells could contribute to the (CANNTG) in vitro, and forms heterodimers with regeneration of multiple tissue cell types, including other HLH factors, such as E47 and E12. Strikingly, brain, muscle, hepatocytes, lung, GI epithelium, and SCL mutants unable to bind to E-box were found to skin (Brazelton et al., 2000; Gussoni et al., 1999; be able to nearly fully rescue the hematopoietic
Recommended publications
  • HOXC4 Rabbit Pab
    Leader in Biomolecular Solutions for Life Science HOXC4 Rabbit pAb Catalog No.: A13856 Basic Information Background Catalog No. This gene belongs to the homeobox family of genes. The homeobox genes encode a A13856 highly conserved family of transcription factors that play an important role in morphogenesis in all multicellular organisms. Mammals possess four similar homeobox Observed MW gene clusters, HOXA, HOXB, HOXC and HOXD, which are located on different 30kDa chromosomes and consist of 9 to 11 genes arranged in tandem. This gene, HOXC4, is one of several homeobox HOXC genes located in a cluster on chromosome 12. Three Calculated MW genes, HOXC5, HOXC4 and HOXC6, share a 5' non-coding exon. Transcripts may include 29kDa the shared exon spliced to the gene-specific exons, or they may include only the gene- specific exons. Two alternatively spliced variants that encode the same protein have Category been described for HOXC4. Transcript variant one includes the shared exon, and transcript variant two includes only gene-specific exons. Primary antibody Applications WB Cross-Reactivity Mouse, Rat Recommended Dilutions Immunogen Information WB 1:500 - 1:2000 Gene ID Swiss Prot 3221 P09017 Immunogen Recombinant fusion protein containing a sequence corresponding to amino acids 30-130 of human HOXC4 (NP_055435.2). Synonyms HOXC4;HOX3;HOX3E;cp19 Contact Product Information www.abclonal.com Source Isotype Purification Rabbit IgG Affinity purification Storage Store at -20℃. Avoid freeze / thaw cycles. Buffer: PBS with 0.02% sodium azide,50% glycerol,pH7.3. Validation Data Western blot analysis of extracts of various cell lines, using HOXC4 antibody (A13856) at 1:3000 dilution.
    [Show full text]
  • Prospective Isolation of NKX2-1–Expressing Human Lung Progenitors Derived from Pluripotent Stem Cells
    The Journal of Clinical Investigation RESEARCH ARTICLE Prospective isolation of NKX2-1–expressing human lung progenitors derived from pluripotent stem cells Finn Hawkins,1,2 Philipp Kramer,3 Anjali Jacob,1,2 Ian Driver,4 Dylan C. Thomas,1 Katherine B. McCauley,1,2 Nicholas Skvir,1 Ana M. Crane,3 Anita A. Kurmann,1,5 Anthony N. Hollenberg,5 Sinead Nguyen,1 Brandon G. Wong,6 Ahmad S. Khalil,6,7 Sarah X.L. Huang,3,8 Susan Guttentag,9 Jason R. Rock,4 John M. Shannon,10 Brian R. Davis,3 and Darrell N. Kotton1,2 2 1Center for Regenerative Medicine, and The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA. 3Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas, USA. 4Department of Anatomy, UCSF, San Francisco, California, USA. 5Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA. 6Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, Massachusetts, USA. 7Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA. 8Columbia Center for Translational Immunology & Columbia Center for Human Development, Columbia University Medical Center, New York, New York, USA. 9Department of Pediatrics, Monroe Carell Jr. Children’s Hospital, Vanderbilt University, Nashville, Tennessee, USA. 10Division of Pulmonary Biology, Cincinnati Children’s Hospital, Cincinnati, Ohio, USA. It has been postulated that during human fetal development, all cells of the lung epithelium derive from embryonic, endodermal, NK2 homeobox 1–expressing (NKX2-1+) precursor cells.
    [Show full text]
  • Effect of Testosterone and Hypoxia on the Expansion of Umbilical Cord Blood CD34+ Cells in Vitro
    EXPERIMENTAL AND THERAPEUTIC MEDICINE 14: 4467-4475, 2017 Effect of testosterone and hypoxia on the expansion of umbilical cord blood CD34+ cells in vitro LIPING ZHOU1,2, XIAOWEI ZHANG2, PANPAN ZHOU1, XUE LI1, XUEJING XU1, QING SHI1, DONG LI1 and XIULI JU1 1Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, Shandong 250012; 2Department of Pediatrics, The Sixth People's Hospital of Jinan, Jinan, Shandong 250200, P.R. China Received October 12, 2016; Accepted June 15, 2017 DOI: 10.3892/etm.2017.5026 Abstract. Successfully expanding hematopoietic stem cells Therefore, the results of the current study indicate that a combina- (HSCs) is advantageous for clinical HSC transplantation. The tion of hypoxia and testosterone may be a promising cultivation present study investigated the influence of testosterone on the condition for HSC/hemopoietic progenitor cell expansion ex vivo. proliferation, antigen phenotype and expression of hemato- poiesis-related genes in umbilical cord blood-derived cluster Introduction of differentiation (CD)34+ cells under normoxic or hypoxia conditions. Cord blood (CB) CD34+ cells were separated using Hematopoietic stem cell (HSC) transplantation is a poten- magnetic activated cell sorting. A cytokine cocktail and feeder tially life-saving procedure used to treat a broad spectrum cells were used to stimulate the expansion of CD34+ cells under of disorders, including hematological, immune and genetic normoxic (20% O2) and hypoxic (1% O2) conditions for 7 days diseases (1). It has been demonstrated that bone marrow and testosterone was added accordingly. Cells were identified reconstituting HSCs reside within a small subpopulation using flow cytometry and reconstruction capacity was deter- of bone marrow or blood-derived mononuclear cells that mined using a colony-forming unit (CFU) assay.
    [Show full text]
  • Homeobox Gene Expression Profile in Human Hematopoietic Multipotent
    Leukemia (2003) 17, 1157–1163 & 2003 Nature Publishing Group All rights reserved 0887-6924/03 $25.00 www.nature.com/leu Homeobox gene expression profile in human hematopoietic multipotent stem cells and T-cell progenitors: implications for human T-cell development T Taghon1, K Thys1, M De Smedt1, F Weerkamp2, FJT Staal2, J Plum1 and G Leclercq1 1Department of Clinical Chemistry, Microbiology and Immunology, Ghent University Hospital, Ghent, Belgium; and 2Department of Immunology, Erasmus Medical Center, Rotterdam, The Netherlands Class I homeobox (HOX) genes comprise a large family of implicated in this transformation proces.14 The HOX-C locus transcription factors that have been implicated in normal and has been primarily implicated in lymphomas.15 malignant hematopoiesis. However, data on their expression or function during T-cell development is limited. Using degener- Hematopoietic cells are derived from stem cells that reside in ated RT-PCR and Affymetrix microarray analysis, we analyzed fetal liver (FL) in the embryo and in the adult bone marrow the expression pattern of this gene family in human multipotent (ABM), which have the unique ability to self-renew and thereby stem cells from fetal liver (FL) and adult bone marrow (ABM), provide a life-long supply of blood cells. T lymphocytes are a and in T-cell progenitors from child thymus. We show that FL specific type of hematopoietic cells that play a major role in the and ABM stem cells are similar in terms of HOX gene immune system. They develop through a well-defined order of expression, but significant differences were observed between differentiation steps in the thymus.16 Several transcription these two cell types and child thymocytes.
    [Show full text]
  • Genome-Wide DNA Methylation Profiling Identifies Differential Methylation in Uninvolved Psoriatic Epidermis
    Genome-Wide DNA Methylation Profiling Identifies Differential Methylation in Uninvolved Psoriatic Epidermis Deepti Verma, Anna-Karin Ekman, Cecilia Bivik Eding and Charlotta Enerbäck The self-archived postprint version of this journal article is available at Linköping University Institutional Repository (DiVA): http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-147791 N.B.: When citing this work, cite the original publication. Verma, D., Ekman, A., Bivik Eding, C., Enerbäck, C., (2018), Genome-Wide DNA Methylation Profiling Identifies Differential Methylation in Uninvolved Psoriatic Epidermis, Journal of Investigative Dermatology, 138(5), 1088-1093. https://doi.org/10.1016/j.jid.2017.11.036 Original publication available at: https://doi.org/10.1016/j.jid.2017.11.036 Copyright: Elsevier http://www.elsevier.com/ Genome-Wide DNA Methylation Profiling Identifies Differential Methylation in Uninvolved Psoriatic Epidermis Deepti Verma*a, Anna-Karin Ekman*a, Cecilia Bivik Edinga and Charlotta Enerbäcka *Authors contributed equally aIngrid Asp Psoriasis Research Center, Department of Clinical and Experimental Medicine, Division of Dermatology, Linköping University, Linköping, Sweden Corresponding author: Charlotta Enerbäck Ingrid Asp Psoriasis Research Center, Department of Clinical and Experimental Medicine, Linköping University SE-581 85 Linköping, Sweden Phone: +46 10 103 7429 E-mail: [email protected] Short title Differential methylation in psoriasis Abbreviations CGI, CpG island; DMS, differentially methylated site; RRBS, reduced representation bisulphite sequencing Keywords (max 6) psoriasis, epidermis, methylation, Wnt, susceptibility, expression 1 ABSTRACT Psoriasis is a chronic inflammatory skin disease with both local and systemic components. Genome-wide approaches have identified more than 60 psoriasis-susceptibility loci, but genes are estimated to explain only one third of the heritability in psoriasis, suggesting additional, yet unidentified, sources of heritability.
    [Show full text]
  • UTX Regulates Mesoderm Differentiation of Embryonic Stem Cells Independent of H3K27 Demethylase Activity
    UTX regulates mesoderm differentiation of embryonic stem cells independent of H3K27 demethylase activity Chaochen Wanga, Ji-Eun Leea,1, Young-Wook Chob,1, Ying Xiaoc, Qihuang Jina, Chengyu Liud, and Kai Gea,2 aLaboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892; bKorea Basic Science Institute Chuncheon Center, Chuncheon, Kangwon, Korea 200-701; cDermatology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and dTransgenic Core, Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892 Edited by Mark Groudine, Fred Hutchinson Cancer Research Center, Seattle, WA, and approved August 3, 2012 (received for review March 9, 2012) To investigate the role of histone H3K27 demethylase UTX in male cells. UTY is a paralog of the X-linked UTX and shares embryonic stem (ES) cell differentiation, we have generated UTX 88% sequence homology with UTX protein. Unlike UTX, UTY knockout (KO) and enzyme-dead knock-in male ES cells. Deletion lacks detectable histone demethlase activity in vitro (8, 12). The of the X-chromosome-encoded UTX gene in male ES cells markedly viability data from male and female UTX KO mice indicate a decreases expression of the paralogous UTY gene encoded by Y largely functional redundancy between UTX and UTY during chromosome, but has no effect on global H3K27me3 level, Hox male embryonic development (13). gene expression, or ES cell self-renewal. However, UTX KO cells UTX has been shown to regulate myocyte differentiation, heart show severe defects in mesoderm differentiation and induction of development, and T-box transcription factor target gene expres- Brachyury, a transcription factor essential for mesoderm develop- sion (13–15).
    [Show full text]
  • Supplemental Materials ZNF281 Enhances Cardiac Reprogramming
    Supplemental Materials ZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expression Huanyu Zhou, Maria Gabriela Morales, Hisayuki Hashimoto, Matthew E. Dickson, Kunhua Song, Wenduo Ye, Min S. Kim, Hanspeter Niederstrasser, Zhaoning Wang, Beibei Chen, Bruce A. Posner, Rhonda Bassel-Duby and Eric N. Olson Supplemental Table 1; related to Figure 1. Supplemental Table 2; related to Figure 1. Supplemental Table 3; related to the “quantitative mRNA measurement” in Materials and Methods section. Supplemental Table 4; related to the “ChIP-seq, gene ontology and pathway analysis” and “RNA-seq” and gene ontology analysis” in Materials and Methods section. Supplemental Figure S1; related to Figure 1. Supplemental Figure S2; related to Figure 2. Supplemental Figure S3; related to Figure 3. Supplemental Figure S4; related to Figure 4. Supplemental Figure S5; related to Figure 6. Supplemental Table S1. Genes included in human retroviral ORF cDNA library. Gene Gene Gene Gene Gene Gene Gene Gene Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol AATF BMP8A CEBPE CTNNB1 ESR2 GDF3 HOXA5 IL17D ADIPOQ BRPF1 CEBPG CUX1 ESRRA GDF6 HOXA6 IL17F ADNP BRPF3 CERS1 CX3CL1 ETS1 GIN1 HOXA7 IL18 AEBP1 BUD31 CERS2 CXCL10 ETS2 GLIS3 HOXB1 IL19 AFF4 C17ORF77 CERS4 CXCL11 ETV3 GMEB1 HOXB13 IL1A AHR C1QTNF4 CFL2 CXCL12 ETV7 GPBP1 HOXB5 IL1B AIMP1 C21ORF66 CHIA CXCL13 FAM3B GPER HOXB6 IL1F3 ALS2CR8 CBFA2T2 CIR1 CXCL14 FAM3D GPI HOXB7 IL1F5 ALX1 CBFA2T3 CITED1 CXCL16 FASLG GREM1 HOXB9 IL1F6 ARGFX CBFB CITED2 CXCL3 FBLN1 GREM2 HOXC4 IL1F7
    [Show full text]
  • Genome-Wide DNA Methylation Analysis of KRAS Mutant Cell Lines Ben Yi Tew1,5, Joel K
    www.nature.com/scientificreports OPEN Genome-wide DNA methylation analysis of KRAS mutant cell lines Ben Yi Tew1,5, Joel K. Durand2,5, Kirsten L. Bryant2, Tikvah K. Hayes2, Sen Peng3, Nhan L. Tran4, Gerald C. Gooden1, David N. Buckley1, Channing J. Der2, Albert S. Baldwin2 ✉ & Bodour Salhia1 ✉ Oncogenic RAS mutations are associated with DNA methylation changes that alter gene expression to drive cancer. Recent studies suggest that DNA methylation changes may be stochastic in nature, while other groups propose distinct signaling pathways responsible for aberrant methylation. Better understanding of DNA methylation events associated with oncogenic KRAS expression could enhance therapeutic approaches. Here we analyzed the basal CpG methylation of 11 KRAS-mutant and dependent pancreatic cancer cell lines and observed strikingly similar methylation patterns. KRAS knockdown resulted in unique methylation changes with limited overlap between each cell line. In KRAS-mutant Pa16C pancreatic cancer cells, while KRAS knockdown resulted in over 8,000 diferentially methylated (DM) CpGs, treatment with the ERK1/2-selective inhibitor SCH772984 showed less than 40 DM CpGs, suggesting that ERK is not a broadly active driver of KRAS-associated DNA methylation. KRAS G12V overexpression in an isogenic lung model reveals >50,600 DM CpGs compared to non-transformed controls. In lung and pancreatic cells, gene ontology analyses of DM promoters show an enrichment for genes involved in diferentiation and development. Taken all together, KRAS-mediated DNA methylation are stochastic and independent of canonical downstream efector signaling. These epigenetically altered genes associated with KRAS expression could represent potential therapeutic targets in KRAS-driven cancer. Activating KRAS mutations can be found in nearly 25 percent of all cancers1.
    [Show full text]
  • Speaker Abstracts 2018 International Chordoma Research Workshop | Speaker Abstracts 1
    Sixth International Chordoma Research Workshop Speaker abstracts 2018 International Chordoma Research Workshop | Speaker abstracts 1 TABLE OF CONTENTS EPIGENETIC CONTROL OF BRACHYURY AND METABOLIC STRESS RESPONSE: NOVEL THERAPEUTIC TARGETS FOR CHORDOMA ........................................................................................................................................................... 2 SYSTEMATIC DISCOVERY OF NOVEL VULNERABILITIES IN CHORDOMA .................................................................. 3 RATIONALE FOR THE ADVANCEMENT OF PTEN/AKT PATHWAY INHIBITORS AND COMBINATIONS FOR PERSONALIZED CHORDOMA THERAPY ................................................................................................................... 4 THE ROLE OF PHILANTHROPY IN TRANSFORMING CANCER RESEARCH .................................................................. 5 BRACHYURY IN CHORDOMA AND CARCINOMAS: BIOLOGY AND POTENTIAL TARGETING APPROACHES ............... 6 CHARTING BRACHYURY-MEDIATED DEVELOPMENTAL PATHWAYS DURING EARLY MOUSE EMBRYOGENESIS ...... 7 CRYSTAL STRUCTURES OF BRACHYURY: A PRELUDE TO DRUG DISCOVERY ............................................................ 8 A BRACHYURY TRANSCRIPTIONAL REPORTER TO GUIDE DRUG DISCOVERY........................................................... 9 INVESTIGATING BRACHYURY GENE REGULATION TO IDENTIFY THERAPEUTIC TARGETS IN CHORDOMA ............. 10 DELINEATING AND TARGETING THE BRACHYURY-YAP REGULATORY AXIS IN CANCER ......................................... 11 OPEN ACCESS
    [Show full text]
  • Bangor University DOCTOR of PHILOSOPHY Brachyury in the Human Colon and Colorectal Cancer Williams, Jason
    Bangor University DOCTOR OF PHILOSOPHY Brachyury in the Human Colon and Colorectal Cancer Williams, Jason Award date: 2018 Awarding institution: Bangor University Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 04. Oct. 2021 Brachyury in the Human Colon and Colorectal Cancer Ph. D. Thesis 2017 Jason Saunders Williams i Declaration and Consent Details of the Work I hereby agree to deposit the following item in the digital repository maintained by Bangor University and/or in any other repository authorized for use by Bangor University. Author Name: Title: Supervisor/Department: Funding body (if any): Qualification/Degree obtained: PhD This item is a product of my own research endeavours and is covered by the agreement below in which the item is referred to as “the Work”. It is identical in content to that deposited in the Library, subject to point 4 below.
    [Show full text]
  • Onecut Transcription Factor OC2 Is a Direct Target of T-Bet in Type-1 T-Helper Cells
    Genes and Immunity (2008) 9, 302–308 & 2008 Nature Publishing Group All rights reserved 1466-4879/08 $30.00 www.nature.com/gene ORIGINAL ARTICLE Onecut transcription factor OC2 is a direct target of T-bet in type-1 T-helper cells K Furuno1,2, K Ikeda2, S Hamano3, K Fukuyama1, M Sonoda1, T Hara2, T Sasazuki4 and K Yamamoto1 1Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan; 2Department of Pediatrics, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan; 3Department of Parasitology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan and 4International Medical Center of Japan, Tokyo, Japan T-box transcription factor, T-bet, has a central role in the differentiation of T-helper (Th) progenitor cells to Th1 or Th2 effector cells, partly by regulating the expression of genes such as interferon-g (IFN-g). However, the direct target genes, especially those mediating the transcriptional network initiated by T-bet, are not yet fully understood. By combining chromatin immunoprecipitation from Th1 cells with human cytosine-phosphate-guanine-island array analysis, Onecut 2 (OC2), which encodes a member of the ONECUT class of transcriptional activators, was identified as a direct target gene of T-bet. OC2 is expressed in Th1 but not Th2 cells and reporter assays showed that T-bet transactivates OC2 transcription through putative T-bet half-sites locating À451 to À347 of OC2 promoter region. Moreover, we found that OC2 binds and transactivates human T-bet promoter. These results suggest that not only cell-extrinsic regulation via the IFN-g/STAT1 pathway, but also cell-intrinsic transcriptional positive feedback loop between T-bet and OC2 could be involved in Th1 development.
    [Show full text]
  • Genome-Wide DNA Methylation Analysis Reveals Molecular Subtypes of Pancreatic Cancer
    www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 17), pp: 28990-29012 Research Paper Genome-wide DNA methylation analysis reveals molecular subtypes of pancreatic cancer Nitish Kumar Mishra1 and Chittibabu Guda1,2,3,4 1Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA 2Bioinformatics and Systems Biology Core, University of Nebraska Medical Center, Omaha, NE, 68198, USA 3Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA 4Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA Correspondence to: Chittibabu Guda, email: [email protected] Keywords: TCGA, pancreatic cancer, differential methylation, integrative analysis, molecular subtypes Received: October 20, 2016 Accepted: February 12, 2017 Published: March 07, 2017 Copyright: Mishra et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Pancreatic cancer (PC) is the fourth leading cause of cancer deaths in the United States with a five-year patient survival rate of only 6%. Early detection and treatment of this disease is hampered due to lack of reliable diagnostic and prognostic markers. Recent studies have shown that dynamic changes in the global DNA methylation and gene expression patterns play key roles in the PC development; hence, provide valuable insights for better understanding the initiation and progression of PC. In the current study, we used DNA methylation, gene expression, copy number, mutational and clinical data from pancreatic patients.
    [Show full text]