The Rhizosphere Responds: Rich Fen Peat and Root Microbial Ecology After Long-Term Water Table Manipulation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Microbial Community Structure Dynamics in Ohio River Sediments During Reductive Dechlorination of Pcbs
University of Kentucky UKnowledge University of Kentucky Doctoral Dissertations Graduate School 2008 MICROBIAL COMMUNITY STRUCTURE DYNAMICS IN OHIO RIVER SEDIMENTS DURING REDUCTIVE DECHLORINATION OF PCBS Andres Enrique Nunez University of Kentucky Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Nunez, Andres Enrique, "MICROBIAL COMMUNITY STRUCTURE DYNAMICS IN OHIO RIVER SEDIMENTS DURING REDUCTIVE DECHLORINATION OF PCBS" (2008). University of Kentucky Doctoral Dissertations. 679. https://uknowledge.uky.edu/gradschool_diss/679 This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF DISSERTATION Andres Enrique Nunez The Graduate School University of Kentucky 2008 MICROBIAL COMMUNITY STRUCTURE DYNAMICS IN OHIO RIVER SEDIMENTS DURING REDUCTIVE DECHLORINATION OF PCBS ABSTRACT OF DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Agriculture at the University of Kentucky By Andres Enrique Nunez Director: Dr. Elisa M. D’Angelo Lexington, KY 2008 Copyright © Andres Enrique Nunez 2008 ABSTRACT OF DISSERTATION MICROBIAL COMMUNITY STRUCTURE DYNAMICS IN OHIO RIVER SEDIMENTS DURING REDUCTIVE DECHLORINATION OF PCBS The entire stretch of the Ohio River is under fish consumption advisories due to contamination with polychlorinated biphenyls (PCBs). In this study, natural attenuation and biostimulation of PCBs and microbial communities responsible for PCB transformations were investigated in Ohio River sediments. Natural attenuation of PCBs was negligible in sediments, which was likely attributed to low temperature conditions during most of the year, as well as low amounts of available nitrogen, phosphorus, and organic carbon. -
Isotope Array Analysis of Rhodocyclales Uncovers Functional Redundancy and Versatility in an Activated Sludge
The ISME Journal (2009) 3, 1349–1364 & 2009 International Society for Microbial Ecology All rights reserved 1751-7362/09 $32.00 www.nature.com/ismej ORIGINAL ARTICLE Isotope array analysis of Rhodocyclales uncovers functional redundancy and versatility in an activated sludge Martin Hesselsoe1, Stephanie Fu¨ reder2, Michael Schloter3, Levente Bodrossy4, Niels Iversen1, Peter Roslev1, Per Halkjær Nielsen1, Michael Wagner2 and Alexander Loy2 1Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Aalborg, Denmark; 2Department of Microbial Ecology, University of Vienna, Wien, Austria; 3Department of Terrestrial Ecogenetics, Helmholtz Zentrum Mu¨nchen—National Research Center for Environmental Health, Neuherberg, Germany and 4Department of Bioresources/Microbiology, ARC Seibersdorf Research GmbH, Seibersdorf, Austria Extensive physiological analyses of different microbial community members in many samples are difficult because of the restricted number of target populations that can be investigated in reasonable time by standard substrate-mediated isotope-labeling techniques. The diversity and ecophysiology of Rhodocyclales in activated sludge from a full-scale wastewater treatment plant were analyzed following a holistic strategy based on the isotope array approach, which allows for a parallel functional probing of different phylogenetic groups. Initial diagnostic microarray, comparative 16S rRNA gene sequence, and quantitative fluorescence in situ hybridization surveys indicated the presence of a diverse community, consisting of an estimated number of 27 operational taxonomic units that grouped in at least seven main Rhodocyclales lineages. Substrate utilization profiles of probe-defined populations were determined by radioactive isotope array analysis and microautoradiography-fluorescence in situ hybridization of activated sludge samples that were briefly exposed to different substrates under oxic and anoxic, nitrate-reducing conditions. -
Low-Temperature Adapted Nitrifying Microbial Communities of Finnish Wastewater Treatment Systems
water Article Low-Temperature Adapted Nitrifying Microbial Communities of Finnish Wastewater Treatment Systems Antonina Kruglova 1,* , Jenni Kesulahti 1, Khoi Minh Le 1, Alejandro Gonzalez-Martinez 2, Anna Mikola 1 and Riku Vahala 1 1 Department of Built Environment, Aalto University, FI-00076 AALTO, Tietotie 1E, P. O. Box 15200, 02150 Espoo, Finland; [email protected] (J.K.); [email protected] (K.M.L.); anna.mikola@aalto.fi (A.M.); riku.vahala@aalto.fi (R.V.) 2 Institute of Water Research, University of Granada, 18071 Granada, Spain; [email protected] * Correspondence: antonina.kruglova@aalto.fi Received: 30 June 2020; Accepted: 26 August 2020; Published: 31 August 2020 Abstract: In this study, the microbial community of nitrifying activated sludge adapted to Finnish climate conditions was studied to clarify the microbial populations involved in low-temperature nitrification. Microbial community analysis of five full-scale wastewater treatment plants (WWTPs) showed several differences compared to WWTPs from other countries with a similar climate. In particular, very low abundance of ammonium oxidizing bacteria (AOBs) (altogether < 0.25% of total community) as well as typical NOBs (<0.35%) and a high abundance of orders Cytophagales and Micrococcales was observed in all Finnish WWTPs. To shed light on the importance of autotrophic and heterotrophic nitrifying processes, laboratory studies of activated sludge were carried out with a presence of and a lack of organic carbon in wastewater at 10 1 C. Two different sludge retention ± ◦ times (SRTs) were compared to determine the effect of this operational parameter on low-temperature nitrogen removal. The important role of previously reported Candidatus Nitrotogaarctica for nitrite oxidizing in cold climate conditions was confirmed in both full-scale and laboratory scale results. -
Microbial Degradation of Organic Micropollutants in Hyporheic Zone Sediments
Microbial degradation of organic micropollutants in hyporheic zone sediments Dissertation To obtain the Academic Degree Doctor rerum naturalium (Dr. rer. nat.) Submitted to the Faculty of Biology, Chemistry, and Geosciences of the University of Bayreuth by Cyrus Rutere Bayreuth, May 2020 This doctoral thesis was prepared at the Department of Ecological Microbiology – University of Bayreuth and AG Horn – Institute of Microbiology, Leibniz University Hannover, from August 2015 until April 2020, and was supervised by Prof. Dr. Marcus. A. Horn. This is a full reprint of the dissertation submitted to obtain the academic degree of Doctor of Natural Sciences (Dr. rer. nat.) and approved by the Faculty of Biology, Chemistry, and Geosciences of the University of Bayreuth. Date of submission: 11. May 2020 Date of defense: 23. July 2020 Acting dean: Prof. Dr. Matthias Breuning Doctoral committee: Prof. Dr. Marcus. A. Horn (reviewer) Prof. Harold L. Drake, PhD (reviewer) Prof. Dr. Gerhard Rambold (chairman) Prof. Dr. Stefan Peiffer In the battle between the stream and the rock, the stream always wins, not through strength but by perseverance. Harriett Jackson Brown Jr. CONTENTS CONTENTS CONTENTS ............................................................................................................................ i FIGURES.............................................................................................................................. vi TABLES .............................................................................................................................. -
Elevated Salinity Inhibits Nitrogen Removal by Changing the Microbial Community Composition in Constructed Wetlands During the Cold Season
Marine and Freshwater Research, 2018, 69, 802–810 © CSIRO 2018 http://dx.doi.org/10.1071/MF17171 Supplementary material Elevated salinity inhibits nitrogen removal by changing the microbial community composition in constructed wetlands during the cold season Yajun QiaoA,B,1, Penghe WangA,C,1, Wenjuan ZhangA, Guangfang SunA, Dehua ZhaoA,B,D, Nasreen JeelaniA,B, Xin LengA,B,D, and Shuqing AnA,B AInstitute of Wetland Ecology, School of Life Science, Nanjing University, Xianlin Avenue 163, Nanjing, 210046, P.R. China. BNanjing University Ecology Research Institute of Changshu, Huanhu Road 1, Changshu, 215500, P.R. China. CMCC Huatian Engineering and Technology Corporation, Fuchunjiangdong Street 18, Nanjing, 210019, P.R. China. DCorresponding authors. Email: [email protected]; [email protected] Page 1 of 7 Marine and Freshwater Research © CSIRO 2018 http://dx.doi.org/10.1071/MF17171 Fig. S1. The subsurface flow constructed wetlands (SSF-CWs) and microorganism sampling points. The substrates include three layers: a bottom layer (gravel; porosity, 0.55; diameter, 30–50 mm; thickness, 550 mm), middle layer (gravel; porosity, 0.45; diameter, 10–20 mm; thickness, 100 mm), and top layer (sand; diameter, 1–2 mm; thickness, 100 mm). Page 2 of 7 Marine and Freshwater Research © CSIRO 2018 http://dx.doi.org/10.1071/MF17171 Fig. S2. The daily water temperature of the influent during the preprocessing period and experimental period. A Temperature and Light Data Logger (HOBO UA-002–08; Onset, Cape Cod, MA, USA) was used to record the water temperature. Page 3 of 7 Marine and Freshwater Research © CSIRO 2018 http://dx.doi.org/10.1071/MF17171 Table S1. -
Contents Topic 1. Introduction to Microbiology. the Subject and Tasks
Contents Topic 1. Introduction to microbiology. The subject and tasks of microbiology. A short historical essay………………………………………………………………5 Topic 2. Systematics and nomenclature of microorganisms……………………. 10 Topic 3. General characteristics of prokaryotic cells. Gram’s method ………...45 Topic 4. Principles of health protection and safety rules in the microbiological laboratory. Design, equipment, and working regimen of a microbiological laboratory………………………………………………………………………….162 Topic 5. Physiology of bacteria, fungi, viruses, mycoplasmas, rickettsia……...185 TOPIC 1. INTRODUCTION TO MICROBIOLOGY. THE SUBJECT AND TASKS OF MICROBIOLOGY. A SHORT HISTORICAL ESSAY. Contents 1. Subject, tasks and achievements of modern microbiology. 2. The role of microorganisms in human life. 3. Differentiation of microbiology in the industry. 4. Communication of microbiology with other sciences. 5. Periods in the development of microbiology. 6. The contribution of domestic scientists in the development of microbiology. 7. The value of microbiology in the system of training veterinarians. 8. Methods of studying microorganisms. Microbiology is a science, which study most shallow living creatures - microorganisms. Before inventing of microscope humanity was in dark about their existence. But during the centuries people could make use of processes vital activity of microbes for its needs. They could prepare a koumiss, alcohol, wine, vinegar, bread, and other products. During many centuries the nature of fermentations remained incomprehensible. Microbiology learns morphology, physiology, genetics and microorganisms systematization, their ecology and the other life forms. Specific Classes of Microorganisms Algae Protozoa Fungi (yeasts and molds) Bacteria Rickettsiae Viruses Prions The Microorganisms are extraordinarily widely spread in nature. They literally ubiquitous forward us from birth to our death. Daily, hourly we eat up thousands and thousands of microbes together with air, water, food. -
Oxidizers on Root Iron Plaque Is Critical for Arsenic
www.nature.com/scientificreports OPEN The diversity and abundance of As(III) oxidizers on root iron plaque is critical for arsenic bioavailability Received: 17 March 2015 Accepted: 30 July 2015 to rice Published: 01 September 2015 Min Hu, Fangbai Li, Chuanping Liu & Weijian Wu Iron plaque is a strong adsorbent on rice roots, acting as a barrier to prevent metal uptake by rice. However, the role of root iron plaque microbes in governing metal redox cycling and metal bioavailability is unknown. In this study, the microbial community structure on the iron plaque of rice roots from an arsenic-contaminated paddy soil was explored using high-throughput next-generation sequencing. The microbial composition and diversity of the root iron plaque were significantly different from those of the bulk and rhizosphere soils. Using the aoxB gene as an identifying marker, we determined that the arsenite-oxidizing microbiota on the iron plaque was dominated by Acidovorax and Hydrogenophaga-affiliated bacteria. More importantly, the abundance of arsenite- oxidizing bacteria (AsOB) on the root iron plaque was significantly negatively correlated with the arsenic concentration in the rice root, straw and grain, indicating that the microbes on the iron plaque, particularly the AsOB, were actively catalyzing arsenic transformation and greatly influencing metal uptake by rice. This exploratory research represents a preliminary examination of the microbial community structure of the root iron plaque formed under arsenic pollution and emphasizes the importance of the root iron plaque environment in arsenic biogeochemical cycling compared with the soil-rhizosphere biotope. Rice is the world’s single most important food crop and a primary food source for more than a third of the world’s population1. -
International Journal of Systematic and Evolutionary Microbiology
University of Plymouth PEARL https://pearl.plymouth.ac.uk 01 University of Plymouth Research Outputs University of Plymouth Research Outputs 2017-05-01 Reclassification of Thiobacillus aquaesulis (Wood & Kelly, 1995) as Annwoodia aquaesulis gen. nov., comb. nov., transfer of Thiobacillus (Beijerinck, 1904) from the Hydrogenophilales to the Nitrosomonadales, proposal of Hydrogenophilalia class. nov. within the 'Proteobacteria', and four new families within the orders Nitrosomonadales and Rhodocyclales Boden, R http://hdl.handle.net/10026.1/8740 10.1099/ijsem.0.001927 International Journal of Systematic and Evolutionary Microbiology All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author. International Journal of Systematic and Evolutionary Microbiology Reclassification of Thiobacillus aquaesulis (Wood & Kelly, 1995) as Annwoodia aquaesulis gen. nov., comb. nov. Transfer of Thiobacillus (Beijerinck, 1904) from the Hydrogenophilales to the Nitrosomonadales, proposal of Hydrogenophilalia class. nov. within the 'Proteobacteria', and 4 new families within the orders Nitrosomonadales and Rhodocyclales. --Manuscript Draft-- Manuscript Number: IJSEM-D-16-00980R2 Full Title: Reclassification of Thiobacillus aquaesulis (Wood & Kelly, -
Riverine Bacterial Communities Reveal Environmental Disturbance Signatures Within the Betaproteobacteria and Verrucomicrobia
ORIGINAL RESEARCH published: 15 September 2016 doi: 10.3389/fmicb.2016.01441 Riverine Bacterial Communities Reveal Environmental Disturbance Signatures within the Betaproteobacteria and Verrucomicrobia John Paul Balmonte *, Carol Arnosti, Sarah Underwood, Brent A. McKee and Andreas Teske Department of Marine Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA Riverine bacterial communities play an essential role in the biogeochemical coupling of terrestrial and marine environments, transforming elements and organic matter in their journey from land to sea. However, precisely due to the fact that rivers receive significant Edited by: terrestrial input, the distinction between resident freshwater taxa vs. land-derived James Cotner, microbes can often become ambiguous. Furthermore, ecosystem perturbations could University of Minnesota, USA introduce allochthonous microbial groups and reshape riverine bacterial communities. Reviewed by: Barbara J. Campbell, Using full- and partial-length 16S ribosomal RNA gene sequences, we analyzed the Clemson University, USA composition of bacterial communities in the Tar River of North Carolina from November Martin W. Hahn, 2010 to November 2011, during which a natural perturbation occurred: the inundation of University of Innsbruck, Austria the lower reaches of an otherwise drought-stricken river associated with Hurricane Irene, *Correspondence: John Paul Balmonte which passed over eastern North Carolina in late August 2011. This event provided the [email protected] opportunity to examine the microbiological, hydrological, and geochemical impacts of a disturbance, defined here as the large freshwater influx into the Tar River, superimposed Specialty section: This article was submitted to on seasonal changes or other ecosystem variability independent of the hurricane. Our Aquatic Microbiology, findings demonstrate that downstream communities are more taxonomically diverse a section of the journal Frontiers in Microbiology and temporally variable than their upstream counterparts. -
A Report of 22 Unrecorded Bacterial Species in Korea, Isolated from the North Han River Basin in 2017
Journal of Species Research 7(3):193-201, 2018 A report of 22 unrecorded bacterial species in Korea, isolated from the North Han River basin in 2017 Yochan Joung, Miri Park, Hye-Jin Jang, Ilsuk Jung and Jang-Cheon Cho* Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea *Correspondent: [email protected] Culturable bacterial diversity was investigated using freshwater and sediment samples collected from the North Han River basin in 2017, as a part of the research program ‘Survey of freshwater organisms and specimen collection’. Over a thousand bacterial strains were isolated from the samples and identified based on 16S rRNA gene sequences. Among the bacterial isolates, 22 strains showing higher than 98.7% sequence similarity with validly published bacterial species, but not reported in Korea, were classified as unrecorded species in Korea. The 22 bacterial strains were phylogenetically diverse and assigned to 6 classes, 11 orders, 15 families, and 21 different genera. At the generic level, the unreported species were affiliated with Flavobacterium of the class Flavobacteria, Flexibacter of the class Cytophagia, Blastomonas, Brevundimonas, Elstera, Rhizobium, Roseomonas, Sphingomonas, and Xanthobacter of the class Alphaproteobacteria, Albidiferax, Cupriavidus, Curvibacter, Ferribacterium, Hydrogenophaga, Iodobacter, Limnohabitans, Polaromonas, Undibacterium, and Variovorax of the class Betaproteobacteria, Pseudomonas of the class Gammaproteobacteria, and Arcobacter of the class Epsilonproteobacteria. The unreported -
Amphibian Skin Microbiota Exhibits Temporal Variation in Community Structure but Stability of Predicted Bd-Inhibitory Function
The ISME Journal (2017) 11, 1521–1534 © 2017 International Society for Microbial Ecology All rights reserved 1751-7362/17 www.nature.com/ismej ORIGINAL ARTICLE Amphibian skin microbiota exhibits temporal variation in community structure but stability of predicted Bd-inhibitory function Molly C Bletz1, RG Bina Perl1, Bianca TC Bobowski1, Laura M Japke1, Christoph C Tebbe2, Anja B Dohrmann2, Sabin Bhuju3, Robert Geffers3, Michael Jarek3 and Miguel Vences1 1Zoologisches Institut, Technische Universität Braunschweig, Braunschweig, Germany; 2Institut für Biodiversität, Thünen Institut für Ländliche Räume, Wald und Fischerei, Braunschweig, Germany and 3Genomanalytik, Helmholtz Zentrum für Infektionsforschung, Braunschweig, Germany Host-associated microbiomes are increasingly recognized to contribute to host disease resistance; the temporal dynamics of their community structure and function, however, are poorly understood. We investigated the cutaneous bacterial communities of three newt species, Ichthyosaura alpestris, Lissotriton vulgaris and Triturus cristatus, at approximately weekly intervals for 3 months using 16S ribosomal RNA amplicon sequencing. We hypothesized cutaneous microbiota would vary across time, and that such variation would be linked to changes in predicted fungal-inhibitory function. We observed significant temporal variation within the aquatic phase, and also between aquatic and terrestrial phase newts. By keeping T. cristatus in mesocosms, we demonstrated that structural changes occurred similarly across individuals, highlighting -
Aquatic Microbial Ecology 79:115–125 (2017)
The following supplement accompanies the article Unique and highly variable bacterial communities inhabiting the surface microlayer of an oligotrophic lake Mylène Hugoni, Agnès Vellet, Didier Debroas* *Corresponding author: [email protected] Aquatic Microbial Ecology 79:115–125 (2017) Table S1. Phylogenetic affiliation of the surface micro-layer (SML) specific OTUs, the epilimnion (E) specific OTUs and shared to both layers. OTUs number Taxonomic Affiliation Surface microlayer Epilimnion Shared Acidobacteria;Acidobacteria;Acidobacteriales;Acidobacteriaceae (Subgroup 1);Granulicella; 2 0 0 Acidobacteria;Acidobacteria;Acidobacteriales;Acidobacteriaceae (Subgroup 1);uncultured; 1 0 0 Acidobacteria;Acidobacteria;JG37-AG-116; 24 0 0 Acidobacteria;Acidobacteria;Subgroup 13; 0 1 0 Acidobacteria;Acidobacteria;Subgroup 3;Family Incertae Sedis;Bryobacter; 0 0 1 Acidobacteria;Acidobacteria;Subgroup 3;SJA-149; 0 1 1 Acidobacteria;Acidobacteria;Subgroup 4;RB41; 0 1 0 Acidobacteria;Acidobacteria;Subgroup 6; 0 0 1 Actinobacteria;AcI;AcI-A; 0 4 13 Actinobacteria;AcI;AcI-A;AcI-A3; 0 4 0 Actinobacteria;AcI;AcI-A;AcI-A5; 3 1 1 Actinobacteria;AcI;AcI-A;AcI-A7; 0 1 0 Actinobacteria;AcI;AcI-B;AcI-B1; 0 8 1 Actinobacteria;AcI;AcI-B;AcI-B2; 0 7 0 Actinobacteria;Acidimicrobia;Acidimicrobiales;Acidimicrobiaceae;CL500-29 marine group; 7 34 11 Actinobacteria;Acidimicrobia;Acidimicrobiales;Family Incertae Sedis;Candidatus Microthrix; 0 1 0 Actinobacteria;Acidimicrobia;Acidimicrobiales;uncultured; 0 4 1 Actinobacteria;AcIV; 0 2 0 Actinobacteria;AcIV;Iluma-A2;