Age Distribution of Monazites from the Nine Rivers of Vietnam
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
燕一哪一赞一臀耀黔 Published Interpretations (Bell, T.H ., 1983; N Ature, 304, P
C O N F E R E N C E R E P O R T S D efo rm atio n o f C ru stal R o ck s M t. Buffalo, Victoria, A ustralia, 2 一6 February 1987 In the H a rt s Range area P.R . Jam es and P. Ding have re- interpreted infrastructural basem ent and supracrustal cover O ne hundred and thirty structural geologists m et recently at to represent tw o related orogenic belts separated by a thick, M t. Buffalo in the high country of Victoria to discuss com plex, m id-crustal detachm ent zone characterized by aspects of crustal rock deform ation. The international early N -S crustal extension. In the southern A runta, C . conference w as hosted by the Specialist G roup in T ectonics A m ri and others have recognized a sub-horizontal shear and Structural G eology (SG T SG ) of the G eological Society of zone in Proterozoic gneisses w ith a N E directed shear and A ustralia. The conferences are held approxim ately every have suggested opposed thrusting during the Proterozoic and three years and provide a forum for the discussion o f re- Palaeozoic orogenies. Thrusting associated w ith the Late search results w ithin A ustralia. U nfortunately there w ere D evonian-Early Carboniferous event has determ ined the only eleven foreign participants (from Sw itzerland, Italy, present outcrop relations of the A runta com plex (A .J. A ustria, Canada, U .S.A . and M alaysia). -
National Reports on Wetlands in South China Sea
United Nations UNEP/GEF South China Sea Global Environment Environment Programme Project Facility “Reversing Environmental Degradation Trends in the South China Sea and Gulf of Thailand” National Reports on Wetlands in South China Sea First published in Thailand in 2008 by the United Nations Environment Programme. Copyright © 2008, United Nations Environment Programme This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes without special permission from the copyright holder provided acknowledgement of the source is made. UNEP would appreciate receiving a copy of any publication that uses this publicationas a source. No use of this publication may be made for resale or for any other commercial purpose without prior permission in writing from the United Nations Environment Programme. UNEP/GEF Project Co-ordinating Unit, United Nations Environment Programme, UN Building, 2nd Floor Block B, Rajdamnern Avenue, Bangkok 10200, Thailand. Tel. +66 2 288 1886 Fax. +66 2 288 1094 http://www.unepscs.org DISCLAIMER: The contents of this report do not necessarily reflect the views and policies of UNEP or the GEF. The designations employed and the presentations do not imply the expression of any opinion whatsoever on the part of UNEP, of the GEF, or of any cooperating organisation concerning the legal status of any country, territory, city or area, of its authorities, or of the delineation of its territories or boundaries. Cover Photo: A vast coastal estuary in Koh Kong Province of Cambodia. Photo by Mr. Koch Savath. For citation purposes this document may be cited as: UNEP, 2008. -
The Truong Son, Loei-Phetchabun, and Kontum Terranes in Indochina: Provenance, Rifting, and Collisions
REVIEW published: 28 May 2021 doi: 10.3389/feart.2021.603565 The Truong Son, Loei-Phetchabun, and Kontum Terranes in Indochina: Provenance, Rifting, and Collisions Clive Burrett 1, Mongkol Udchachon 1,2* and Hathaithip Thassanapak 2 1 Palaeontological Research and Education Centre, Mahasarakham University, Mahasarakham, Thailand, 2 Applied Palaeontology and Biostratigraphy Research Unit, Department of Biology, Faculty of Science, Mahasarakham University, Mahasarakham, Thailand The three main regions of Indochina are defined as the Truong Son, Loei-Phetchabun, and Kontum terranes. The aim of this review is to integrate numerous petrological studies with sedimentary, palaeontological, and provenance studies in order to construct a preliminary tectonic model which shows the terranes docked in the earliest Carboniferous (Truong Son with Loei-Phetchabun) and in the Permian (Kontum). The Kontum Terrane is characterized by Proterozoic magmatism, mid-Ordovician to Early Devonian granites, and Permian charnockites. Major carbonate platforms developed in the Givetian to earliest Tournaisian on Truong Son and from the Visean to mid-Permian across Truong Edited by: Son and Loei-Phetchabun terranes. The Truong Son has Silurian granites and a Basilios Tsikouras, Late Ordovician to Silurian magmatic arc along its southern and western borders Universiti Brunei Darussalam, Brunei caused by subduction of oceanic lithosphere, the remnants of which are now partially Reviewed by: Antonio Pedrera, preserved in the Loei and Tamky sutures. A region to the east of the Loei Suture in Instituto Geológico y Minero de the Loei Foldbelt has a similar-age volcanic arc extending northwards into Laos and España (IGME), Spain Sergio Llana-Fúnez, is included in Truong Son. -
IND: Support for the National Action Plan on Climate Change
Final Report September 2011 Appendix 5, 6,7 and 8 Supporting Appendices PREPARED FOR Government of India Governments of Punjab, Madhya Pradesh and Tamil Nadu Asian Development Bank Supporting Appendices Appendix 5 Selection Matrix for Sub Basins 6 Summary of Meetings and Consultations 7 Terms of Reference 8 Study Tour Report 1 Appendix 5 Selection Matrix for the Sub Basins A. Objectives of the pilot sub basins 2 B. Snow Fed Basins 2 C. Ground Water Basins 3 D. Coastal Areas . 6 E. Selection 8 F. Summary 12 Support to the National Water Mission NAPCC Appendix 5 Selection Matrix for Sub Basins 2 A. Objectives of the pilot sub basins 1. The NAPCC TA will undertake studies in three selected pilot sub-basins to develop strategic frameworks for addressing existing issues and likely scenarios of climate change. Framework planning would be applied to identify key issues, including surface, groundwater as well as the related water sectors including environment. The plans would set out broad strategies and programs to meet the needs of increased robustness and resilience of water systems against climate uncertainty, increasing water demand and environmental requirements. The pilot basins have been selected based on the type and likely degree of sensitivity to climate change. The basin selection should incorporate three major areas of concern: (i) alterations of winter snow-pack dynamics from climate change, (ii) basins or sub- basins where groundwater is major water source with issues and (iii) coastal areas where sea level rise will have impacts on surface and groundwater, together with increased flood risk. 2. -
South-East Asia Second Edition CHARLES S
Geological Evolution of South-East Asia Second Edition CHARLES S. HUTCHISON Geological Society of Malaysia 2007 Geological Evolution of South-east Asia Second edition CHARLES S. HUTCHISON Professor emeritus, Department of geology University of Malaya Geological Society of Malaysia 2007 Geological Society of Malaysia Department of Geology University of Malaya 50603 Kuala Lumpur Malaysia All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the Geological Society of Malaysia ©Charles S. Hutchison 1989 First published by Oxford University Press 1989 This edition published with the permission of Oxford University Press 1996 ISBN 978-983-99102-5-4 Printed in Malaysia by Art Printing Works Sdn. Bhd. This book is dedicated to the former professors at the University of Malaya. It is my privilege to have collabo rated with Professors C. S. Pichamuthu, T. H. F. Klompe, N. S. Haile, K. F. G. Hosking and P. H. Stauffer. Their teaching and publications laid the foundations for our present understanding of the geology of this complex region. I also salute D. ]. Gobbett for having the foresight to establish the Geological Society of Malaysia and Professor Robert Hall for his ongoing fascination with this region. Preface to this edition The original edition of this book was published by known throughout the region of South-east Asia. Oxford University Press in 1989 as number 13 of the Unfortunately the stock has become depleted in 2007. Oxford monographs on geology and geophysics. -
Ar±Ar and Fission-Track Ages in the Song Chay Massif
Journal of Asian Earth Sciences 19 (2001) 233±248 www.elsevier.nl/locate/jseaes Ar±Ar and ®ssion-track ages in the Song Chay Massif: Early Triassic and Cenozoic tectonics in northern Vietnam H. Maluskia,*, C. Lepvrierb, L. Jolivetb, A. Carterc, D. Roquesc, O. Beyssacd, Ta Trong Tange, Nguyen Duc Thangf, D. Avigadd aISTEM-CNRS, Universite Montpellier 2, Place EugeÁne Bataillon, 34095, Montpellier, France bLaboratoire de Tectonique, Universite Pierre et Marie Curie, 4 Place Jussieu, case 129, 75252 Paris cedex 05, France cLondon Fission Track Research Group, Department of Earth Sciences, Birkbeck and University College, Gower Street, London, WC1E 6BT, United Kingdom dLaboratoire de GeÂologie, Ecole Normale SupeÂrieure, 24 rue Lhomond, 75231 Paris cedex 05, France eNational University of Vietnam, Hanoi, 334 Nguyen Trai Str., Thanh Xuan, Hanoi, Viet Nam fGeological Survey, Hanoi, Viet Nam Received 14 October 1999; revised 9 May 2000; accepted 7 July 2000 Abstract The Song Chay Massif is the northeasternmost metamorphic complex in Vietnam, to the east of the Red River Shear Zone. It shows a large antiformal structure involving orthogneisses and migmatites overlain, on its northern ¯ank, by muscovite bearing marbles. An E±W striking fault bounds the dome to the South. Kinematic indicators along a S±N section reveal top-to-the-N shear sense along the interface between the orthogneissic core and the overlying metasediments. Radiometric ages were obtained by the 40Ar± 39Ar method using puri®ed mica separates. Across the dome ages range from 236 Ma at the southern edge to 160 Ma in the core, attesting to a strong imprint in the Early Triassic time. -
Hydropower Generation, Flood Control and Cascade Effect: a National
Hydropower generation, flood control and cascade effect: A national assessment for Vietnam Tien-Viet Nguyen PhD Candidate Department of Economics, University of Birmingham, UK ([email protected]) Prepared for The tenth Vietnam Economist Annual Meeting 2017 Abstract In this paper, we apply the SWAT (Soil and Water Assessment Tool) discharge sim- ulation coupled with econometric methods to model the performance of hydropower plants on a national scale in Vietnam - a hydro-dependent country with a diversity of terrain and climate conditions. A watershed is formed from three large inter-boundary basins: Red River, Vietnam Coast and Lower Mekong River with a total area of 977,964 km2. These are then divided into 7,887 subbasins with a mean area of 131.6km2 (based on level 12 of HydroSHEDS/HydroBASINS datasets) and 53,024 HRUs. River flow is simulated for the 40 largest hydropower plants across Vietnam from 1995 to mid-2014, coinciding with the period when both power supply and power demand rose quickly and hydropower played a prominent role in the national power source. Simulated flow appears to be a good proxy for the inflow into hydropower dams and our baseline model is able to capture 87.7% of the variation in monthly generation. In the subsequent ex- tensions of our models, we find evidence of the flood control benefit and an existence of a cascade effect for electric dams with large reservoirs providing potential resilience to the national power supply when there are adverse impacts from climate change. How- ever the harmony among dams are found to be not uniform across basin. -
15Th International Geochemical Exploration Symposium Reno, Nevada, USA • April 28 to May I, 1991
The Association of Exploration Geochemists Newsletter NUMBER 71 APRIL 1991 15th International Geochemical Exploration Symposium Reno, Nevada, USA • April 28 to May I, 1991 LANDSAT imagery draped over digital topography. The view is looking north with the Rain deposit at the southeast end of the Carlin Trend (lower right) and the Dee deposit at the northwest end (upper left). Photo prepared by Newmont Geophysics Department. The 15th IGES of the Association of Exploration Geochemists will open with a hosted ice-breaker reception on Sunday April 28 at CONTENTS 5:00 pm at Bally's Casino-Resort Hotel in Reno, Nevada. An ex 15th International Creek - Black Lake Area. citing array of technical sessions will be presented, including Geochemical Exploration Southeastern Alaska ............. 14 geochemistry of gold and platinum deposits, integrated geophysical Symposium.. .......... 1 INAA Applications to Geochemistry .................. 17 and geochemical exploration methods, and new analytical Notes from the Editor ........... 2 techniques. Special Notes A total of 65 talks and 65 posters have been accepted for the Sym Past President's Message ........ 3 International Geochemical posium. The talks will be given during three days of plenary ses President's Message. ...... 3 Mapping Project. .18 sions, from Monday, April 29 through Wednesday, May 1,1991, Forthcoming JGE Contents ...... 4 Meeting Reports SME Geochemistry Session ........ 20 with concurrent poster sessions. There will also be 10 field trips, Business Manager's Report ...... 5 Pearl Harbor File ............... 21 four short courses, and one workshop, split between pre- and post AEG Council Minutes ........... 5 meeting times. One hundred and fifty industry vendors, con Recent Papers . ..... 23 Letters .......................... -
Mineral Resources Potential of Vietnam and Current State of Mining Activity
N. Khoi/ Applied Environmental Research: 36 (1): 37-46 Applied Environmental Research Journal homepage : http://www.tcithaijo.org/index.php/jer Mineral Resources Potential of Vietnam and Current State of Mining Activity Nguyen Ngoc Khoi Hanoi University of Science (Vietnam National University, Hanoi) 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam Corresponding Author’s E-mail: [email protected] Received: 2 May 2013/ Accepted: 10 October 2013/ Published online: 10 February 2014 Abstract 2 Vietnam, with an area of 331,210 km , occupies the eastern side of the Indochina peninsula. It forms a narrow (locally only 40-70 km) band of land, extending over 1,500 km along the East Sea (South China Sea). Vietnam is constituted mainly by the folded belts surrounding two shields, cratonised in the Upper Proterozoic: the Yangtze craton and the Indochina shield, located in the Mekong basin and occupying most of Cambodia and the contiguous parts of Laos and Vietnam. The folding occurred during the late Hercynian (early Triassic) orogenic movements, active mainly in the central and southern Vietnam and the Indosinian (late Triassic, ante Norian) orogeny. Various geological surveys have indicated that Vietnam is well endowed with a wide range of mineral resources. The country has some of the world's biggest resources of phosphate (apatite), bauxites, rare earths, and large, commercially viable deposits of oil, coal, gold, gemstones, copper, zinc, tin, chromite, manganese, titanium (mineral sands), graphite and other minerals. At present, Vietnam produces approximately 3.5 million tons of crude oil/year and its mineral production includes: coal (about 10.7 million tons/year), cement (1.6 million tons), phosphate (300,000 tons), chromite (3.5 million tons), iron ores, gold (around 1,000 kg, including production by the local population), cassiterite (3,000 tons), graphite, kaolin and many other minerals produced to serve domestic demand. -
Relevance of the UNWC in the Greater Mekong Sub-Region
UN Watercourses Convention and Greater Mekong Sub-region Prepared by: Sokhem Pech Senior River Basin Governance Specialist, JULYL 2011 Hatfield Consultants Part nership TABLE OF CONTENTS LIST OF TABLES ......................................................................................... iii LIST OF FIGURES ....................................................................................... iv LIST OF ACRONYMS .................................................................................. v EXECUTIVE SUMMARY ............................................................................ vi 1.0 INTRODUCTION ............................................................................... 1 1.1 AIMS AND OBJECTIVES ..................................................................................... 1 1.2 CONTEXT AND SCOPE OF WORK ..................................................................... 2 1.3 METHODOLOGY ................................................................................................. 2 2.0 MEKONG REGION AND ITS TRANSBOUNDARY WATERS ...... 3 2.1 MEKONG RIVER BASIN ..................................................................................... 4 2.2 RED RIVER ........................................................................................................... 7 2.3 SALWEEN (NU) RIVER BASIN ............................................................................ 8 2.4 SAIGON RIVER .................................................................................................. 10 2.5 DULONG/ -
Baseline Assessment of Microplastic Concentrations in Marine and Freshwater Environments of a Developing Southeast Asian Country, Viet Nam
Marine Pollution Bulletin 162 (2021) 111870 Contents lists available at ScienceDirect Marine Pollution Bulletin journal homepage: www.elsevier.com/locate/marpolbul Baseline Baseline assessment of microplastic concentrations in marine and freshwater environments of a developing Southeast Asian country, Viet Nam Emilie Strady a,b,*, Thi Ha Dang c, Thanh Duong Dao d, Hai Ngoc Dinh e, Thi Thanh Dung Do c, Thanh Nghi Duong e, Thi Thuy Duong f,g, Duc An Hoang h, Thuy Chung Kieu-Le i,j, Thi Phuong Quynh Le g,k, Huong Mai d, Dang Mau Trinh l, Quoc Hung Nguyen m, Quynh Anh Tran-Nguyen n, Quoc Viet Tran b, Tran Nguyen Sang Truong b, Van Hai Chu m, Van Chi Vo h a Aix-Marseille Univ., Mediterranean Institute of Oceanography (M I O), Marseille, Universite de Toulon, CNRS/IRD, France b CARE, Ho Chi Minh City University of Technology, VNU-HCM, Viet Nam c Faculty of Technology and Engineering, Ba Ria – Vung Tau University, Viet Nam d University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam e IMER, Institute of Marine Environment and Resources, Vietnam Academic Science and Technology, Viet Nam f Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam g Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam h Faculty of Natural Sciences, Quy Nhon University, Viet Nam i Faculty of Geology and Petroleum Engineering, -
Rb-Sr Isochron and K-Ar Ages of Igneous Rocks from the Samnua Depression Zone in Northern Vietnam
86 Journal of MineralogicalN.M. and Trung, Petrological N.D. Nuong Sciences, and T.Volume Itaya 102, page 86─ 92, 2007 Rb-Sr Isochron and K-Ar ages of igneous rocks from the Samnua Depression Zone 87 Rb-Sr Isochron and K-Ar ages of igneous rocks from the Samnua Depression Zone in Northern Vietnam *, ** * * Nguyen Minh TRUNG , Nguyen Dieu NUONG and Tetsumaru ITAYA *Research Institute of Natural Sciences, 1-1 Ridai-cho, Okayama University of Science, Okayama 700-0005, Japan **Research Institute of Geology and Mineral Resources, Thanhxuan, Hanoi, Vietnam The Samnua Depresion Zone (SNDZ) extends NW-SE for more than 400 km from Northern Vietnam to Southwestern China. It represents the northern edge of the Indochina block and is separated from the South China block by the Songma fault. The zone is occupied mainly by Paleozoic sedimentary rocks and Mesozoic volcano-sedimentary successions that are intruded by Mesozoic intrusives and extrusives and by Cenozoic extrusives. Representative igneous rocks of the SNDZ were geochronologically investigated by the Rb-Sr whole rock and K-Ar biotite methods. The Rb-Sr ages obtained are 222 Ma for the Nuichua gabbros, 213 Ma for the Songma granitoid (SMG), 203 Ma for the Piabioc granitoid (PBG), 138 Ma for the Banmuong subvolca- nic granite, 27 Ma for the Banchieng granitoid (BCG), 218 Ma for the Dongtrau felsic volcanics, 186 Ma for the Muonghinh felsic volcanics and 5.8 Ma for the Cenozoic basaltic rocks (CBR). The K-Ar methods give 252 Ma for the SMG, 237 Ma for the PBG and 24 Ma for the BCG.