Environmental Interactions

Total Page:16

File Type:pdf, Size:1020Kb

Environmental Interactions Ecology Environmental Interactions What is ecology? • “Eco”= environment, house • “Ology”= study of • Ecology- the scientific study of interactions among organisms and their environment or surroundings • The study of ecology looks primarily at the biosphere, or area where all life exists. • “Bio”= Life • “Sphere”= circle, zone How do we organize and group life? • A species is a group of organisms so similar to one another that they can breed and produce fertile offspring • A species is the most specific grouping of life • Example= grey wolf • All the wolves that live in one area would be called a population, or group of individuals that belong to the same species and live in the same area. • If we wanted to look at all the different populations that live in an area, we would be looking at a community, or the assemblage of different populations that live together in a defined area. Ex. All the animals and plants in a • Keep in mind that a forest community only involves the living, or biotic factors!! Bringing it all together… • The next level of organization is the ecosystem. - In an ecosystem, we study a collection of all the living organisms that live in a particular place Ex. Forests together with their nonliving, or abiotic, environment. The final step… • The final and largest level of organization (excluding the biosphere), is the biome. • Biomes are groups of ecosystems that have the same climate and similar dominant communities… Biomes of the World… • Tropical Rainforest • Tropical Dry Forest • Tropical Savanna • Temperate Grassland • Desert • Temperate woodland and scrublands • Temperate Forest • Northwestern coniferous forest • Boreal Forest (Tiaga) • Tundra • Mountains and Ice Caps • Bodies of Water What makes them unique and different from one another? • Location around the globe • Climate • Dominant plant and animal species Tropical Rainforest – Climate: hot, wet – Soil: thin, poor – biodiversity: high Tropical Dry Forest – Climate: warm, alternating wet and dry – Soil: rich – biodiversity: average Tropical Savanna – Climate: warm, seasonal rainfall – Soil: compact – biodiversity: average Deserts – Climate: variable temps., low rainfall – Soil: rich in minerals, poor in organics – biodiversity: average to low Temperate Grasslands – Climate: warm summers and cold winters, moderate precipitation – Soil: fertile – biodiversity: average Temperate Woodland and shrubland – Climate: warm, dry summers and cold, moist winters – Soil: thin, poor – biodiversity: average Temperate Forest – Climate: warm summers and cold winters, year round precipitation – Soil: fertile – biodiversity: average Northwestern Coniferous Forest – Climate: mild temperatures, abundant precipitation fall, winter, and spring – Soil: rocky, acidic – biodiversity: average Boreal Forest – Climate: mild summers and long, cold winters, moderate precipitation – Soil: acidic, poor – biodiversity: average Tundra – Climate: short, soggy summers and long, dark, cold winters, low precipitation – Soil: poorly developed, permafrost – biodiversity: low And the rest… • Mountains • Ice Caps • Aquatic Biomes – Oceans – Lakes – Rivers – Ponds – Etc. Let’s go to the video… • Biomes Energy Flow Through an Ecosystem Ways of acquiring energy • Autotrophs- can make their own energy by converting the energy of the sun into food. These organisms are also called producers. Acquiring Energy Con’d • Heterotrophs- Organisms that get their energy by consuming other organisms. Also known as consumers. Can an organism be both??? • YES!!! – Venus flytrap – sun dew – Pitcher plant One more way to “power up” • Chemotrophs are able to combine different chemical compound (without light) to make power. This process is called chemosynthesis. How they all interact… • When an organism obtains energy by eating only plants, it is called a herbivore… • If they eat only meat, they are carnivores… • Eating plants and meat make an organism an omnivore… Bottom Feeders… • Detritivores feed on the remains of plants and animals along with other dead material called detritus. • This includes worms, snails, mites, and…. crabs “Stinky dead animals,” brought to you by… • Decomposers- break down organic matter • Examples: bacteria, fungus Putting them all together… • Feeding relationships are shown using two different graphs, food chains and food webs. – Food chains show a series of steps in which organisms transfer energy by eating and being eaten. Webs… • Food webs are a network of complex interactions that show feeding relationships. – Webs are better at showing actual interactions on a large scale The levels of organization • Each step in a food chain is called a trophic level. • They go as follows: Top level carnivores 1st level carnivores herbivores producers Trophic levels Trophic levels con’d • Available energy at each level is shown on an ecological pyramid. • Numbers represent percentage of original sunlight energy still available for use… • Available energy: – Producers= 100% – Herbivores (primary consumers)= 10% – 1st level carnivores (2ndary consumers)= 1% – 2nd level carnivores (tertiary consumers)= .1% Ecological pyramid Community Interactions A few terms… • Biotic factors- biological (living) influences on organisms within an ecosystem • Ex. Trees, birds, people, etc. • Abiotic factors- physical, or nonliving, factors that shape ecosystems • Ex. Rivers, wind, soil, temperature, etc. • Habitat- the area where an organism lives More terms… • Niche- the full range of physical and biological conditions in which an organism lives and the way the organism uses those conditions – Baseball players – Each person on the field has a job and a specific place to do that job, that is their “niche” Resources • Resources are necessities of life and include water, nutrients, light, food and space. – What happens if two organisms both want to use the same resources?? Resources • This idea that no two species can occupy the same niche in the same habitat is called the competitive exclusion principle. • Though no two organisms can occupy the same niche, they do interact in many different ways. Forms of interaction • Predation- one organism captures and feeds on another • Symbiosis- any relationship where two organisms live closely together – Forms of symbiosis: • Mutualism • Commensalism • Parasitism Mutualism (+/+) • This type of symbiosis provides a benefit for both organisms involved – Ex. Bees and flowers, hummingbird and flowers, etc. Commensalism (+/neutral) • This type of symbiosis provides a benefit for one organism involved but doesn’t harm or help the other organism – Ex. Whales and barnacles, orchids and trees, etc. Parasitism (+/-) • This type of symbiosis provides a benefit for one organism involved but harms the other organism – Ex. Dog and flea, people and mosquitoes, etc. Video Time… • symbiosis How do populations grow? • - Populations are constantly changing in number. A few ways this happens are: – Deaths – Births – Immigration – Emigration • All of these factors control the population density, or number of individuals per unit of area… • Immigration (+)- the movement of an individual into an area. Population increases • Emigration (-)- the movement of an individual out of an area. Population decreases • One cannot happen without the other In what ways do populations grow? • If unlimited resources are available, a population will grow at an exponential rate, or without limitation and at a constant rate. – growth starts at a low number but increases quickly • Example: a single bacterium lands on your food, has offspring, who have offspring, who have offspring and so on doubling their numbers every 20 minutes • a few become many... Growth continued • If for some reason resources do become limited, our bacteria would switch to a pattern of logistical growth, or a time where a population’s growth slows or stops after a period of exponential growth. – Could be caused be high death rate, low birth rate, limited resources, etc. Carrying Capacity • All growth is controlled by an imaginary number called the carrying capacity. – Carrying capacity is the maximum population number an area can support long term. Ecological Succession Changes over time… • What is ecological succession? – A series of predictable changes that occurs in a community over time. • As an ecosystem changes, older inhabitants gradually die out and new organisms move in causing further changes to the community Primary Succession • Succession that takes place where no soil previously existed is called primary succession. – Soil is created through the weathering of rock and breakdown of organic material • May happen after a volcano or glacier Primary succession • The 1st species to populate this newly created soil is called a pioneer species. – These species add organic material to the nutrient poor soil as they die. • Ex. Lichen (fungus + algae) Secondary succession • Succession that takes place following a disturbance that destroys a community without destroying the soil is called secondary succession. – What kind of disasters might do this?? • Floods, fires, hurricanes, tornadoes, etc. Nutrient Cycling Nutrients • Nutrients are nature’s building blocks, or all the chemical compounds that an organism needs to sustain life. • Essential nutrients include: – Carbon - Iron – Nitrogen - Zinc – Phosphorus - Potassium – Oxygen - Fluorine – Hydrogen - Calcium – Magnesium - many, many, others!! Limited nutrients • When an ecosystem is limited by a single nutrient that is scarce or cycles very slowly, that substance is called the limiting
Recommended publications
  • Carbon Sequestration in Managed Temperate Coniferous Forests Under Climate Change
    Biogeosciences, 13, 1933–1947, 2016 www.biogeosciences.net/13/1933/2016/ doi:10.5194/bg-13-1933-2016 © Author(s) 2016. CC Attribution 3.0 License. Carbon sequestration in managed temperate coniferous forests under climate change Caren C. Dymond1, Sarah Beukema2, Craig R. Nitschke3, K. David Coates1, and Robert M. Scheller4 1Ministry of Forests, Lands and Natural Resource Operations, Government of British Columbia, Victoria, Canada 2ESSA Technologies Ltd., Vancouver, Canada 3School of Ecosystem and Forest Sciences, University of Melbourne, Richmond, Australia 4Department of Environmental Science and Management, Portland State University, Portland, USA Correspondence to: Caren C. Dymond ([email protected]) Received: 16 November 2015 – Published in Biogeosciences Discuss.: 21 December 2015 Revised: 11 March 2016 – Accepted: 16 March 2016 – Published: 30 March 2016 Abstract. Management of temperate forests has the poten- 1 Introduction tial to increase carbon sinks and mitigate climate change. However, those opportunities may be confounded by nega- tive climate change impacts. We therefore need a better un- As a global society, we depend on forests and land to take −1 derstanding of climate change alterations to temperate for- up about 2.5 C 1.3 PgC yr , about one-third of our fossil est carbon dynamics before developing mitigation strategies. emissions (Ciais et al., 2013). A reduction in the size of The purpose of this project was to investigate the interac- these sinks could accelerate global change by further increas- tions of species composition, fire, management, and climate ing the accumulation rate of greenhouse gases in the atmo- change in the Copper–Pine Creek valley, a temperate conifer- sphere.
    [Show full text]
  • Shrubl Maritime Juniper Woodland/Shrubland
    Maritime Juniper Woodland/ShrublWoodland/Shrublandand State Rank: S1 – Critically Imperiled The Maritime Juniper Woodland/ substrate stability; even Shrubland is a predominantly evergreen in stable situations community within the coastal salt spray community edges may zone; The trees tend to be short (less not be clear. Different than 15 feet) and scattered, with the types of communities tops sculpted by winds and salt spray; grade into and interdigitate with each forests, in areas of continuous changes of other. Very small patches levels of salt spray and substrate types. of any type within The dominant species is eastern red cedar another community (also called juniper), though the should be considered to Maritime Juniper Woodland/Shrubland above a abundance of red cedar is highly variable. be part of the variation of salt marsh. Photo: Patricia Swain, NHESP. It grows in association with scattered trees the main community. Description: Maritime Juniper and shrubs typical of the surrounding Maritime Pitch Pine Woodland/Shrublands occur on and vegetation such as pitch pine, various Woodlands on Dunes are between sand dunes, on the upper edges oaks, black cherry, red maple, blueberries, dominated by pitch pine. Maritime provide habitat for shrubland nesting birds of salt marshes and on cliffs and rocky huckleberries, sumac, and very often, Shrubland communities are dominated by and are important as feeding and resting/ headlands: all areas receiving salt spray poison ivy. Green briar can be abundant in a dense mixture of primarily deciduous roosting areas for migrating birds. from high winds. The maritime juniper more established woodlands, particularly shrubs, but may include red cedar.
    [Show full text]
  • Global Ecological Forest Classification and Forest Protected Area Gap Analysis
    United Nations Environment Programme World Conservation Monitoring Centre Global Ecological Forest Classification and Forest Protected Area Gap Analysis Analyses and recommendations in view of the 10% target for forest protection under the Convention on Biological Diversity (CBD) 2nd revised edition, January 2009 Global Ecological Forest Classification and Forest Protected Area Gap Analysis Analyses and recommendations in view of the 10% target for forest protection under the Convention on Biological Diversity (CBD) Report prepared by: United Nations Environment Programme World Conservation Monitoring Centre (UNEP-WCMC) World Wide Fund for Nature (WWF) Network World Resources Institute (WRI) Institute of Forest and Environmental Policy (IFP) University of Freiburg Freiburg University Press 2nd revised edition, January 2009 The United Nations Environment Programme World Conservation Monitoring Centre (UNEP- WCMC) is the biodiversity assessment and policy implementation arm of the United Nations Environment Programme (UNEP), the world's foremost intergovernmental environmental organization. The Centre has been in operation since 1989, combining scientific research with practical policy advice. UNEP-WCMC provides objective, scientifically rigorous products and services to help decision makers recognize the value of biodiversity and apply this knowledge to all that they do. Its core business is managing data about ecosystems and biodiversity, interpreting and analysing that data to provide assessments and policy analysis, and making the results
    [Show full text]
  • Stuart, Trees & Shrubs
    Excerpted from ©2001 by the Regents of the University of California. All rights reserved. May not be copied or reused without express written permission of the publisher. click here to BUY THIS BOOK INTRODUCTION HOW THE BOOK IS ORGANIZED Conifers and broadleaved trees and shrubs are treated separately in this book. Each group has its own set of keys to genera and species, as well as plant descriptions. Plant descriptions are or- ganized alphabetically by genus and then by species. In a few cases, we have included separate subspecies or varieties. Gen- era in which we include more than one species have short generic descriptions and species keys. Detailed species descrip- tions follow the generic descriptions. A species description in- cludes growth habit, distinctive characteristics, habitat, range (including a map), and remarks. Most species descriptions have an illustration showing leaves and either cones, flowers, or fruits. Illustrations were drawn from fresh specimens with the intent of showing diagnostic characteristics. Plant rarity is based on rankings derived from the California Native Plant Society and federal and state lists (Skinner and Pavlik 1994). Two lists are presented in the appendixes. The first is a list of species grouped by distinctive morphological features. The second is a checklist of trees and shrubs indexed alphabetically by family, genus, species, and common name. CLASSIFICATION To classify is a natural human trait. It is our nature to place ob- jects into similar groups and to place those groups into a hier- 1 TABLE 1 CLASSIFICATION HIERARCHY OF A CONIFER AND A BROADLEAVED TREE Taxonomic rank Conifer Broadleaved tree Kingdom Plantae Plantae Division Pinophyta Magnoliophyta Class Pinopsida Magnoliopsida Order Pinales Sapindales Family Pinaceae Aceraceae Genus Abies Acer Species epithet magnifica glabrum Variety shastensis torreyi Common name Shasta red fir mountain maple archy.
    [Show full text]
  • The Coastal Scrub and Chaparral Bird Conservation Plan
    The Coastal Scrub and Chaparral Bird Conservation Plan A Strategy for Protecting and Managing Coastal Scrub and Chaparral Habitats and Associated Birds in California A Project of California Partners in Flight and PRBO Conservation Science The Coastal Scrub and Chaparral Bird Conservation Plan A Strategy for Protecting and Managing Coastal Scrub and Chaparral Habitats and Associated Birds in California Version 2.0 2004 Conservation Plan Authors Grant Ballard, PRBO Conservation Science Mary K. Chase, PRBO Conservation Science Tom Gardali, PRBO Conservation Science Geoffrey R. Geupel, PRBO Conservation Science Tonya Haff, PRBO Conservation Science (Currently at Museum of Natural History Collections, Environmental Studies Dept., University of CA) Aaron Holmes, PRBO Conservation Science Diana Humple, PRBO Conservation Science John C. Lovio, Naval Facilities Engineering Command, U.S. Navy (Currently at TAIC, San Diego) Mike Lynes, PRBO Conservation Science (Currently at Hastings University) Sandy Scoggin, PRBO Conservation Science (Currently at San Francisco Bay Joint Venture) Christopher Solek, Cal Poly Ponoma (Currently at UC Berkeley) Diana Stralberg, PRBO Conservation Science Species Account Authors Completed Accounts Mountain Quail - Kirsten Winter, Cleveland National Forest. Greater Roadrunner - Pete Famolaro, Sweetwater Authority Water District. Coastal Cactus Wren - Laszlo Szijj and Chris Solek, Cal Poly Pomona. Wrentit - Geoff Geupel, Grant Ballard, and Mary K. Chase, PRBO Conservation Science. Gray Vireo - Kirsten Winter, Cleveland National Forest. Black-chinned Sparrow - Kirsten Winter, Cleveland National Forest. Costa's Hummingbird (coastal) - Kirsten Winter, Cleveland National Forest. Sage Sparrow - Barbara A. Carlson, UC-Riverside Reserve System, and Mary K. Chase. California Gnatcatcher - Patrick Mock, URS Consultants (San Diego). Accounts in Progress Rufous-crowned Sparrow - Scott Morrison, The Nature Conservancy (San Diego).
    [Show full text]
  • Forests Warranting Further Consideration As Potential World
    Forest Protected Areas Warranting Further Consideration as Potential WH Forest Sites: Summaries from Various and Thematic Regional Analyses (Compendium produced by Marc Patry, for the proceedings of the 2nd World Heritage Forest meeting, held at Nancy, France, March 11-13, 2005) Four separate initiatives have been carried out in the past 10 years in an effort to help guide the process of identifying and nominating new WH Forest sites. The first, carried out by Thorsell and Sigaty (1997), addresses forests worldwide, and was developed based on the authors’ shared knowledge of protected forests worldwide. The second focuses exclusively on tropical forests and was assembled by the participants at the 1998 WH Forest meeting in Berastagi, Indonesia (CIFOR, 1999). A third initiative consists of potential boreal forest sites developed by the participants to an expert meeting on boreal forests, held in St. Petersberg in 2003. Finally, a fourth, carried out jointly between UNEP and IUCN applied a more systematic approach (IUCN, 2004). Though aiming at narrowing the field of potential candidate sites, these initiatives do not automatically imply that all of the listed forest areas would meet the criteria for inscription on the WH List, and conversely, nor do they imply that any site left off the list would not meet these criteria. Since these lists were developed, several of the proposed sites have been inscribed on the WH List, while others have been the subject of nominations, but were not inscribed, for various reasons. The lists below are reproduced here in an effort to facilitate access to this information and to guide future nomination initiatives.
    [Show full text]
  • Rainforests and Tropical Diversity
    Rainforests and Tropical Diversity Gaby Orihuela Visitor Experience Manager Global Strategy for Plant Conservation Objective IV: Education and awareness about plant diversity, its role in sustainable livelihoods and importance to all life on earth is promoted. – Target 14: The importance of plant diversity and the need for its conservation incorporated into communication, education and public awareness programs. What are Rainforests? Forests characterized by high rainfall, with definitions based on a minimum normal annual rainfall of 68–78 inches, and as much as 390 inches. (Miami receives an average annual of ~60 inches.) Two types: Tropical (wet and warm) and Temperate Around 40% to 75% of all biotic species are indigenous to the tropical rainforests Natural reservoir of genetic diversity and ecological services: – Rich source of medicinal plants – High-yield foods and a myriad of other useful forest products – Sustain a large number of diverse and unique indigenous cultures – Important habitat for migratory animals Peruvian Amazonia Where in the World? Today less than 3% of Earth’s land is covered with these forests (about 2 million square miles). A few thousand of years ago they covered 12% (6 million). Tropical forests are restricted to the latitudes 23.5° North and 23.5° South of the equator, or in other words between the Tropic of Capricorn and the Tropic of Cancer. Global distribution in four biogeographic realms: – Afrotropical (mainland Africa, Madagascar, and scattered islands) – Australian (Australia, New Guinea, and
    [Show full text]
  • NFI Woodland Ecological Condition Scoring Methodology
    NFI woodland ecological condition in Great Britain: Methodology National Forest Inventory Issued by: National Forest Inventory, Forestry Commission, 231 Corstorphine Road, Edinburgh, EH12 7AT Date: February 2020 Enquiries: Ben Ditchburn, 0300 067 5561 [email protected] Statistician: David Ross [email protected] Website: www.forestresearch.gov.uk/inventory www.forestresearch.gov.uk/forecast NFI woodland ecological condition methodology Contents Introduction ...................................................................................................... 5 The NFI .......................................................................................................... 6 Why report on woodland ecological condition? ...................................................... 7 Development of the NFI condition monitoring approach .......................................... 9 Assessing broad and priority woodland habitat condition ...................................... 9 NFI WEC indicator selection .......................................................................... 10 Classifying and scoring woodlands ................................................................. 14 A straightforward, transparent and evidence-informed approach ......................... 15 Methodology .................................................................................................... 16 Categorising woodland area for reporting ........................................................... 16 Defining the native woodland
    [Show full text]
  • 7. Shrubland and Young Forest Habitat Management
    7. SHRUBLAND AND YOUNG FOREST HABITAT MANAGEMENT hrublands” and “Young Forest” are terms that apply to areas Shrubland habitat and that are transitioning to mature forest and are dominated by young forest differ in “Sseedlings, saplings, and shrubs with interspersed grasses and forbs (herbaceous plants). While some sites such as wetlands, sandy sites vegetation types and and ledge areas can support a relatively stable shrub cover, most shrub communities in the northeast are successional and change rapidly to food and cover they mature forest if left unmanaged. Shrub and young forest habitats in Vermont provide important habitat provide, as well as functions for a variety of wildlife including shrubland birds, butterflies and bees, black bear, deer, moose, snowshoe hare, bobcat, as well as a where and how they variety of reptiles and amphibians. Many shrubland species are in decline due to loss of habitat. Shrubland bird species in Vermont include common are maintained on the species such as chestnut-sided warbler, white-throated sparrow, ruffed grouse, Eastern towhee, American woodcock, brown thrasher, Nashville landscape. warbler, and rarer species such as prairie warbler and golden-winged warbler. These habitat types are used by 29 Vermont Species of Greatest Conservation Need. While small areas of shrub and young forest habitat can be important to some wildlife, managing large patches of 5 acres or more provides much greater benefit to the wildlife that rely on the associated habitat conditions to meet their life requirements. Birds such as the chestnut- sided warbler will use smaller areas of young forest, but less common species such as golden-winged warbler require areas of 25 acres or more.
    [Show full text]
  • Grassland to Shrubland State Transitions Enhance Carbon Sequestration in the Northern Chihuahuan Desert
    Global Change Biology Global Change Biology (2015) 21, 1226–1235, doi: 10.1111/gcb.12743 Grassland to shrubland state transitions enhance carbon sequestration in the northern Chihuahuan Desert M. D. PETRIE1 ,S.L.COLLINS1 ,A.M.SWANN2 ,P.L.FORD3 andM.E. LITVAK1 1Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA, 2Department of Biology, Sevilleta LTER, University of New Mexico, Albuquerque, New Mexico, USA, 3USDA Forest Service, Rocky Mountain Research Station, Albuquerque, New Mexico, USA Abstract The replacement of native C4-dominated grassland by C3-dominated shrubland is considered an ecological state tran- sition where different ecological communities can exist under similar environmental conditions. These state transi- tions are occurring globally, and may be exacerbated by climate change. One consequence of the global increase in woody vegetation may be enhanced ecosystem carbon sequestration, although the responses of arid and semiarid ecosystems may be highly variable. During a drier than average period from 2007 to 2011 in the northern Chihuahuan À2 À1 Desert, we found established shrubland to sequester 49 g C m yr on average, while nearby native C4 grassland À À was a net source of 31 g C m 2 yr 1 over this same period. Differences in C exchange between these ecosystems were pronounced – grassland had similar productivity compared to shrubland but experienced higher C efflux via ecosys- tem respiration, while shrubland was a consistent C sink because of a longer growing season and lower ecosystem respiration. At daily timescales, rates of carbon exchange were more sensitive to soil moisture variation in grassland than shrubland, such that grassland had a net uptake of C when wet but lost C when dry.
    [Show full text]
  • Description of the Ecoregions of the United States
    (iii) ~ Agrl~:::~~;~":,c ullur. Description of the ~:::;. Ecoregions of the ==-'Number 1391 United States •• .~ • /..';;\:?;;.. \ United State. (;lAn) Department of Description of the .~ Agriculture Forest Ecoregions of the Service October United States 1980 Compiled by Robert G. Bailey Formerly Regional geographer, Intermountain Region; currently geographer, Rocky Mountain Forest and Range Experiment Station Prepared in cooperation with U.S. Fish and Wildlife Service and originally published as an unnumbered publication by the Intermountain Region, USDA Forest Service, Ogden, Utah In April 1979, the Agency leaders of the Bureau of Land Manage­ ment, Forest Service, Fish and Wildlife Service, Geological Survey, and Soil Conservation Service endorsed the concept of a national classification system developed by the Resources Evaluation Tech­ niques Program at the Rocky Mountain Forest and Range Experiment Station, to be used for renewable resources evaluation. The classifica­ tion system consists of four components (vegetation, soil, landform, and water), a proposed procedure for integrating the components into ecological response units, and a programmed procedure for integrating the ecological response units into ecosystem associations. The classification system described here is the result of literature synthesis and limited field testing and evaluation. It presents one procedure for defining, describing, and displaying ecosystems with respect to geographical distribution. The system and others are undergoing rigorous evaluation to determine the most appropriate procedure for defining and describing ecosystem associations. Bailey, Robert G. 1980. Description of the ecoregions of the United States. U. S. Department of Agriculture, Miscellaneous Publication No. 1391, 77 pp. This publication briefly describes and illustrates the Nation's ecosystem regions as shown in the 1976 map, "Ecoregions of the United States." A copy of this map, described in the Introduction, can be found between the last page and the back cover of this publication.
    [Show full text]
  • Species Composition and Diversity of Mangrove Swamp Forest in Southern Nigeria
    International Journal of Avian & Wildlife Biology Research Article Open Access Species composition and diversity of mangrove swamp forest in southern Nigeria Abstract Volume 3 Issue 2 - 2018 The study was conducted to assess the species composition and diversity of Anantigha Sijeh Agbor Asuk, Eric Etim Offiong , Nzube Mangrove Swamp Forest in southern Nigeria. Systematic line transect technique was adopted for the study. From the total mangrove area of 47.5312 ha, four rectangular plots Michael Ifebueme, Emediong Okokon Akpaso of 10 by 1000m representing sampling intensity of 8.42 percent were demarcated. Total University of Calabar, Nigeria identification and inventory was conducted and data on plant species name, family and number of stands were collected and used to compute the species importance value and Correspondence: Sijeh Agbor Asuk, Department of Forestry and Wildlife Resources Management, University of Calabar, PMB family importance values. Simpson’s diversity index and richness as well as Shannon- 1115, Calabar, Nigeria, Email [email protected] Weiner index and evenness were used to assess the species diversity and richness of the forest. Results revealed that the forest was characterized by few families represented by few Received: October 23, 2017 | Published: April 13, 2018 species dominated by Rhizophora racemosa, Nypa fructicans, Avicennia germinans and Acrostichum aureum which were also most important in the study and a few other species. Furthermore, presence of Nypa palm (Nypa fructicans) as the second most abundant species in the study area was indicative of the adverse effect of human activities on the ecosystem. The Simpson’s diversity index and richness of 0.83 and 5.896, and Shannon- Weiner diversity and evenness of 2.054 and 0.801 respectively were low, compared to mangrove forests in similar locations thus, making these species prone to extinction and further colonization of Nypa fructicans in the forest.
    [Show full text]