Thermodynamic and Optical Properties of Naphthalene, Fluorene and Fluorenone Derivatives
Total Page:16
File Type:pdf, Size:1020Kb
.0 Liquid .8 Crystal .6 .4 Vapor .2 .0 Thermodynamic and optical properties of naphthalene, fluorene and fluorenone derivatives Juliana Andreia Silva Alves Oliveira D Doutoramento em Química 2016 Departamento de Química e Bioquímica Faculdade de Ciências da Universidade do Porto Orientador Manuel João dos Santos Monte Professor Associado do Departamento de Química e Bioquímica Faculdade de Ciências da Universidade do Porto Co-orientador Maria das Dores Melo da Cruz Ribeiro da Silva Professora Associada do Departamento de Química e Bioquímica Faculdade de Ciências da Universidade do Porto FCUP I To Mom, Dad and B II FCUP III Abstract This dissertation describes the thermodynamic and optical study of 16 fluorene derivatives, 4 fluorenone derivatives and 3 naphthalene derivatives, some of which were synthesized for this purpose. Differential scanning calorimetry analysis was performed in order to detect transitions between condensed phases and to determine their enthalpies and temperatures of transition. The crystalline vapor pressures of all the compounds studied were measured using the Knudsen mass-loss effusion method and/or a static method based on capacitance manometers. The latter method also allowed the measurement of the liquid vapor pressures of some of the compounds, enabling phase diagram representations. Sublimation and vaporization properties (standard molar enthalpy, entropy and Gibbs energy) were determined from the vapor pressure dependency with temperature, and occasionally using also Calvet microcalorimetry. The standard molar enthalpies of formation in the crystalline phase, were derived from the standard massic energy of combustion, at T = 298.15 K, measured by combustion calorimetric techniques for some of the compounds studied. For these compounds, the combination of the standard molar enthalpies of formation in the crystalline phase and the standard molar enthalpies of sublimation yielded the standard molar enthalpies of formation, in the gaseous phase. The determined results enabled the evaluation of the thermodynamic stability of the compounds by means of the Gibbs energy of formation, in crystalline and gaseous phases. After convenient tests on a new apparatus, fluorescence spectroscopic measurements were performed to determine the fluorescence quantum yield and emission properties of the compounds studied. Keywords: Fluorene derivatives; Fluorenone derivatives; Naphthalene derivatives; Vapor pressure; Sublimation; Vaporization; Fusion; Combustion; Enthalpy; Entropy; Gibbs energy; Fluorescence; Quantum yield; Volatility; Stability. IV Resumo Nesta dissertação é descrito o estudo termodinâmico e ótico de 16 derivados do fluoreno, 4 derivados da fluorenona e 3 derivados do naftaleno, alguns dos quais foram sintetizados neste trabalho. Calorimetria diferencial de varrimento foi realizada com os objetivos de detetar as transições entre as fases condensadas e determinar as respetivas temperaturas e entalpias molares de fusão padrão. As pressões de vapor da fase cristalina de todos os compostos estudados foram medidas utilizando o método de efusão de Knudsen e/ou um método estático baseado em manómetros de capacitância. O método estático também permitiu a medição pressões de vapor da fase líquida de alguns dos compostos, possibilitando a representação dos respetivos diagramas de fase. As propriedades de sublimação e vaporização (entalpia, entropia e energia de Gibbs molar padrão) foram determinados a partir da dependência da pressão do vapor com a temperatura e, ocasionalmente, usando também microcalorimetria Calvet. As entalpias molares de formação padrão na fase cristalina, foram derivadas a partir de energias mássicas de combustão padrão, a T = 298.15 K, determinadas por calorimetria de combustão para alguns dos compostos estudados. Para estes compostos, a combinação das respetivas entalpias molares de formação padrão na fase cristalina com as entalpias molares de sublimação padrão permitiu o cálculo das entalpias molares de formação padrão, na fase gasosa. Estes resultados permitiram a avaliação da estabilidade termodinâmica dos compostos por meio da energia de Gibbs de formação, das fases cristalinas e gasosas. Após testes convenientes a um novo aparelho, as propriedades de emissão dos compostos estudados, incluindo o rendimento quântico de fluorescência, foram determinadas por espectroscopia de fluorescência. Palavras-chave: Derivados do fluoreno; Derivados da fluorenona; Derivados do naftaleno; Pressão de vapor; Sublimação; Vaporização; Fusão; Combustão; Entalpia; Entropia; Energia de Gibbs; Fluorescência; Rendimento quântico; Volatilidade; Estabilidade. FCUP V Acknowledgments I’d like to express my deepest gratitude, To Professor Manuel João Monte, for the guidance throughout the years, for the fruitful discussions and incentive, and for challenging me daily to develop the rational thinking essential to a good scientist, which greatly contributed to the realization of this work. To Professor Maria da Dores Ribeiro da Silva, for the support and availability, for the transmitted knowledge and the constant encouragement. To the late Professor Manuel Ribeiro da Silva, for always teaching me something new, for all the given opportunities that lead to this point and for all they may lead to in the future. To all the professors and colleagues in the RG2 and RG3 groups, in which I include Mr. Carlos Torres, who in one way or another contributed to this work, I thank the regard with which I was received and all the support provided. A special mention to Ana Rita Figueira, for being a ‘partner in crime’, for the contagious good mood, invaluable lessons and always prompt and unconditional assistance that cannot be put into words. To Professor Fernanda Borges and Alexandra Gaspar, for kindly welcoming me into their group and providing me with the necessary tools for what was to be a brief collaboration and ended up becoming a long ‘synthetic’ endeavor. To Joana, Tiago, Maria João and Sílvia, for representing the purest definition of friendship. The past years wouldn’t have been the same without you. To my loving parents and my dear B, for the never ending patience, encouragement, support and love. For the constant reminder that it would all be worth it. Again and always, to Professor Alice. Thanks are also due to the Department of Chemistry and Biochemistry of the Faculty of Sciences, University of Porto, and to CIQ-UP (Centro de Investigação em Química), for providing the facilities and conditions necessary for the execution of this work. And, finally, to FCT (Fundação para a Ciência e Tecnologia) for the award of the Ph. D. research grant (SFRH/BD/80372/2011), included in the research project PTDC/QUI- QUI/102814/2008, and for granting the financial support for the presentation of this research in international scientific conferences. VI FCUP VII General index Page Abstract III Resumo IV Acknowledgments V General index VII Figure index XV Table index XX 1. Introduction 1 1.1. Aim of the study 3 1.2. Compounds studied 4 1.3. Methods used 7 References 9 2. Synthesis 13 2.1. Introduction 15 2.2. General information 15 2.2.1. Reagents and solvents 15 2.2.2. General procedures and instrumentation 15 2.2.3. Synthetic yields and purity degrees 17 2.3. Synthetic procedures 18 2.3.1. Halogenated fluorene derivatives 18 2.3.1.1. 2,7-Difluorofluorene 18 2.3.1.2. 2,7-Dichlorofluorene 19 2.3.1.3. 2,7-Diiodofluorene 19 2.3.1.4. 2-Chlorofluorene 20 2.3.1.5. 9-Chlorofluorene 24 2.3.1.6. 9-Iodofluorene 25 2.3.2. Halogenated fluorenone derivatives 27 References 28 3. Experimental methods 29 3.1. Purification and characterization 31 3.1.1. Purification methods 31 3.1.2. Purity analysis 31 VIII 3.2. Calorimetric methods 33 3.2.1. Differential calorimetry 33 3.2.1.1. Introduction to differential calorimetry 33 3.2.1.2. Power compensation calorimetry: Differential scanning calorimeter 34 3.2.1.2.1. Typical thermogram and treatment of experimental results 35 3.2.1.2.2. Calibration 36 3.2.1.2.3. Description of the apparatuses 37 3.2.1.2.4. Experimental procedure 38 3.2.1.3. Heat flux calorimetry: Calvet Microcalorimeter 39 3.2.1.3.1. Typical thermogram and treatment of experimental results 40 3.2.1.3.2. Calibration 42 Temperature calibration 42 Blank calibration 43 Calorimeter calibration 43 3.2.1.3.3. Description of the apparatus 44 Calvet microcalorimeter 44 Vacuum pumping system 45 Vacuum line and calorimetric cells 45 3.2.1.3.4. Experimental procedure 46 3.2.2. Combustion calorimetry 47 3.2.2.1. Introduction to combustion calorimetry 47 3.2.2.1.1. Combustion of organic compounds containing bromine 48 3.2.2.2. Theoretical and technical basis of the method 49 3.2.2.2.1. Variation of temperature in adiabatic conditions 49 3.2.2.2.2. Variation of temperature in adiabatic conditions in rotating bomb 52 combustion calorimetry 3.2.2.2.3. Calibration of the calorimeter: Energy equivalent calculation 54 3.2.2.2.4. Combustion auxiliaries 58 3.2.2.2.5. Standard massic energy of combustion: Washburn corrections 59 3.2.2.2.6. Standard molar enthalpy of combustion and formation 62 3.2.2.3. Description of the combustion calorimetric systems 63 3.2.2.3.1. Static bomb combustion calorimeter 64 Static combustion bomb 64 Calorimetric vessel 65 Thermostatic bath 66 3.2.2.3.2. Experimental procedure 66 3.2.2.3.3. Rotating bomb combustion calorimeter 67 Rotating combustion bomb 67 Calorimetric vessel 68 Thermostatic bath 69 FCUP IX 3.2.2.3.4. Experimental procedure 69 3.2.2.3.5. Analysis of combustion products 70 Carbon dioxide recovery 70 Unburned compound and / or carbon residue 71 Analysis of nitric acid 71 Analysis of arsenic(III) oxide 72 3.3. Vapor pressure measurement methods 73 3.3.1. Introduction to the study of vapor pressures 73 3.3.1.1. Experimental methods for vapor pressure measurement 73 Ebulliometric methods 73 Gas saturation methods 74 Effusion methods 74 Static methods 74 Association of different methods 74 3.3.1.2.