Involvement of AMPA Receptor and Its Flip and Flop Isoforms in Retinal Ganglion Cell Death Following Oxygen/Glucose Deprivation

Total Page:16

File Type:pdf, Size:1020Kb

Involvement of AMPA Receptor and Its Flip and Flop Isoforms in Retinal Ganglion Cell Death Following Oxygen/Glucose Deprivation Physiology and Pharmacology Involvement of AMPA Receptor and Its Flip and Flop Isoforms in Retinal Ganglion Cell Death Following Oxygen/Glucose Deprivation Yong H. Park,1,2 Heather V. Broyles,1–3 Shaoqing He,1,2 Nolan R. McGrady,1,2 Linya Li,1,2 and Thomas Yorio1,2 1University of North Texas Health Science Center, Fort Worth, Texas, United States 2North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States 3Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, Texas, United States Correspondence: Thomas Yorio, Of- PURPOSE. The a-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA) receptors fice of the Provost, UNT Health (AMPAR) subunits can be posttranscriptionally modified by alternative splicing forming flip Science Center, 3500 Camp Bowie and flop isoforms. We determined if an ischemia-like insult to retinal ganglion cells (RGCs) Boulevard, Fort Worth, TX 76107, increases AMPAR susceptibility to s-AMPA–mediated excitotoxicity through changes in USA; posttranscriptional modified isoforms. [email protected]. Submitted: October 22, 2015 METHODS. Purified neonatal rat RGCs were subjected to either glucose deprivation (GD) or Accepted: January 12, 2016 oxygen/glucose deprivation (OGD) conditions followed by treatment with either 100 lM s- AMPA or Kainic acid. A live–dead assay and caspase 3 assay was used to assess cell viability Citation: Park YH, Broyles HV, He S, and apoptotic changes, respectively. We used JC-1 dye and dihydroethidium to measure McGrady NR, Li L, Yorio T. Involve- ment of AMPA receptor and its flip mitochondria depolarization and reactive oxygen species (ROS), respectively. Calcium and flop isoforms in retinal ganglion imaging with fura-2AM was used to determine intracellular calcium, while the fluorescently- cell death following oxygen/glucose labeled probe, Nanoprobe1, was used to detect calcium-permeable AMPARs. Quantitative deprivation. Invest Ophthalmol Vis PCR (qPCR) analysis was done to determine RNA editing sites AMPAR isoforms. Sci. 2016;57:508–526. DOI:10.1167/ RESULTS. Glucose deprivation, as well as an OGD insult followed by AMPAR stimulation, iovs.15-18481 produced a significant increase in RGC death. Retinal ganglion cell death was independent of caspase 3/7 activity, but was accompanied by increased mitochondrial depolarization and increased ROS production. This was associated with an elevated intracellular Ca2þ and calcium permeable-AMPARs. The mRNA expression of GLUA2 and GLUA3 flop isoform decreased significantly, while no appreciable changes were found in the corresponding flip isoforms. There were no changes in the Q/R editing of GLUA2, while R/G editing of GLUA2 flop declined under these conditions. CONCLUSIONS. Following oxidative injury, RGCs become more susceptible to AMPAR-mediated excitotoxicity. RNA editing and changes in alternative spliced flip and flop isoforms of AMPAR subunits may contribute to increased RGC death. Keywords: AMPA, flip/flop isoforms, cell death, RGCs, ADAR proteins laucoma is a heterogeneous group of optic neuropathies ischemia in glaucoma.6 It is thought that tissue modeling at the G associated commonly with elevated IOP that affects optic nerve head, accompanying insufficient blood flow to the approximately 70 million people worldwide.1 It is the second retina, exacerbates cupping of the optic nerve head, thereby leading cause of vision loss, and the number one leading cause compromising the retina’s access to oxygen, nutrients, and the of irreversible blindness.2 Glaucoma is characterized by the ability to remove waste.7,8 In the retina, where metabolic cupping of the optic disc and degeneration of the optic nerve, demand is high, this could lead to depletion of ATP, causing the and is accompanied by slow and progressive death of retinal deregulation of mitochondrial bioenergetics, and provoking the ganglion cells (RGCs), thus leading to the loss of the visual increased production of reactive oxygen species (ROS), causing field.3,4 The etiologic mechanisms underlying the pathogenesis oxidative damage and eventual cell death, in particular of the of glaucoma have yet to be elucidated. RGCs.9,10 Many cellular and molecular mechanisms have been One of the main factors associating retinal ischemia with proposed to account for the death of RGCs in glaucoma. Of RGC death is the excitatory amino acid, glutamate. The these proposed mechanisms, ischemia and excitotoxicity neurotransmitter, glutamate, relays signals in the vertical appear to have a key role in glaucomatous pathogenesis.5 pathway of the retina by the activation of ionotropic Increased immunohistochemical staining of hypoxia-inducible glutamate receptors (iGluRs), allowing the influx of monova- factor-1, a transcription factor induced by hypoxia, was lent and divalent cations, propagating action potentials.11,12 observed in human glaucomatous retinas and optic nerve However, under conditions of retinal ischemia, abnormal heads, providing the supporting evidence for the role of retinal concentrations of glutamate are released into the extracellular iovs.arvojournals.org j ISSN: 1552-5783 508 This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. Downloaded from iovs.arvojournals.org on 09/26/2021 AMPA Receptor Involvement in RGC Death IOVS j February 2016 j Vol. 57 j No. 2 j 509 2þ milieu of the retina, causing a large influx of [Ca ]through METHODS the activated iGluRs on RGCs, leading to deregulation of calcium-dependent cellular events and, therefore, mediating Purified RGCs Isolation and Culture excitotoxicity in the RGCs.10,13–15 The iGluRs are composed of the N-methyl-D-aspartate receptors (NMDAR), a-amino-3- All animal procedures were performed in compliance with the hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AM- Association for Research in Vision and Ophthalmology (ARVO) PAR), and kainate receptors (KAR).16 All three receptors have policy for the Use of Animals in Ophthalmic and Vision been implicated in glutamate excitotoxicity in RGCs, with Research, and approved by the Institutional Animal Care and NMDAR receptors being the most widely studied recep- Use Committee (IACUC) of the University of North Texas tor.5,17–19 However, recent findings are pinpointing AMPARs Health Science Center. Purified neonatal RGCs were isolated to have an equally large role in mediating excitotoxicity to using a double immunopanning technique as published 30,43 RGCs.20–23 previously. Time-pregnant Sprague-Dawley rats were pur- The AMPARs-mediated excitotoxicity in RGCs is well chased from Charles River (Wilmington, MA, USA), and retinas established in the field evidenced by numerous publications were dissected from euthanized postnatal (days 4–6) rat pups. demonstrating AMPAR-mediated damage to the ganglion cell Collected retinas were dissociated in papain solution (4.5 layer.17,21,23–25 However, many of these studies were per- units/mL, #3125; Worthington, Lakewood, NJ, USA). Dissoci- formed in total retina, in vivo, or mixed culture of retinal ated cell suspension were incubated with rabbit antimacro- cells.17,24,26,27 Additionally, AMPARs-mediated excitotoxicity phage antibody (#CLAD51240; Cedarlane Laboratories, was conducted with either glutamate or kainic acid (KA), Ontario, Canada) and then plated twice to a 150-mm petri neither of which is specific for the AMPARs.24,28,29 These dish coated with goat anti-rabbit IgG (HþL chain) antibody confounding factors make it hard to discern if AMPAR in RGCs (#111-005-003; Jackson ImmunoResearch, West Grove, PA, are contributing to excitotoxicity directly, or as a secondary USA), to remove microglia from the cell suspension. Subse- effect. In our previous studies,30 we demonstrated that quently, nonadherent cells were transferred to a 100-mm petri stimulating AMPAR with s-AMPA (a highly selective agonist) dish coated with Thy1.1 antibody (from hybridoma T11D7; in a purified RGC culture, does not induce excitotoxicity, but American Type Culture Collection, Rockville, MD, USA), a instead promotes RGC survival through the induction of selective RGC marker. Following 1 hour of incubation with cAMP response element-binding protein (CREB) phosphory- intermittent shaking of the plate (every 10 minutes), the 100- lation. We concluded that blocking AMPAR’s desensitization, mm petri dishes were washed with Dulbecco’s phosphate- like using cyclothiazide, induced RGC death and is the buffered saline (DPBS) multiple times (#14287080; Invitrogen, determinant for excitotoxicity. The AMPARs are hetero/homo Carlsbad, CA, USA), removing nonadherent cells and leaving tetrameric structures that are composed of 4 different behind RGCs. The RGCs then were incubated with trypsin subunits, GLUA1-4.31 Each subunit can be posttranscription- (1250 units/mL) (#T9935; Sigma-Aldrich Corp., St. Louis, MO, ally modified by alternative splicing in a region of the USA) in a 378C incubator for 5 minutes and successively extracellular loop between TM3 and TM4, forming flip and mechanically triturated using a pipette, to dissociate the cells flop isoforms.32 Flip and flop isoforms are expressed from the 100-mm petri dish. The RGCs were seeded onto differently during development leading to a high level of plates coated with poly-D-lysine (#P6407; Sigma-Aldrich Corp.) expression of flip isoforms and a low expression of the flop and mouse-laminin-1 (#3400-010-01; Trevigen, Inc., Gaithers- isoforms. However, following development, the flop isoform burg,
Recommended publications
  • Download Product Insert (PDF)
    Product Information CNQX Item No. 14618 CAS Registry No.: 115066-14-3 Formal Name: 1,2,3,4-tetrahydro-7-nitro-2,3-dioxo-6- quinoxalinecarbonitrile H Synonyms: 6-cyano-7-Nitroquinoxaline-2,3-dione, NC N O FG 9065 MF: C9H4N4O4 FW: 232.2 O O N N Purity: ≥98% 2 Stability: ≥2 years at -20°C H Supplied as: A crystalline solid λ UV/Vis.: max: 217, 275, 315 nm Laboratory Procedures For long term storage, we suggest that CNQX be stored as supplied at -20°C. It should be stable for at least two years. CNQX is supplied as a crystalline solid. A stock solution may be made by dissolving the CNQX in the solvent of choice. CNQX is soluble in organic solvents such as DMSO and dimethyl formamide (DMF), which should be purged with an inert gas. The solubility of CNQX in these solvents is approximately 5 and 12 mg/ml, respectively. CNQX is sparingly soluble in aqueous buffers. For maximum solubility in aqueous buffers, CNQX should first be dissolved in DMF and then diluted with the aqueous buffer of choice. CNQX has a solubility of approximately 0.5 mg/ml in a 1:1 solution of DMF:PBS (pH 7.2) using this method. We do not recommend storing the aqueous solution for more than one day. CNQX is a competitive, non-NMDA glutamate receptor antagonist (IC50s = 0.3 and 1.5 μM for AMPA and kainate 1,2 receptors, respectively, versus IC50 = 25 μM for NMDA receptors). This compound has been used to specifically target AMPA and kainate receptor responses and thus differentiate from that of NMDA receptors.
    [Show full text]
  • An Investigation Into Pro-Apoptotic Targets in Experimental Glaucoma and the Neuroprotective Effects of Ginkgo Biloba in Retinal Ganglion Cells
    An investigation into pro-apoptotic targets in experimental glaucoma and the neuroprotective effects of Ginkgo biloba in retinal ganglion cells Abeir Baltmr MB ChB, FRCS (Glasg) A thesis submitted to University College London for the degree of Doctor of Medicine (Research) 2012 Glaucoma and Retinal Neurodegeneration Research Group Visual Neuroscience Institute of Ophthalmology 1 Declaration I, Abeir Baltmr, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Abeir Baltmr 2 Abstract Ginkgo biloba has been advocated as a neuroprotective agent for several years in glaucoma. In this study, immunohistochemistry was used to identify known potential molecular targets of Ginkgo biloba related to retinal ganglion cell (RGC) apoptosis in experimental glaucoma, including amyloid precursor protein (APP), Aß, cytochrome c, caspase-3 and tumor necrosis factor receptor-1 (TNF-R1). Furthermore, using apoptotic inducers related to mechanisms implicated in glaucoma, namely Dimethyl sulphoxide (DMSO), ultraviolet C (UVC) and Sodium Azide (NaN3), the effects of the terpenoid fraction of Ginkgo biloba (Ginkgolide A, Ginkgolide B and Bilobalide) were investigated separately in cultured retinal ganglion cells (RGC-5). Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay and morphological analysis of DMSO treated RGC-5 was performed using Hoechst 33342 stain. Immunohistochemistry showed a strong inverse correlation between Aß and APP in ocular hypertension (OHT) animals, with APP and Aß accumulation peaking at 1 and 12 weeks after intraocular pressure (IOP) elevation respectively. Cytochrome c and TNF-R1 expression peaked at 3 weeks, and active caspase 3 activity at 12 weeks after IOP elevation.
    [Show full text]
  • Synthesis and Biological Evaluation
    Margarida Leonor Florindo Espadinha Licenciatura em Química Aplicada Enantiopure bicyclic lactams: synthesis and biological evaluation Dissertação para obtenção do Grau de Mestre em Química Bioorgânica Orientador: Prof. Doutora Maria M. M. Santos, FF-UL Elemento de Ligação: Prof. Doutora Paula Sério Branco, FCT-UNL Presidente: Prof. Doutora Paula Sério Branco, FCT-UNL Arguente: Prof. Doutor Vasco Bonifácio, IST-CQFM Vogal: Prof. Doutora Maria M. M. Santos, FF-UL Outubro 2015 i LOMBADA biological evaluation biological dinha synthesis and and synthesis : Margarida Espa Margarida lactams bicyclic Enantiopure ii 2015 Margarida Leonor Florindo Espadinha Licenciatura em Química Aplicada Enantiopure bicyclic lactams: synthesis and biological evaluation Dissertação para obtenção do Grau de Mestre em Química Bioorgânica Orientador: Prof. Doutora Maria M. M. Santos, FF-UL Elemento de Ligação: Prof. Doutora Paula Sério Branco, FCT Presidente: Prof. Doutora Paula Sério Branco, FCT-UNL Arguente: Doutor Vasco Bonifácio, IST-CQFM Vogal: Prof. Doutora Maria M. M. Santos, FF-UL Outubro 2015 iii Enantiopure bicyclic lactams: synthesis and biological evaluation Margarida Leonor Florindo Espadinha, Copyright A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito, perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de exemplares impressos reproduzidos em papel ou de forma digital, ou por outro qualquer meio conhecido ou que venha a ser inventado e de divulgar através de repositórios científicos e de admitir a sua cópia e distribuição com objectivos educacionais ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor. iv Acknowledgements I would like to thank Professor Dr. Maria M.
    [Show full text]
  • Ligand-Gated Ion Channels' British Journal of Pharmacology, Vol
    Edinburgh Research Explorer The Concise Guide to PHARMACOLOGY 2015/16 Citation for published version: Alexander, SP, Peters, JA, Kelly, E, Marrion, N, Benson, HE, Faccenda, E, Pawson, AJ, Sharman, JL, Southan, C, Davies, JA & CGTP Collaborators 2015, 'The Concise Guide to PHARMACOLOGY 2015/16: Ligand-gated ion channels' British Journal of Pharmacology, vol. 172, no. 24, pp. 5870-5903. DOI: 10.1111/bph.13350 Digital Object Identifier (DOI): 10.1111/bph.13350 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: British Journal of Pharmacology General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 05. Apr. 2019 S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2015/16: Ligand-gated ion channels. British Journal of Pharmacology (2015) 172, 5870–5903 THE CONCISE GUIDE TO PHARMACOLOGY 2015/16: Ligand-gated ion channels Stephen PH Alexander1,
    [Show full text]
  • Sex Differences in Glutamate Receptor Gene Expression in Major Depression and Suicide
    Molecular Psychiatry (2015) 20, 1057–1068 © 2015 Macmillan Publishers Limited All rights reserved 1359-4184/15 www.nature.com/mp IMMEDIATE COMMUNICATION Sex differences in glutamate receptor gene expression in major depression and suicide AL Gray1, TM Hyde2,3, A Deep-Soboslay2, JE Kleinman2 and MS Sodhi1,4 Accumulating data indicate that the glutamate system is disrupted in major depressive disorder (MDD), and recent clinical research suggests that ketamine, an antagonist of the N-methyl-D-aspartate (NMDA) glutamate receptor (GluR), has rapid antidepressant efficacy. Here we report findings from gene expression studies of a large cohort of postmortem subjects, including subjects with MDD and controls. Our data reveal higher expression levels of the majority of glutamatergic genes tested in the dorsolateral prefrontal cortex (DLPFC) in MDD (F21,59 = 2.32, P = 0.006). Posthoc data indicate that these gene expression differences occurred mostly in the female subjects. Higher expression levels of GRIN1, GRIN2A-D, GRIA2-4, GRIK1-2, GRM1, GRM4, GRM5 and GRM7 were detected in the female patients with MDD. In contrast, GRM5 expression was lower in male MDD patients relative to male controls. When MDD suicides were compared with MDD non-suicides, GRIN2B, GRIK3 and GRM2 were expressed at higher levels in the suicides. Higher expression levels were detected for several additional genes, but these were not statistically significant after correction for multiple comparisons. In summary, our analyses indicate a generalized disruption of the regulation of the GluRs in the DLPFC of females with MDD, with more specific GluR alterations in the suicides and in the male groups.
    [Show full text]
  • Supplementary Material
    Supplementary Material Table S1: Significant downregulated KEGGs pathways identified by DAVID following exposure to five cinnamon- based phenylpropanoids (p < 0.05). p-value Term: Genes (Benjamini) Cytokine-cytokine receptor interaction: FASLG, TNFSF14, CXCL11, IL11, FLT3LG, CCL3L1, CCL3L3, CXCR6, XCR1, 2.43 × 105 RTEL1, CSF2RA, TNFRSF17, TNFRSF14, CCNL2, VEGFB, AMH, TNFRSF10B, INHBE, IFNB1, CCR3, VEGFA, CCR2, IL12A, CCL1, CCL3, CXCL5, TNFRSF25, CCR1, CSF1, CX3CL1, CCL7, CCL24, TNFRSF1B, IL12RB1, CCL21, FIGF, EPO, IL4, IL18R1, FLT1, TGFBR1, EDA2R, HGF, TNFSF8, KDR, LEP, GH2, CCL13, EPOR, XCL1, IFNA16, XCL2 Neuroactive ligand-receptor interaction: OPRM1, THRA, GRIK1, DRD2, GRIK2, TACR2, TACR1, GABRB1, LPAR4, 9.68 × 105 GRIK5, FPR1, PRSS1, GNRHR, FPR2, EDNRA, AGTR2, LTB4R, PRSS2, CNR1, S1PR4, CALCRL, TAAR5, GABRE, PTGER1, GABRG3, C5AR1, PTGER3, PTGER4, GABRA6, GABRA5, GRM1, PLG, LEP, CRHR1, GH2, GRM3, SSTR2, Chlorogenic acid Chlorogenic CHRM3, GRIA1, MC2R, P2RX2, TBXA2R, GHSR, HTR2C, TSHR, LHB, GLP1R, OPRD1 Hematopoietic cell lineage: IL4, CR1, CD8B, CSF1, FCER2, GYPA, ITGA2, IL11, GP9, FLT3LG, CD38, CD19, DNTT, 9.29 × 104 GP1BB, CD22, EPOR, CSF2RA, CD14, THPO, EPO, HLA-DRA, ITGA2B Cytokine-cytokine receptor interaction: IL6ST, IL21R, IL19, TNFSF15, CXCR3, IL15, CXCL11, TGFB1, IL11, FLT3LG, CXCL10, CCR10, XCR1, RTEL1, CSF2RA, IL21, CCNL2, VEGFB, CCR8, AMH, TNFRSF10C, IFNB1, PDGFRA, EDA, CXCL5, TNFRSF25, CSF1, IFNW1, CNTFR, CX3CL1, CCL5, TNFRSF4, CCL4, CCL27, CCL24, CCL25, CCL23, IFNA6, IFNA5, FIGF, EPO, AMHR2, IL2RA, FLT4, TGFBR2, EDA2R,
    [Show full text]
  • Research Article Microarray-Based Comparisons of Ion Channel Expression Patterns: Human Keratinocytes to Reprogrammed Hipscs To
    Hindawi Publishing Corporation Stem Cells International Volume 2013, Article ID 784629, 25 pages http://dx.doi.org/10.1155/2013/784629 Research Article Microarray-Based Comparisons of Ion Channel Expression Patterns: Human Keratinocytes to Reprogrammed hiPSCs to Differentiated Neuronal and Cardiac Progeny Leonhard Linta,1 Marianne Stockmann,1 Qiong Lin,2 André Lechel,3 Christian Proepper,1 Tobias M. Boeckers,1 Alexander Kleger,3 and Stefan Liebau1 1 InstituteforAnatomyCellBiology,UlmUniversity,Albert-EinsteinAllee11,89081Ulm,Germany 2 Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen, Pauwelstrasse 30, 52074 Aachen, Germany 3 Department of Internal Medicine I, Ulm University, Albert-Einstein Allee 11, 89081 Ulm, Germany Correspondence should be addressed to Alexander Kleger; [email protected] and Stefan Liebau; [email protected] Received 31 January 2013; Accepted 6 March 2013 Academic Editor: Michael Levin Copyright © 2013 Leonhard Linta et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Ion channels are involved in a large variety of cellular processes including stem cell differentiation. Numerous families of ion channels are present in the organism which can be distinguished by means of, for example, ion selectivity, gating mechanism, composition, or cell biological function. To characterize the distinct expression of this group of ion channels we have compared the mRNA expression levels of ion channel genes between human keratinocyte-derived induced pluripotent stem cells (hiPSCs) and their somatic cell source, keratinocytes from plucked human hair. This comparison revealed that 26% of the analyzed probes showed an upregulation of ion channels in hiPSCs while just 6% were downregulated.
    [Show full text]
  • Identification of Key Genes and Pathways Involved in Response To
    Deng et al. Biol Res (2018) 51:25 https://doi.org/10.1186/s40659-018-0174-7 Biological Research RESEARCH ARTICLE Open Access Identifcation of key genes and pathways involved in response to pain in goat and sheep by transcriptome sequencing Xiuling Deng1,2†, Dong Wang3†, Shenyuan Wang1, Haisheng Wang2 and Huanmin Zhou1* Abstract Purpose: This aim of this study was to investigate the key genes and pathways involved in the response to pain in goat and sheep by transcriptome sequencing. Methods: Chronic pain was induced with the injection of the complete Freund’s adjuvant (CFA) in sheep and goats. The animals were divided into four groups: CFA-treated sheep, control sheep, CFA-treated goat, and control goat groups (n 3 in each group). The dorsal root ganglions of these animals were isolated and used for the construction of a cDNA= library and transcriptome sequencing. Diferentially expressed genes (DEGs) were identifed in CFA-induced sheep and goats and gene ontology (GO) enrichment analysis was performed. Results: In total, 1748 and 2441 DEGs were identifed in CFA-treated goat and sheep, respectively. The DEGs identi- fed in CFA-treated goats, such as C-C motif chemokine ligand 27 (CCL27), glutamate receptor 2 (GRIA2), and sodium voltage-gated channel alpha subunit 3 (SCN3A), were mainly enriched in GO functions associated with N-methyl- D-aspartate (NMDA) receptor, infammatory response, and immune response. The DEGs identifed in CFA-treated sheep, such as gamma-aminobutyric acid (GABA)-related DEGs (gamma-aminobutyric acid type A receptor gamma 3 subunit [GABRG3], GABRB2, and GABRB1), SCN9A, and transient receptor potential cation channel subfamily V member 1 (TRPV1), were mainly enriched in GO functions related to neuroactive ligand-receptor interaction, NMDA receptor, and defense response.
    [Show full text]
  • A-To-I RNA Editing Does Not Change with Age in the Healthy Male Rat Brain
    Biogerontology (2013) 14:395–400 DOI 10.1007/s10522-013-9433-8 RESEARCH ARTICLE A-to-I RNA editing does not change with age in the healthy male rat brain Andrew P. Holmes • Shona H. Wood • Brian J. Merry • Joa˜o Pedro de Magalha˜es Received: 18 January 2013 / Accepted: 15 May 2013 / Published online: 26 May 2013 Ó The Author(s) 2013. This article is published with open access at Springerlink.com Abstract RNA editing is a post-transcriptional pro- Introduction cess, which results in base substitution modifications to RNA. It is an important process in generating Adenosine to inosine (A-to-I) RNA editing is a post- protein diversity through amino acid substitution and transcriptional process that alters the sequences of the modulation of splicing events. Previous studies RNA molecules. The adenosine deaminases ADAR have suggested a link between gene-specific reduc- and ADARB1 convert specific adenosine residues on tions in adenosine to inosine RNA editing and aging in RNA to inosine bases. During translation, sequencing, the human brain. Here we demonstrate that changes in and splicing, inosine is recognized as guanosine. RNA editing observed in humans with age are not Therefore, A-to-I RNA editing has important impli- observed during aging in healthy rats. Furthermore, we cations in altering specific amino acids, miRNA identify a conserved editing site in rats, in Cog3.We targeting, and in the modulation of alternative splicing propose that either age-related changes in RNA (Nishikura 2010). editing are specific to primates or humans, or that Targets of A-to-I RNA editing are often genes they are the manifestation of disease pathology.
    [Show full text]
  • 1750.Full.Pdf
    1750 • The Journal of Neuroscience, February 3, 2010 • 30(5):1750–1759 Development/Plasticity/Repair In the Developing Rat Hippocampus, Endogenous Activation of Presynaptic Kainate Receptors Reduces GABA Release from Mossy Fiber Terminals Maddalena D. Caiati,* Sudhir Sivakumaran,* and Enrico Cherubini Neuroscience Programme, International School for Advanced Studies, 34014 Trieste, Italy Presynaptic kainate receptors regulate synaptic transmission in several brain areas but are not known to have this action at immature mossy fiber (MF) terminals, which during the first week of postnatal life release GABA, which exerts into targeted cells a depolarizing and excitatory action. Here, we report that, during the first week of postnatal life, endogenous activation of GluK1 receptors by glutamate present in the extracellular space severely depresses MF-mediated GABAergic currents [GABAA-mediated postsynaptic currents (GPSCs)]. Activation of GluK1 receptors was prevented by treating the slices with enzymatic glutamate scavengers that enhanced the clearance of glutamate from the extracellular space. The depressant effect of GluK1 on MF-GPSCs was mediated by a metabotropic process sensitive to pertussis toxin. In the presence of U73122 (1-[6-[[(17b)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H- pyrrole-2,5-dione), a selective inhibitor of phospholipase C, along the transduction pathway downstream to G-protein, GluK1 activation increased the probability of GABA release, thus unveiling the ionotropic action of this receptor. In line with this type of action, we found that GluK1 enhanced MF excitability by directly depolarizing MF terminals via calcium-permeable cation channels. Furthermore, GluK1 dynamically regulated the direction of spike time-dependent plasticity occurring by pairing MF stimulation with postsynaptic spiking and switched spike time-dependent potentiation into depression.
    [Show full text]
  • Qt267353tc Nosplash 6C08d1b
    Copyright 2011 by Leslie Ann Cruz ii In Memoriam Andrew Braisted (1963-2003) Warren DeLano (1972-2009) Two of the best scientists that I had the opportunity work with at Sunesis Pharmaceuticals. So much talent. Gone too soon… iii Dedication To my husband, George, and my son, Thomas My two most favorite men. To the grandfather I never had: Dr. David T. Petty, my life-long mentor To My Family and Friends who have supported and encouraged me throughout the years: Mom, Jim, Dad, Mikey, Maria, Lyla Carolyn, Bob, Melissa, Rob, LeeAnn, Graciela, James David, Janell, Lori, Becky, Judy, Alex, Gigi Daniel, Astrid, Dave, Scott, Joice, Kwasi, Marcus Dan and Monya Jeanne and Bruce iv Acknowledgments The saying goes, “It takes a village to raise a child”. It also takes a village to raise a scientist. Thank You to All My Teachers and Mentors With Special Thanks To: St. Benedict's Elementary School Ilene Hopkins Memorial Jr. High School Timothy Sandow Thornton Fractional South High School Richard Powell and Ann Rice The University of Chicago Viresh Rawal Argonne National Laboratory John Hryn v MediChem Research Raghu Samy, Stuart Feinberg, Shankar Saha, Dimitry Kolton Sunesis Pharmaceuticals Andrew Braisted, Dan Erlanson, Jeanne Hardy, Doug Cary, Brian Cunningham, Brian Raimundo, Molly He, Michelle Arkin, Darin Allen, Warren DeLano, Jim Wells University of California, San Francisco My Adviser: Robert Fletterick, My Dissertation Committee: Holly Ingraham, Jack Taunton, My Orals Committee: Pam England, Jim Wells, Lily Jan, Kevan Shokat Chris Olson, Charly Craik, Tom Scanlan, Kip Guy, Sue Miller, Dave Agard, Bob Stroud, David Julius, Roger Nicoll, Maia Vinogradova, Fumiaki Yumoto, Phuong Nguyen, Sam Pfaff, Eric Slivka, Jeremey Wilbur, Cindy Benod, Kris Kuchenbecker, Peter Huang, Elena Sablin, Ulrike Boettcher, Kristin Krukenburg, James Kraemer, Mariano Tabios, Rebeca Choy Collaborators Marc Cox, Eva Estébanez-Perpiñá, Paul Webb, John Baxter, Stephen Mayo vi Preface My dissertation is comprised of the two projects I worked on during my graduate career.
    [Show full text]
  • Ion Channels
    UC Davis UC Davis Previously Published Works Title THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. Permalink https://escholarship.org/uc/item/1442g5hg Journal British journal of pharmacology, 176 Suppl 1(S1) ISSN 0007-1188 Authors Alexander, Stephen PH Mathie, Alistair Peters, John A et al. Publication Date 2019-12-01 DOI 10.1111/bph.14749 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology (2019) 176, S142–S228 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels Stephen PH Alexander1 , Alistair Mathie2 ,JohnAPeters3 , Emma L Veale2 , Jörg Striessnig4 , Eamonn Kelly5, Jane F Armstrong6 , Elena Faccenda6 ,SimonDHarding6 ,AdamJPawson6 , Joanna L Sharman6 , Christopher Southan6 , Jamie A Davies6 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 3Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 4Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, A-6020 Innsbruck, Austria 5School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 6Centre for Discovery Brain Science, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties.
    [Show full text]