Synthetic Studies of Nitrogen-Containing Heterocycles Under Microwave Irradiation, Bruno Nascimento, Coimbra, 2013

Total Page:16

File Type:pdf, Size:1020Kb

Synthetic Studies of Nitrogen-Containing Heterocycles Under Microwave Irradiation, Bruno Nascimento, Coimbra, 2013 Imagem Bruno Filipe Oliveira Nascimento Synthetic Studies of Nitrogen-Containing Heterocycles under Microwave Irradiation Tese orientada pelo Professor António Manuel d'Albuquerque Rocha Gonsalves e pela Professora Marta Piñeiro Gómez e apresentada na Universidade de Coimbra para obtenção do grau de Doutor em Química com especialidade de Síntese Orgânica July 2013 Bruno Filipe Oliveira Nascimento Synthetic Studies of Nitrogen-Containing Heterocycles under Microwave Irradiation Tese orientada pelo Professor António Manuel d'Albuquerque Rocha Gonsalves e pela Professora Marta Piñeiro Gómez e apresentada na Universidade de Coimbra para obtenção do grau de Doutor em Química com especialidade de Síntese Orgânica July 2013 Aos elementos da FREQ, Frente Revolucionária do Enclave das Químicas. Obrigado pela longa e intensa amizade... Aquele abraço! Contents Preface xiii Abstract xiv Resumo xvi Listing of Abbreviations xviii Listing of Symbols xxi Listing of Schemes xxii Listing of Figures xxvi Listing of Tables xxviii Nomenclature xxix 1. Microwave Chemistry 1 I. Introduction & Relevance 1 II. Microwave Fundamentals 2 A. Microwave Radiation 2 B. Dielectric Heating 3 C. Dielectric Properties 5 D. Microwave versus Conventional Heating 7 E. Microwave Effects 8 1. Thermal/Kinetic Effects 8 2. Specific Microwave Effects 9 3. Non-Thermal Microwave Effects 12 III. Microwave Equipment 13 A. Domestic Microwave Ovens 14 B. Dedicated Microwave Reactors 15 C. CEM Discover S-Class 16 IV. References 17 2. Pyrroles 23 I. Introduction & Relevance 23 II. Classical Synthetic Methods 25 A. Paal-Knorr Synthesis 25 B. Knorr Synthesis 25 C. Hantzsch Synthesis 26 III. Microwave-Assisted Synthetic Methods 26 A. Literature Review & Selected Examples 27 B. Paal-Knorr Synthesis of 2,5-Dimethyl-1H-Pyrroles 31 |ix Contents C. Paal-Knorr Synthesis of Bis-2,5-Dimethyl-1H-Pyrroles 33 D. Multicomponent Synthesis of 3,5-Diaryl-2-Methyl-1H-Pyrroles 34 IV. Summary 41 V. References 42 3. Porphyrins & Hydroporphyrins 45 I. Introduction & Relevance 45 II. Classical Synthetic Methods 47 A. Porphyrins 47 1. Rothemund Synthesis 48 2. Adler-Longo Synthesis 48 3. Rocha Gonsalves Two-Step Synthesis 49 4. Lindsey Two-Step Synthesis 49 5. Rocha Gonsalves One-Step Synthesis 49 6. Other Syntheses 50 B. Hydroporphyrins 51 1. Reduction of Porphyrins 52 2. Oxidation of Porphyrins 52 3. Cycloaddition of Porphyrins 53 4. Oxidation of Porphyrinogens 54 5. Other Syntheses 54 III. Microwave-Assisted Synthetic Methods 55 A. Literature Review & Selected Examples 55 1. Porphyrins 55 2. Hydroporphyrins 58 B. Synthesis of meso-Tetraarylporphyrins 59 C. Synthesis of meso-Tetraarylhydroporphyrins 64 IV. Summary 67 V. References 68 4. Hantzsch 1,4-Dihydropyridines 71 I. Introduction & Relevance 71 II. Classical Synthetic Methods 72 III. Microwave-Assisted Synthetic Methods 75 A. Literature Review & Selected Examples 75 B. Multicomponent Synthesis of Hantzsch 1,4-Dihydropyridines 83 C. Oxidation of Hantzsch 1,4-Dihydropyridines 85 x| Contents IV. Summary 88 V. References 88 5. Biginelli 3,4-Dihydropyrimidines 93 I. Introduction & Relevance 93 II. Classical Synthetic Methods 96 III. Microwave-Assisted Synthetic Methods 99 A. Literature Review & Selected Examples 99 B. Multicomponent Synthesis of Biginelli 3,4-Dihydropyrimidines 106 C. Multicomponent Synthesis of Biginelli Bis-3,4-Dihydropyrimidines 111 D. Synthesis of Biginelli-Type 3,4-Dihydropyrimidine-2(1H)-Thiones 112 E. Oxidation of Biginelli 3,4-Dihydropyrimidines 118 IV. Summary 126 V. References 127 6. Experimental 131 I. Instrumentation 131 A. Microwaves 131 B. Melting Points 131 C. Elemental Analysis 131 D. Ultraviolet-Visible Absorption Spectroscopy 131 E. Nuclear Magnetic Resonance Spectroscopy 131 F. Gas Chromatography-Mass Spectrometry 131 G. Mass Spectrometry 131 H. X-Ray Diffraction 131 II. Materials 132 A. Reagents 132 B. Solvents 132 C. Others 132 III. Methods 132 A. Pyrroles 132 1. Paal-Knorr Synthesis of 2,5-Dimethyl-1H-Pyrroles 132 2. Paal-Knorr Synthesis of Bis-2,5-Dimethyl-1H-Pyrroles 133 3. Multicomponent Synthesis of 3,5-Diaryl-2-Methyl-1H-Pyrroles 134 4. Claisen-Schmidt Synthesis of Chalcones 139 5. Vilsmeier-Haack Acetylation of Pyrrole 142 B. Porphyrins 142 |xi Contents 1. Synthesis of meso-Tetraarylporphyrins 142 i. One-Step Methodology 142 ii. Two-Step Methodology 147 C. Hydroporphyrins 147 1. Synthesis of meso-Tetraarylbacteriochlorins 147 2. Synthesis of meso-Tetraarylchlorins 148 D. Hantzsch 1,4-Dihydropyridines 149 1. Multicomponent Synthesis of Hantzsch 1,4-Dihydropyridines 149 2. Oxidation of Hantzsch 1,4-Dihydropyridines 153 i. Heterogeneous Oxidative Aromatisation 153 ii. Homogeneous Oxidative Aromatisation 153 E. Biginelli 3,4-Dihydropyrimidines 156 1. Multicomponent Synthesis of Biginelli 3,4-Dihydropyrimidines 156 2. Multicomponent Synthesis of Biginelli Bis-3,4-Dihydropyrimidines 164 3. Synthesis of Biginelli-Type 3,4-Dihydropyrimidine-2(1H)-Thiones 166 4. Oxidation of Biginelli 3,4-Dihydropyrimidin-2(1H)-Ones 168 F. Spectral & Photophysical Studies 170 G. Cytotoxicity Studies 171 IV. References 171 xii| Preface “By three methods we may learn wisdom: first, by reflection, which is noblest; second, by imitation, which is easiest; and third, by experience, which is bitterest.” Confucius (551 - 479 BC) The work presented in this dissertation was carried-out at the Research Laboratory on Organic Chemistry of the Department of Chemistry, Faculty of Sciences and Technology of the University of Coimbra, Portugal, between January 2008 and June 2012, and was by no means accomplished in an individual manner, but through several and fruitful interactions. Hence, it is of the essence to acknowledge the valuable contributions of all persons and entities involved. To Prof. Marta Piñeiro Gómez, my supervisor, I acknowledge the enlightened and informal scientific guidance, always characterised by a generous amount of patience and good-humour, which was utterly determinant throughout this project. To Prof. António M. d'A. Rocha Gonsalves, my co-supervisor, I acknowledge the thoughts and opinions, always furnished in a singular and charismatic fashion, that were essential to the successful scrutiny of several queries. To Prof. Teresa M. V. D. Pinho e Melo, head of the Research Laboratory on Organic Chemistry, I acknowledge the useful clarifications that were fundamental to the investigation of various questions. I am profoundly grateful to the following persons for their expertise and availability, regarding the technical features of the structural characterisation, spectral, photophysical and cytotoxicity studies of some of the compounds synthesised in this work: Prof. Maria Elisa S. Serra (Elemental Analysis), Pedro Cruz and Prof. Rui M. M. Brito (Nuclear Magnetic Resonance Spectroscopy), Júlio Sampaio (High-Resolution Mass Spectrometry), Alexandra Gonsalves (Mass Spectrometry), Sílvia Gramacho (Gas Chromatography-Mass Spectrometry), Prof. José A. Paixão (X-Ray Diffraction), Daniela Pinheiro, João Pina and Prof. J. Sérgio Seixas de Melo (Spectral and Photophysical Studies), Mafalda Laranjo, Ana Abrantes and Prof. Maria Filomena Botelho (Cytotoxicity Studies). I wish to convey my deepest gratitude to all my laboratory co-workers, for their support, team-spirit and helpful sharing of ideas. In particular, I would like to thank Prof. Arménio C. Serra for the constant, proficient and good-humoured exchange of opinions, in spite of our differences at the musical level and, consequently, our customary disagreement concerning the frequency setting of the laboratory radio. I would also like to express recognition to my colleagues Cláudio Nunes, Nelson Pereira, Rui Nunes and Salomé Santos for their friendship, encouragement and the always riveting discussions, scientific, political or other, particularly when the best results of this work were not being achieved at the desired rate. Furthermore, thanks are due to Rita Navarro, for reading and correcting part of this manuscript and providing me with both precious and pertinent suggestions. Lastly, I wish to deeply acknowledge my parents, Fátima and Pedro, for their continual affection, endless support and, as long as I can remember, for instigating my free-will and freedom of thought. Financial aid provided by Chymiotechnon, Coimbra Chemistry Centre, University of Coimbra and, particularly, Fundação para a Ciência e Tecnologia, which kindly presented me with a Ph.D. grant (SFRH/BD/QUI/41472/2007), is also gratefully appreciated. |xiii Abstract The central goal of the work presented in this doctoral dissertation was the application of microwave irradiation to the development of efficient, straightforward and reproducible synthetic methods of various interesting and broadly recognised nitrogen-containing heterocycles. Their reactivity under microwave heating conditions, particularly in oxidation processes, was also studied, inexpensive, undemanding and environment- friendly synthetic strategies being employed whenever possible. The illustrious Paal-Knorr synthesis of pyrroles was revised, some 2,5-dimethyl-1H-pyrroles and bis-2,5- dimethyl-1H-pyrroles being readily prepared with high reaction yields through a solventless and microwave- activated procedure. A small compound library of 3,5-diaryl-2-methyl-1H-pyrroles, incorporating both electron- donating and electron-withdrawing scaffolds, was also synthesised under microwave irradiation using a solid- supported and multicomponent approach, albeit with low isolated yields. A few of these multisubstituted heterocycles were selected
Recommended publications
  • Theoretical Study of the Excited States of Chlorin, Bacteriochlorin, Pheophytin A, and Chlorophyll a by the SAC/SAC-CI Method
    1320 J. Phys. Chem. B 1998, 102, 1320-1326 Theoretical Study of the Excited States of Chlorin, Bacteriochlorin, Pheophytin a, and Chlorophyll a by the SAC/SAC-CI Method J. Hasegawa, Y. Ozeki, K. Ohkawa, M. Hada, and H. Nakatsuji*,† Department of Synthetic and Biological Chemistry, Faculty of Engineering, Kyoto UniVersity, Sakyo-ku, Kyoto 606-01, Japan ReceiVed: September 4, 1997; In Final Form: NoVember 19, 1997 Excited states of free base chlorin (FBC), free base Bacteriochlorin (FBBC), pheophytin a (Pheo a), and chlorophyll a (Chlo a), which are derivatives of free base porphine (FBP), were calculated by the SAC (symmetry adapted cluster)/SAC-CI (configuration interaction) method. The results reproduced well the experimentally determined excitation energies. The reduction of the outer double bonds in the porphine ring in the order of FBP, FBC, and FBBC causes a breakdown of the symmetry and a narrowing of the HOMO- LUMO gap, which result in a red shift of the Qx band and an increase of its intensity. In the change from Pheo a to Chlo a, the Mg coordination reduces the quasidegeneracy in the Qx state and then increases the spectral intensity. The disappearance of the Qy humps from the absorption spectrum of Pheo a, compared with that of Chlo a, is due to the red shift of the Qy state. Introduction Many biological systems contain porphyrins, chlorins, and bacteriochlorins.1,2 These compounds often take an important part in biochemical reactions, such as light absorption, electron transfer,1 and oxygen transport and storage.2 Because of their scientific importance, they have been the subject of a wide variety of studies.
    [Show full text]
  • Formation of a Square-Planar Co(L) B12 Intermediate Implications for Enzyme Catalysis
    Formation of a square-planar Co(l) B12 intermediate Implications for enzyme catalysis Michael D. Wirt, Irit Sagi, and Mark R. Chance Department of Chemistry, Georgetown University, Washington, DC 20057 USA ABSTRACT X-ray edge and extended x-ray absorption fine structure (EXAFS) techniques provide powerful tools for analysis of local molecular structure of complexes in solution. We present EXAFS results for Co(l) B12 that demonstrate a four-coordinate (distorted) square-planar configuration. Comparison of EXAFS solutions for Co(l) and Co(ll) B12 (collected previously; Sagi et al. 1990. J. Am. Chem. Soc. 112:8639-8644) suggest that modulation of the Co - N bond to the axial 5,6-dimethylbenzimidazole (DMB), in the absence of changes in Co - N (equatorial) bond distances, may be a key mechanism in promoting homolytic versus heterolytic cleavage. As Co - C bond homolysis occurs, the Co - N (DMB) bond becomes stronger. However, for heterolytic cleavage to occur, earlier electrochemical studies (D. Lexa and J. M. Saveant. 1976. J. Am. Chem. Soc. 98:2652-2658) and recent studies of methylcobalamin- dependent Clostridium thermoaceticum (Ragsdale et al. 1987. J. Biol. Chem. 262:14289-14297) suggest that removal of the DMB ligand (before Co - C bond cleavage) favors formation of the four-coordinate square-planar Co(l) species while inhibiting formation of the five-coordinate Co(ll) B12 complex. This paper presents the first direct evidence that formation of the Co(l) B12 intermediate must involve breaking of the Co -N (DMB) bond. INTRODUCTION 5'-Deoxyadenosylcobalamin (AdoCbl) (Fig. 1) functions nism of Co - C bond cleavage and the formation of as an essential cofactor for enzyme reactions involving four-coordinate Co(I) B12 intermediates.
    [Show full text]
  • Structural Aspects of Porphyrins for Functional Materials Applications
    crystals Review Structural Aspects of Porphyrins for Functional Materials Applications Lawrence Cook 1,2,*, Greg Brewer 2 and Winnie Wong-Ng 3 ID 1 Department of Materials Science and Engineering, The Catholic University of America, Washington, DC 20064, USA 2 Department of Chemistry, The Catholic University of America, Washington, DC 20064, USA; [email protected] 3 Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-202-319-5535 Academic Editor: Helmut Cölfen Received: 19 April 2017; Accepted: 12 July 2017; Published: 15 July 2017 Abstract: Porphyrinic compounds comprise a diverse group of materials which have in common the presence of one or more cyclic tetrapyrroles known as porphyrins in their molecular structures. The resulting aromaticity gives rise to the semiconducting properties that make these compounds of interest for a broad range of applications, including artificial photosynthesis, catalysis, molecular electronics, sensors, non-linear optics, and solar cells. In this brief review, the crystallographic attributes of porphyrins are emphasized. Examples are given showing how the structural orientations of the porphyrin macrocycle, and the inter-porphyrin covalent bonding present in multiporphyrins influence the semiconducting properties. Beginning with porphine, the simplest porphyrin, we discuss how the more complex structures that have been reported are described by adding peripheral substituents and internal metalation to the macrocycles. We illustrate how the conjugation of the π-bonding, and the presence of electron donor/acceptor pairs, which are the basis for the semiconducting properties, are affected by the crystallographic topology. Keywords: porphyrin; metalloporphyrin; crystal structure; crystallography; semiconductor; electrical conductivity; molecular electronics; covalent bonding; π-bonding; conjugation 1.
    [Show full text]
  • Nomenclature of Tetrapyrroles
    Pure & Appi. Chem. Vol.51, pp.2251—2304. 0033-4545/79/1101—2251 $02.00/0 Pergamon Press Ltd. 1979. Printed in Great Britain. PROVISIONAL INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY and INTERNATIONAL UNION OF BIOCHEMISTRY JOINT COMMISSION ON BIOCHEMICAL NOMENCLATURE*t NOMENCLATURE OF TETRAPYRROLES (Recommendations, 1978) Prepared for publication by J. E. MERRITT and K. L. LOENING Comments on these proposals should be sent within 8 months of publication to the Secretary of the Commission: Dr. H. B. F. DIXON, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK. Comments from the viewpoint of languages other than English are encouraged. These may have special significance regarding the eventual publication in various countries of translations of the nomenclature finally approved by IUPAC-IUB. PROVISIONAL IUPAC—ITJB Joint Commission on Biochemical Nomenclature (JCBN), NOMENCLATUREOF TETRAPYRROLES (Recommendations 1978) CONTENTS Preface 2253 Introduction 2254 TP—O General considerations 2256 TP—l Fundamental Porphyrin Systems 1.1 Porphyrin ring system 1.2 Numbering 2257 1.3 Additional fused rings 1.4 Skeletal replacement 2258 1.5 Skeletal replacement of nitrogen atoms 2259 1.6Fused porphyrin replacement analogs 2260 1.7Systematic names for substituted porphyrins 2261 TP—2 Trivial names and locants for certain substituted porphyrins 2263 2.1 Trivial names and locants 2.2 Roman numeral type notation 2265 TP—3 Semisystematic porphyrin names 2266 3.1 Semisystematic names in substituted porphyrins 3.2 Subtractive nomenclature 2269 3.3 Combinations of substitutive and subtractive operations 3.4 Additional ring formation 2270 3.5 Skeletal replacement of substituted porphyrins 2271 TP—4 Reduced porphyrins including chlorins 4.1 Unsubstituted reduced porphyrins 4.2 Substituted reduced porphyrins.
    [Show full text]
  • Probing the Interactions of Porphyrins with Macromolecules Using NMR Spectroscopy Techniques
    molecules Review Probing the Interactions of Porphyrins with Macromolecules Using NMR Spectroscopy Techniques Ilche Gjuroski, Julien Furrer and Martina Vermathen * Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland; [email protected] (I.G.); [email protected] (J.F.) * Correspondence: [email protected]; Tel.: +41-(31)-631-3948 Abstract: Porphyrinic compounds are widespread in nature and play key roles in biological pro- cesses such as oxygen transport in blood, enzymatic redox reactions or photosynthesis. In addition, both naturally derived as well as synthetic porphyrinic compounds are extensively explored for biomedical and technical applications such as photodynamic therapy (PDT) or photovoltaic systems, respectively. Their unique electronic structures and photophysical properties make this class of compounds so interesting for the multiple functions encountered. It is therefore not surprising that optical methods are typically the prevalent analytical tool applied in characterization and pro- cesses involving porphyrinic compounds. However, a wealth of complementary information can be obtained from NMR spectroscopic techniques. Based on the advantage of providing structural and dynamic information with atomic resolution simultaneously, NMR spectroscopy is a powerful method for studying molecular interactions between porphyrinic compounds and macromolecules. Such interactions are of special interest in medical applications of porphyrinic photosensitizers Citation: Gjuroski, I.; Furrer, J.; that are mostly combined with macromolecular carrier systems. The macromolecular surrounding Vermathen, M. Probing the typically stabilizes the encapsulated drug and may also modify its physical properties. Moreover, the Interactions of Porphyrins with interaction with macromolecular physiological components needs to be explored to understand and Macromolecules Using NMR control mechanisms of action and therapeutic efficacy.
    [Show full text]
  • Metalloporphyrins
    METALLOPORPHYRINS Metalloporphyrins, which include such important complexes as chlorophyll, heme of the RRαR blood, and others, represent a vast and unique group of intercomplex compounds. By varying 2 3 the choice of the metal center, the bonding and characteristics of the metalloporphyrin may be R1 R4 dramatically affected. This great diversity is one reason why metalloporphyrins have been NN widely used in the production of dyes, semiconductors, and catalysts, as well as in numerous 1 Rδ M Rβ studies spanning the chemical and biological fields. Aldrich offers a wide variety of both metalloporphyrins and porphyrin ligands for use in NN your research. Below is a listing of some recent uses for these materials. If the compound you R R require is not listed here, or you would like to request a copy of the Aldrich Dyes, Indicators, 8 5 & Intermediates Catalog or our NEW Inorganics and Organometallics Catalog/Handbook, R7Rγ R6 please call our Technical Services Department at 1-800-231-8327 or visit our Website at www.sial.com/aldrich. Metalloporphyrins 27,586-7 5,10,15,20-Tetrakis(4-methoxyphenyl)-21H,23H-porphine cobalt(II), synthetic 1g; 10g Starting material in the synthesis of cobalt nitrosyl porphyrins for use in the study of the binding and activation of nitric oxide.2,3 Acts as a versatile catalyst during the oxidation of a wide range of organic substrates with dioxygen in the presence of 2-methylpropanal under ambient conditions.4 25,907-1 5,10,15,20-Tetraphenyl-21H,23H-porphine iron(III) chloride, synthetic 100mg; 500mg; 5g Effective
    [Show full text]
  • ACS Style Guide
    ➤ ➤ ➤ ➤ ➤ The ACS Style Guide ➤ ➤ ➤ ➤ ➤ THIRD EDITION The ACS Style Guide Effective Communication of Scientific Information Anne M. Coghill Lorrin R. Garson Editors AMERICAN CHEMICAL SOCIETY Washington, DC OXFORD UNIVERSITY PRESS New York Oxford 2006 Oxford University Press Oxford New York Athens Auckland Bangkok Bogotá Buenos Aires Calcutta Cape Town Chennai Dar es Salaam Delhi Florence Hong Kong Istanbul Karachi Kuala Lumpur Madrid Melbourne Mexico City Mumbai Nairobi Paris São Paulo Singapore Taipei Tokyo Toronto Warsaw and associated companies in Berlin Idaban Copyright © 2006 by the American Chemical Society, Washington, DC Developed and distributed in partnership by the American Chemical Society and Oxford University Press Published by Oxford University Press, Inc. 198 Madison Avenue, New York, NY 10016 Oxford is a registered trademark of Oxford University Press All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the American Chemical Society. Library of Congress Cataloging-in-Publication Data The ACS style guide : effective communication of scientific information.—3rd ed. / Anne M. Coghill [and] Lorrin R. Garson, editors. p. cm. Includes bibliographical references and index. ISBN-13: 978-0-8412-3999-9 (cloth : alk. paper) 1. Chemical literature—Authorship—Handbooks, manuals, etc. 2. Scientific literature— Authorship—Handbooks, manuals, etc. 3. English language—Style—Handbooks, manuals, etc. 4. Authorship—Style manuals. I. Coghill, Anne M. II. Garson, Lorrin R. III. American Chemical Society QD8.5.A25 2006 808'.06654—dc22 2006040668 1 3 5 7 9 8 6 4 2 Printed in the United States of America on acid-free paper ➤ ➤ ➤ ➤ ➤ Contents Foreword.
    [Show full text]
  • ARCHIVES of 2I:Cf Ncy
    THE KINETICS OF HYDRODEMETALLATION OF METALLOPORPHYRINS BY CHI-WEN HUNG B. Ch. E., National Taiwan University (1974) Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology August, 1979 -I signature of Author Department of Chemical Engineering August, 1979 Certified by James Wei, Thesis Supervisor Accepted by G. C. Williams, Chairman, Departmental Committee on Graduate Thesis ARCHIVES OF 2i:cf ncY LIBRARIES THE KINETICS OF HYDRODEMETALLATION OF METALLOPORPHYRINS BY CHI-WEN HUNG Submitted to the Department of Chemical Engineering on August 3 , 1979 in partial fulfillment of the requirements for the Degree of Doctor of Philosophy. ABSTRACT The kinetics of hydrodemetallation of nickel etioporphyrin I (Ni-Etio), nickel tetraphenylporphine (Ni-TPP), and vanadyl etioporphyrin I (VO-Etio) have been studied in batch autoclave experiments, with white oils as solvents, and CoO -MoO 3 /Al 2 03 as catalyst without presulfiding. The effects of hydrogen pressure up to 12-500 KPa and temperature between 287-357 C were studied. Up to 90% metal removal, the data can be described by fractional order kinetics. The activation energy is from 27-37 kcal/g mole, and the hydrogen pressure dependence is from 1.2-2.2 order. Vanadium removal tends to have larger activation energy and smaller hydrogen pressure dependence. A few runs on mixed vanadyl and nickel etioporphyrins showed that while the presence of vanadyl compounds will suppress the nickel removal reaction, the reverse is less significant. Few runs on free base etio- porphyrin and tetraphenylporphine show that free base porphyrins quickly disappear in the autoclave.
    [Show full text]
  • A Study of Closed Vs. Open Shell Transition Metal Porphyrin Complexes
    UMass Boston, Chem 371 Advanced Inorganic Chemistry Laboratory A Study of Closed vs. Open Shell Transition Metal Porphyrin Complexes Transition metals play a critical role in a myriad of OH OH biological processes. Their ions and complexes H C O serve as structural supports, electron transfer 2 N N relays, oxygen transport and storage depots, and N H2NOC N catalytic centres. Coenzyme B 12 (Figure 1) and its NH2 derivatives are prototypical examples of CH 3 CH 3 CONH 2 bioinorganic complexes constructed from a H2NOC H3C N N CONH porphyrin (or more specifically a corrole) type H3C Co 2 H NN ring system. These represent rare examples of CH 3 H3C cobalt based enzymes as cobalt is the rarest of the H2NOC H C CH 3 first-row transition metals. "Model" compounds O 3 NH CH mimicking such chemistry have served to further O 3 our understanding of many of these complex P O N CH 3 H3C O systems. Porphyrins are a class of macrocylic H OH N nitrogen-containing pigments essential in nature CH 3 and biology to which molecules such as heme O CH OH (which forms an integral part of haemoglobin), 2 vitamin B12, cytochrome P-450 and chlorophyll Fig ure 1. The natural ly occurring (photosynthesis) belong. organometallic coenzyme B 12 complex All porphyrins have the ability to complex metal ions, the simplest of which being the skeletal porphine ring (Figure 2). This core ring system is planar and contains 18 delocalizable π-electrons which make it aromatic according to the Hückel rules. Porphyrins are intensely coloured materials with distinct absorption features.
    [Show full text]
  • Characteristics of the Protoporphyrin IX Binding Sites on Human Serum Albumin Using Molecular Docking
    molecules Article Characteristics of the Protoporphyrin IX Binding Sites on Human Serum Albumin Using Molecular Docking Leszek Sułkowski 1,*, Bartosz Pawełczak 2, Mariola Chudzik 2 and Małgorzata Maci ˛azek-Jurczyk˙ 2 1 Department of General and Vascular Surgery, Regional Specialist Hospital, Bialska 104/118, 42-218 Cz˛estochowa,Poland 2 Department of Physical Pharmacy, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Jagiello´nska4, 41-200 Sosnowiec, Poland; [email protected] (B.P.); [email protected] (M.C.); [email protected] (M.M.-J.) * Correspondence: [email protected]; Tel.: +48-792-244-177 Academic Editors: Josef Jampilek and Atanas G. Atanasov Received: 25 September 2016; Accepted: 2 November 2016; Published: 17 November 2016 Abstract: Human serum albumin (HSA) is the main plasma protein responsible for a distribution of drugs in the human circulatory system. The binding to HSA is one of the factors that determines both the pharmacological actions and the side effects of drugs. The derivative of heme, protoporphyrin IX (PpIX), is a hydrophobic photosensitizer widely used in photodynamic diagnosis and therapy of various malignant disorders. Using absorption and fluorescence spectroscopy, it has been demonstrated that PpIX forms complexes with HSA. Its binding sites in the tertiary structure of HSA were found in the subdomains IB and IIA. PpIX binds to HSA in one class of binding sites with the association constant of 1.68 × 105 M−1 and 2.30 × 105 M−1 for an excitation at wavelength λex = 280 nm and 295 nm, respectively. The binding interactions between HSA and PpIX have been studied by means of molecular docking simulation using the CLC Drug Discovery Workbench (CLC DDWB) computer program.
    [Show full text]
  • Electronic Structure of Cob(I)Alamin: the Story of an Unusual Nucleophile
    J. Phys. Chem. B 2005, 109, 10505-10512 10505 Electronic Structure of Cob(I)alamin: The Story of an Unusual Nucleophile Kasper P. Jensen* Department of Chemistry, Yale UniVersity, New HaVen, Connecticut 06511 ReceiVed: February 15, 2005; In Final Form: March 24, 2005 The electronic structure and the ligand-field spectrum of cobalt(I) corrin is reported using complete active space multiconfigurational perturbation theory (CASPT2) to address some inconsistencies and the nature of the cobalt(I) “supernucleophile”, cob(I)alamin. An assignment of six of the seven intense lines in the experimental spectrum is obtained at a root-mean-square accuracy of 0.14 eV and largest error of 0.21 eV. Agreement is significantly better for CASPT2 than density functional theory (DFT), but DFT does surprisingly well. The correlated wave function implies that the ground state of CoI corrin is severely multiconfigurational, with only 67% of the d8 reference configuration and prominent contributions of 20% from open-shell metal- to-ligand charge-transfer configurations. The ground state exhibits a fascinating degree of covalency between cobalt and the nitrogen orbitals, described by the bonding and antibonding orbital pair of a cobalt d-orbital and a δ-orbital linearly combined from nitrogen orbitals. Thus, the standard description of the d8 supernucleophile is not completely valid. From a biological perspective, the mixing in of CoII configurations in cob(I)alamin may be an important reason for the redox accessibility of the formal CoI state of the cofactor, which again provides the catalytic power for one half-reaction of enzymes such as cobalamin-dependent methionine synthase.
    [Show full text]
  • Local Adsorption Structure and Bonding of Porphine on Cu(111) Before and After Self-Metalation
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in J. Chem. Phys. 150, 094702 (2019) and may be found at http://dx.doi.org/10.1063/1.5084027 Local adsorption structure and bonding of porphine on Cu(111) before and after self-metalation D. A. Duncan1,2*, P. Casado Aguilar1, M. Paszkiewicz1, K. Diller1,3, F. Bondino4, E. Magnano4,5, F. Klappenberger1, I. Píš4,6, A. Rubio7,8,9, J. V. Barth1, A. Pérez Paz7,10*, F. Allegretti1* 1 Technical University of Munich, Department of Physics E20, 85748 Garching, Germany. 2 Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, United Kingdom. 3 Technical University of Munich, Department of Chemistry, 85748 Garching, Germany. 4 IOM-CNR, Laboratorio TASC, S.S. 14-km 163.5, 34149 Basovizza, Trieste, Italy. 5 Department of Physics, University of Johannesburg, PO Box 524, Auckland Park, 2006, Johannesburg, South Africa 6 Elettra-Sincrotrone Trieste S.C.p.A., S.S. 14-km 163.5, 34149 Basovizza, Trieste, Italy 7 Nano-Bio Spectroscopy Group and ETSF, Universidad del País Vasco, 20018 San Sebastián, Spain 8 Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany 9 Center for Free-Electron Laser Science & Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany 10 School of Physical Sciences and Nanotechnology, Yachay Tech University, Urcuquí 100119, Ecuador Abstract We have experimentally determined the lateral registry and geometric structure of free-base porphine (2H-P) and copper-metalated porphine (Cu-P) adsorbed on Cu(111), by means of energy- scanned photoelectron diffraction (PhD), and compared the experimental results to density functional theory (DFT) calculations that included van der Waals corrections within the Tkatchenko- Scheffler approach.
    [Show full text]