BD Fastimmune™ CD63/CD123/Anti-HLA-DR

Total Page:16

File Type:pdf, Size:1020Kb

BD Fastimmune™ CD63/CD123/Anti-HLA-DR • • Monoclonal • BD FastImmune™ Antibodies • Detecting • CD63/CD123/Anti–HLA-DR Human • • Catalog No. 341068 50 Tests 20 µL/test Antigens • • • • • RESEARCH Research applications include studies of: APPLICATIONS • Basophils in whole blood1-4 • Basophil degranulation when activated5,6,7 • Dendritic cell subsets in peripheral blood and lymphoid tissues8 DESCRIPTION Specificity The CD63 antibody reacts with a 53-kilodalton (kDa), type III lysosomal glycoprotein found in many cell types, including monocytes, platelets, and basophils. This molecule is also referred to as LIMP, gp55, melanoma-associated antigen ME491, Pltgp40, LAMP- 3, and is a member of the tetraspannin transmembrane 4 superfamily (TM4SF).9-12 The CD123 antibody (Anti–IL-3Rα) binds to the α-chain of the interleukin-3 receptor (IL-3Rα).13 It selectively recognizes COS cells that have been transfected with IL-3Rα. Clone 9F5 does not block IL-3 binding to the receptor.14 Anti–HLA-DR recognizes a human class II major histocompatibility complex (MHC) antigen.15,16 The antigen is a transmembrane glycoprotein composed of α and β subunits that have molecular weights of 36 and 27 kilodaltons (kDa), respectively.15,16 Antigen distribution The CD63 antibody is an intracellular, lysosomal protein whose surface expression is upregulated on activated platelets, degranulated neutrophils, monocytes, macrophages, endothelium, and activated basophils.9-12,5,6,17 The CD123 antibody is expressed on a subset of peripheral blood dendritic cells,8,18-20 on a subset of progenitor cells,8 monocytes,14 eosinophils,14 and basophils.1-4 Neutrophils show IL-3Rα expression when they are cultured with granulocyte- macrophage colony-stimulating factor (GM-CSF) but not when freshly isolated.21 Since IL-3 stimulates the production of hematopoietic cells, such as megakaryocytes, erythroid cells, and B cells, it is assumed that precursor cells of these lineages can also express IL-3Rα.14 HLA-DR is expressed on B lymphocytes, monocytes, macrophages, activated T lymphocytes, activated natural killer (NK) lymphocytes, and human progenitor cells.22-26 It is also present on thymic epithelium, B-lymphocyte–dependent areas of spleen and lymph node, and B-cell lymphomas.26-29 Clones The CD63 antibody, clone H5C6, is derived from the fusion of P3x653 Ag8 myeloma cells with splenocytes from BALB/c mice immunized with human splenic adherent cells.9,10 The CD123 antibody, clone 9F5,13 is derived from fusion of NS-1 cells with splenocytes from BALB/c mice immunized with IL-3Rα transfected COS cells.14 For Research Use Only. Not for use in diagnostic or therapeutic procedures. Becton, Dickinson and Company BD Biosciences 2350 Qume Drive San Jose, CA 95131 USA bdbiosciences.com [email protected] 11/2014 23-6584-02 Anti–HLA-DR, clone L243, is derived from the hybridization of NS-1/1-Ag4 mouse myeloma cells with spleen cells from BALB/c mice immunized with the human lymphoblastic B-cell line RPMI 8866.15 Composition The CD63 and CD123 antibodies are each composed of mouse IgG1 heavy chains and kappa light chains. Anti–HLA-DR is composed of mouse IgG2a heavy chains and kappa light chains. The BD FastImmune™ CD63/CD123/Anti–HLA-DR reagent is supplied as a combination of CD63 FITC, CD123 PE, and Anti–HLA-DR PerCP in 1.0 mL of phosphate-buffered saline (PBS) containing bovine serum albumin (BSA) and 0.1% sodium azide. PROCEDURE Visit our website (bdbiosciences.com) or contact your local BD representative for the lyse/wash protocol for direct immunofluorescence. Method for direct 1. Add 20 µL of basophil stimulation buffer (BSB)5 with or without allergens onto the Immunofluorescence bottom of the 12 x 75-mm tube. activation • negative stimulus control — working BSB only (no allergens) • positive stimulus control — diluted fMLP (N-Formyl-Met-Leu-Phe) in BSB at 2-µM concentration • test sample — diluted grass pollen mix/mite mix, or other allergen in BSB 2. Aliquot 100 µL of blood (with heparin anticoagulant) to all stimulation tubes, vortex, and incubate the samples in a 37°C water bath for 10–15 minutes. 3. Stop the degranulation immediately by transferring sample tubes to an ice bath or by adding 10 µL of 20-mM EDTA at room temperature for 5 minutes. Staining 1. Add 20 µL of CD63 FITC/CD123 PE/Anti–HLA-DR PerCP antibody cocktail to each tube, vortex, and incubate in the dark on ice for 20 minutes or at room temperature for 15 minutes (when using EDTA to stop the reaction). 2. Lyse samples with 2 mL of 1X BD FACS™ lysing solution at room temperature for 15 minutes. 3. Centrifuge samples at 300 x g for 5 minutes, and aspirate the supernatant. 4. Wash again with 1–2 mL of PBS. 5. Add 0.3 mL of 0.5% paraformaldehyde (PFA) to resuspend samples. NOTE Samples are ready for flow cytometric analysis. REPRESENTATIVE DATA Flow cytometric analysis was performed on lysed whole blood. Samples were analyzed on a BD FACS™ flow cytometer with a 488-nm laser. Data was acquired with a threshold on FL2 set to eliminate most of CD123-negative cells, and at least 500 CD123-positive cells per sample were acquired. Basophils were identified as low side scatter (SSC), CD123-positive and HLA-DR–negative7,8 cells (Figure 1). The quantitative determination of activated or degranulated basophils was measured on CD63 FITC (FL1). Markers were set by the negative control samples and can be shown as an FL1 vs FL2 dot plot (see Figure 2). 23-6584-02 Page 2 Figure 1 Gating strategy for basophil identification R1 gated ungated 4 10 1000 R2 R1 SSC-H CD123 PE 0 0 4 10 100 CD123 PE 10 100 Anti–HLA-DR PerCP 104 Figure 2 displays representative data from a donor sensitive to grass pollens and a donor not sensitive to grass pollens. Samples with buffer, with a positive stimulus control (fMLP), or with grass pollen mix were incubated at 37°C for 10 minutes. Basophils were gated with R1 and R2 (see Figure 1). Figure 2 Typical FL1 histograms and FL1 vs FL2 dot plots sensitive not sensitive 4 4 10 10 2.18% 0.36% negative control (buffer) CD123 PE CD123 PE CD123 0 0 10 10 100 CD63 FITC 104 100 CD63 FITC 104 sensitive not sensitive 4 4 10 10 53.09% 71.24% positive stimulus control (fMLP) CD123 PE CD123 CD123 PE CD123 0 0 10 10 100 CD63 FITC 104 100 CD63 FITC 104 sensitive not sensitive 4 4 10 91.51% 10 0.70% grass pollen mix CD123 PE CD123 PE CD123 0 0 10 10 100 CD63 FITC 104 100 CD63 FITC 104 HANDLING AND Store vials at 2°C–8°C. Conjugated forms should not be frozen. Protect from exposure STORAGE to light. Each reagent is stable until the expiration date shown on the bottle label when stored as directed. WARNING All biological specimens and materials coming in contact with them are considered biohazards. Handle as if capable of transmitting infection30,31 and dispose of with proper precautions in accordance with federal, state, and local regulations. Never pipette by mouth. Wear suitable protective clothing, eyewear, and gloves. Page 3 23-6584-02 CHARACTERIZATION To ensure consistently high-quality reagents, each lot of antibody is tested for conformance with characteristics of a standard reagent. Representative flow cytometric data is included in this data sheet. WARRANTY Unless otherwise indicated in any applicable BD general conditions of sale for non-US customers, the following warranty applies to the purchase of these products. THE PRODUCTS SOLD HEREUNDER ARE WARRANTED ONLY TO CONFORM TO THE QUANTITY AND CONTENTS STATED ON THE LABEL OR IN THE PRODUCT LABELING AT THE TIME OF DELIVERY TO THE CUSTOMER. BD DISCLAIMS HEREBY ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ANY PARTICULAR PURPOSE AND NONINFRINGEMENT. BD’S SOLE LIABILITY IS LIMITED TO EITHER REPLACEMENT OF THE PRODUCTS OR REFUND OF THE PURCHASE PRICE. BD IS NOT LIABLE FOR PROPERTY DAMAGE OR ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES, INCLUDING PERSONAL INJURY, OR ECONOMIC LOSS, CAUSED BY THE PRODUCT. REFERENCES 1. Agis H, Füreder W, Bankl HC, et al. Comparative immunophenotypic analysis of human mast cells, blood basophils and monocytes. Immunology. 1996;87:535-543. 2. Valent P. Immunophenotypic characterization of human basophils and mast cells. Chem Immunol. 1995;61:34-48. 3. Valent P, Besemer J, Muhm M, Majdic O, Lechner K, Bettelheim P. Interleukin 3 activates human blood basophils via high-affinity binding sites. Proc Natl Acad Sci USA. 1989;86:5542-5546. 4. Agis H, Beil WJ, Bankl HC, et al. Mast cell-lineage versus basophil lineage involvement in myeloproliferative and myelodysplastic syndromes: diagnostic role of cell-immunophenotyping. Leukemia and Lymphoma. 1996;22:187-204. 5. Sainte-Laudy J, Vallon C, Guerin JC. Diagnosis of latex allergy: comparison of histamine release and flow cytometric analysis of basophil activation. Inflamm Res. 1996;45:S35-S36. 6. Gane P, Pecquet C, Crespeau H, Lambin P, Leynadier F, Rouger P. Flow cytometric monitoring of allergen induced basophil activation. Cytometry. 1995;19:361-365. 7. Stain C, Stockinger H, Scharf M, et al. Human blood basophils display a unique phenotype including activation linked membrane structures. Blood. 1987;70:1872-1879. 8. Olweus J, BitMansour A, Warnke R, et al. Dendritic cell ontogeny: a human dendritic cell lineage of myeloid origin. Proc Natl Acad Sci USA. 1997;94:12551-12556. 9. Azorsa DO, Hyman JA, Hildreth JEK. CD63/Pltgp40: a platelet activation antigen identical to the stage- specific, melanoma-associated antigen ME491. Blood. 1991;78:280-284. 10. Hildreth JEK, Derr D, Azorsa DO. Characterization of a novel self-associating Mr 40,000 platelet glycoprotein.
Recommended publications
  • Analysis of the Structure and Function of a Timp-1/Cd63 Complex and Its Relationship to an Mt1-Mmp/Cd63 Complex
    Wayne State University Wayne State University Dissertations 1-1-2013 Analysis Of The trS ucture And Function Of A Timp-1/cd63 Complex And Its Relationship To An Mt1-Mmp/cd63 Complex Richard B. Warner Wayne State University, Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations Part of the Oncology Commons Recommended Citation Warner, Richard B., "Analysis Of The trS ucture And Function Of A Timp-1/cd63 Complex And Its Relationship To An Mt1-Mmp/ cd63 Complex" (2013). Wayne State University Dissertations. Paper 864. This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState. ANALYSIS OF THE STRUCTURE AND FUNCTION OF A TIMP-1/CD63 COMPLEX AND ITS RELATIONSHIP TO AN MT1-MMP/CD63 COMPLEX by RICHARD BECKSTRAND WARNER DISSERTATION Submitted to the Graduate School of Wayne State University, Detroit, Michigan in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY 2013 MAJOR: CANCER BIOLOGY Approved by: Advisor Date © COPYRIGHT BY RICHARD BECKSTRAND WARNER 2013 All Rights Reserved DEDICATION This work is dedicated to my wonderful family. Beginning with my wife and three children, I want to acknowledge how important my family has been to me throughout this major undertaking in my life. Paramount in my life is my relationship to God and my spirituality, which I apply in all things that I do; my wife, Stephanie, has been an unfailing support in this aspect. It is a truly wonderful and humbling experience that I have had as a spouse and parent together with her.
    [Show full text]
  • RI-Mediated Mast Cell Activation Ε of Fc Tetraspanin CD151 Is A
    Tetraspanin CD151 Is a Negative Regulator of Fc εRI-Mediated Mast Cell Activation Hiam Abdala-Valencia, Paul J. Bryce, Robert P. Schleimer, Joshua B. Wechsler, Lucas F. Loffredo, Joan M. Cook-Mills, This information is current as Chia-Lin Hsu and Sergejs Berdnikovs of September 26, 2021. J Immunol 2015; 195:1377-1387; Prepublished online 1 July 2015; doi: 10.4049/jimmunol.1302874 http://www.jimmunol.org/content/195/4/1377 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2015/07/01/jimmunol.130287 Material 4.DCSupplemental http://www.jimmunol.org/ References This article cites 63 articles, 28 of which you can access for free at: http://www.jimmunol.org/content/195/4/1377.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 26, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2015 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Tetraspanin CD151 Is a Negative Regulator of Fc«RI-Mediated Mast Cell Activation Hiam Abdala-Valencia,* Paul J.
    [Show full text]
  • Altered Expression of CD63 and Exosomes in Scleroderma Dermal
    Journal of Dermatological Science 84 (2016) 30–39 Contents lists available at ScienceDirect Journal of Dermatological Science journal homepage: www.jdsjournal.com Altered expression of CD63 and exosomes in scleroderma dermal fibroblasts Kayo Nakamura, Masatoshi Jinnin*, Miho Harada, Hideo Kudo, Wakana Nakayama, Kuniko Inoue, Aki Ogata, Ikko Kajihara, Satoshi Fukushima, Hironobu Ihn Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan A R T I C L E I N F O A B S T R A C T Article history: Background: Exosomes are small vesicles shed from various cells. They contain proteins, lipids, and Received 6 January 2016 nucleic acids, and are regarded as a tool of cell-cell communication. Received in revised form 13 June 2016 Objectives: To reveal the putative role of exosomes in systemic sclerosis (SSc), and to elucidate the effect of Accepted 29 June 2016 exosomes on wound healing. Methods: The expression of common markers for exosomes (CD63, CD9, and CD81) and type I collagen Keywords: were examined with real-time PCR, immunohistochemical analysis, ELISA, immunoblotting, and flow Exosomes cytometry. The effect of serum-derived exosomes on wound healing was tested on full-thickness wounds CD63 in the mid-dorsal skin of BALB/c mice. Systemic sclerosis Results: The expression levels of CD63 as well as CD9 and CD81 tended to be increased in SSc dermal fibroblasts compared to normal fibroblasts. Increased exosomes in a cultured media of SSc fibroblasts stimulated the expression levels of type I collagen in normal fibroblasts. As the mechanism, collagen- related microRNA levels in SSc fibroblast-derived exosomes were dysregulated, indicating that both the amount and the content of exosomes were altered in SSc.
    [Show full text]
  • A Shared Pathway of Exosome Biogenesis Operates at Plasma And
    bioRxiv preprint doi: https://doi.org/10.1101/545228; this version posted February 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. A shared pathway of exosome biogenesis operates at plasma and endosome membranes Francis K. Fordjour1, George G. Daaboul2, and Stephen J. Gould1* 1Department of Biological Chemistry Johns Hopkins University Baltimore, MD USA 2Nanoview Biosciences Boston, MA USA Corresponding author: Stephen J. Gould, Ph.D. Department of Biological Chemistry Johns Hopkins University Baltimore, MD USA Email: [email protected] Tel (01) 443 847 9918 1 bioRxiv preprint doi: https://doi.org/10.1101/545228; this version posted February 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Summary: This study of exosome cargo protein budding reveals that cells use a common pathway for budding exosomes from plasma and endosome membranes, providing a new mechanistic explanation for exosome heterogeneity and a rational roadmap for exosome engineering. Keywords: Protein budding, tetraspanin, endosome, plasma membrane, extracellular vesicle, CD9, CD63, CD81, SPIR, interferometry Abbreviations: EV, extracellular vesicles; IB, immunoblot; IFM, immunofluorescence microscopy; IPMC, intracellular plasma membrane-connected compartment; MVB, multivesicular body; SPIR, single-particle interferometric reflectance; SPIRI, single-particle interferometric reflectance imaging 2 bioRxiv preprint doi: https://doi.org/10.1101/545228; this version posted February 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved.
    [Show full text]
  • Expression of the Tetraspanins CD9, CD37, CD63, and CD151 in Merkel Cell Carcinoma: Strong Evidence for a Posttranscriptional Fine-Tuning of CD9 Gene Expression
    Modern Pathology (2010) 23, 751–762 & 2010 USCAP, Inc. All rights reserved 0893-3952/10 $32.00 751 Expression of the tetraspanins CD9, CD37, CD63, and CD151 in Merkel cell carcinoma: strong evidence for a posttranscriptional fine-tuning of CD9 gene expression Markus Woegerbauer1, Dietmar Thurnher1, Roland Houben2, Johannes Pammer3, Philipp Kloimstein1, Gregor Heiduschka1, Peter Petzelbauer4 and Boban M Erovic1 1Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria; 2Department of Dermatology, Medical University of Wuerzburg, Germany; 3Department of Clinical Pathology, Medical University of Vienna, Vienna, Austria and 4Department of Dermatology, Medical University of Vienna, Vienna, Austria Tetraspanins including CD9, CD37, CD63, and CD151 are linked to cellular adhesion, cell differentiation, migration, carcinogenesis, and tumor progression. The aim of the study was to detect, quantify, and evaluate the prognostic value of these tetraspanins in Merkel cell carcinoma and to study the regulation of CD9 mRNA expression in Merkel cell carcinoma cell lines in detail. Immunohistochemical staining of 28 Merkel cell carcinoma specimens from 25 patients showed a significant correlation of CD9 (P ¼ 0.03) and CD151 (P ¼ 0.043) expression to overall survival. CD9 and CD63 expression correlated significantly to patients’ disease-free interval (P ¼ 0.017 and P ¼ 0.058). Of primary Merkel cell carcinoma tumors, 42% were CD9 positive in contrast to only 21% of the subcutaneous in-transit metastases. Characterization of the 50 untranslated region (UTR) of the CD9 mRNA from two cultured Merkel cell carcinoma cell lines revealed the presence of two major RNA species differing only in the length of their 50 termini (183 versus 102 nucleotides).
    [Show full text]
  • Extracellular Vesicle Human CD9/CD63/CD81 Antibody Panel
    Extracellular Vesicle Human CD9/CD63/CD81 Antibody Panel Antibody panel for the detection of extracellular vesicles using CD9, CD63, and CD81 markers Catalog #100-0211 1 Kit Product Description The Extracellular Vesicle Human CD9/CD63/CD81 Antibody Panel is suitable for the detection of extracellular vesicles (EVs) derived from human cells. It comprises three primary antibodies that are immunoreactive toward human CD9, CD63, and CD81; these are proteins that are typically expressed on EVs and widely used as markers to analyze and isolate these cell-derived particles. CD9, CD63, and CD81 belong to the tetraspanin family of membrane proteins, which possess four transmembrane domains and interact with diverse proteins on the cell surface to form multimolecular networks termed tetraspanin-enriched microdomains. CD9, CD63, and CD81 proteins are expressed on the surface of many cells, including B cells, T cells, NK cells, monocytes, dendritic cells, thymocytes, endothelial cells, and fibroblasts, and are involved in modulating a variety of cellular processes including cell activation, adhesion, differentiation, and tumor invasion. The antibodies provided in this panel have been reported for use in analyzing primary cells, cell lines, and EVs by ELISA, flow cytometry, immunocytochemistry, immunoprecipitation, and Western blotting. They have been reported to cross-react with their cognate antigens in non-human primates, including baboons and rhesus and cynomolgus macaques. Product Information The following products comprise the Extracellular
    [Show full text]
  • Aberrant Expression of Tetraspanin Molecules in B-Cell Chronic Lymphoproliferative Disorders and Its Correlation with Normal B-Cell Maturation
    Leukemia (2005) 19, 1376–1383 & 2005 Nature Publishing Group All rights reserved 0887-6924/05 $30.00 www.nature.com/leu Aberrant expression of tetraspanin molecules in B-cell chronic lymphoproliferative disorders and its correlation with normal B-cell maturation S Barrena1,2, J Almeida1,2, M Yunta1,ALo´pez1,2, N Ferna´ndez-Mosteirı´n3, M Giralt3, M Romero4, L Perdiguer5, M Delgado1, A Orfao1,2 and PA Lazo1 1Instituto de Biologı´a Molecular y Celular del Ca´ncer, Centro de Investigacio´n del Ca´ncer, Consejo Superior de Investigaciones Cientı´ficas-Universidad de Salamanca, Salamanca, Spain; 2Servicio de Citometrı´a, Universidad de Salamanca and Hospital Universitario de Salamanca, Salamanca, Spain; 3Servicio de Hematologı´a, Hospital Universitario Miguel Servet, Zaragoza, Spain; 4Hematologı´a-hemoterapia, Hospital Universitario Rı´o Hortega, Valladolid, Spain; and 5Servicio de Hematologı´a, Hospital de Alcan˜iz, Teruel, Spain Tetraspanin proteins form signaling complexes between them On the cell surface, tetraspanin antigens are present either as and with other membrane proteins and modulate cell adhesion free molecules or through interaction with other proteins.25,26 and migration properties. The surface expression of several tetraspanin antigens (CD9, CD37, CD53, CD63, and CD81), and These interacting proteins include other tetraspanins, integri- F 22,27–30F their interacting proteins (CD19, CD21, and HLA-DR) were ns particularly those with the b1 subunit HLA class II 31–33 34,35 analyzed during normal B-cell maturation and compared to a moleculesFeg HLA DR -, CD19, the T-cell recep- group of 67 B-cell neoplasias. Three patterns of tetraspanin tor36,37 and several other members of the immunoglobulin expression were identified in normal B cells.
    [Show full text]
  • Bioinformatics Analysis for the Identification of Differentially Expressed Genes and Related Signaling Pathways in H
    Bioinformatics analysis for the identification of differentially expressed genes and related signaling pathways in H. pylori-CagA transfected gastric cancer cells Dingyu Chen*, Chao Li, Yan Zhao, Jianjiang Zhou, Qinrong Wang and Yuan Xie* Key Laboratory of Endemic and Ethnic Diseases , Ministry of Education, Guizhou Medical University, Guiyang, China * These authors contributed equally to this work. ABSTRACT Aim. Helicobacter pylori cytotoxin-associated protein A (CagA) is an important vir- ulence factor known to induce gastric cancer development. However, the cause and the underlying molecular events of CagA induction remain unclear. Here, we applied integrated bioinformatics to identify the key genes involved in the process of CagA- induced gastric epithelial cell inflammation and can ceration to comprehend the potential molecular mechanisms involved. Materials and Methods. AGS cells were transected with pcDNA3.1 and pcDNA3.1::CagA for 24 h. The transfected cells were subjected to transcriptome sequencing to obtain the expressed genes. Differentially expressed genes (DEG) with adjusted P value < 0.05, | logFC |> 2 were screened, and the R package was applied for gene ontology (GO) enrichment and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. The differential gene protein–protein interaction (PPI) network was constructed using the STRING Cytoscape application, which conducted visual analysis to create the key function networks and identify the key genes. Next, the Submitted 20 August 2020 Kaplan–Meier plotter survival analysis tool was employed to analyze the survival of the Accepted 11 March 2021 key genes derived from the PPI network. Further analysis of the key gene expressions Published 15 April 2021 in gastric cancer and normal tissues were performed based on The Cancer Genome Corresponding author Atlas (TCGA) database and RT-qPCR verification.
    [Show full text]
  • Product Sheet: Exosome Antibodies and Elisas
    System Biosciences Accelerating discoveries through innovations Exosome Research Exosome Antibodies, Arrays and ELISAs Track, Verify and Quantitate Exosomes with Validated Antibody Systems Exosomes are small membrane vesicles secreted by most cell types in vivo and in Highlights vitro. Exosomes are found in cell culture media, blood, urine, amniotic fluid, malignant ascite fluids and contain distinct subsets of microRNAs and proteins • Exosome antibodies for Westerns depending upon the tissue from which they are secreted. SBI's ExoELISA kits are designed for fast and quantitative analysis of well-characterized exosomal protein • Validated CD63, CD9, CD81 and Hsp70 markers: CD63, CD9, CD81 or Hsp70. The exosome antibody kits allow for the • Exosome ELISAs for quantitation confirmation of exosome recoveries and the ExoELISA kit enables the specific quantitation of CD63, CD9 or CD81 positive exosome microvesicles. The exosome • Measure exact number of exosome antibody and ExoELISA kits are fully compatible with exosomes isolated by SBI's particles isolated from your samples ExoQuick or ExoQuick-TC as well as ultracentrifugation methods. Exosome antibodies for Western blots Exosome antibody arrays to check recoveries For Western blotting analysis, we recommend The Exo-Check antibody array has 12 pre-printed spots and resuspending the exosome pellet in 1XRIPA features 8 antibodies for known exosome markers (CD63, CD81, buffer with the appropriate protease inhibitor ALIX, FLOT1, ICAM1, EpCam, ANXA5 and TSG101) and a GM130 cocktail. SBI offers individual antibodies for CD63, cis-Golgi marker to monitor any cellular contamination in your CD9, CD81 and Hsp70 as well as a Western blot exosome isolations. Your exosome preparations are lysed and sampler kit (Catalog# EXOAB-KIT-1) which then incubated with the array for the pre-printed antibodies to includes four exosomal marker antibodies: CD63, capture their respective exosome proteins.
    [Show full text]
  • Timp1 Interacts with Beta-1 Integrin and CD63 Along Melanoma
    Toricelli et al. Molecular Cancer 2013, 12:22 http://www.molecular-cancer.com/content/12/1/22 RESEARCH Open Access Timp1 interacts with beta-1 integrin and CD63 along melanoma genesis and confers anoikis resistance by activating PI3-K signaling pathway independently of Akt phosphorylation Mariana Toricelli1, Fabiana HM Melo1,2, Giovani B Peres3, Débora CP Silva4 and Miriam G Jasiulionis1* Abstract Background: Anoikis resistance is one of the abilities acquired along tumor progression. This characteristic is associated with metastasis development, since tumorigenic cells must survive independently of cell-matrix interactions in this process. In our laboratory, it was developed a murine melanocyte malignant transformation model associated with a sustained stressful condition. After subjecting melan-a melanocytes to 1, 2, 3 and 4 cycles of anchorage impediment, anoikis resistant cells were established and named 1C, 2C, 3C and 4C, respectively. These cells showed altered morphology and PMA independent cell growth, but were not tumorigenic, corresponding to pre-malignant cells. After limiting dilution of 4C pre-malignant cells, melanoma cell lines with different characteristics were obtained. Previous data from our group showed that increased Timp1 expression correlated with anoikis-resistant phenotype. Timp1 was shown to confer anchorage-independent growth capability to melan-a melanocytes and render melanoma cells more aggressive when injected into mice. However, the mechanisms involved in anoikis regulation by Timp1 in tumorigenic cells are not clear yet. Methods: The β1-integrin and Timp1 expression were evaluated by Western blotting and CD63 protein expression by flow cytometry using specific antibodies. To analyze the interaction among Timp1, CD63 and β1-integrin, immunoprecipitation assays were performed, anoikis resistance capability was evaluated in the presence or not of the PI3-K inhibitors, Wortmannin and LY294002.
    [Show full text]
  • The Human Gene Connectome As a Map of Short Cuts for Morbid Allele Discovery
    The human gene connectome as a map of short cuts for morbid allele discovery Yuval Itana,1, Shen-Ying Zhanga,b, Guillaume Vogta,b, Avinash Abhyankara, Melina Hermana, Patrick Nitschkec, Dror Friedd, Lluis Quintana-Murcie, Laurent Abela,b, and Jean-Laurent Casanovaa,b,f aSt. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065; bLaboratory of Human Genetics of Infectious Diseases, Necker Branch, Paris Descartes University, Institut National de la Santé et de la Recherche Médicale U980, Necker Medical School, 75015 Paris, France; cPlateforme Bioinformatique, Université Paris Descartes, 75116 Paris, France; dDepartment of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; eUnit of Human Evolutionary Genetics, Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, Institut Pasteur, F-75015 Paris, France; and fPediatric Immunology-Hematology Unit, Necker Hospital for Sick Children, 75015 Paris, France Edited* by Bruce Beutler, University of Texas Southwestern Medical Center, Dallas, TX, and approved February 15, 2013 (received for review October 19, 2012) High-throughput genomic data reveal thousands of gene variants to detect a single mutated gene, with the other polymorphic genes per patient, and it is often difficult to determine which of these being of less interest. This goes some way to explaining why, variants underlies disease in a given individual. However, at the despite the abundance of NGS data, the discovery of disease- population level, there may be some degree of phenotypic homo- causing alleles from such data remains somewhat limited. geneity, with alterations of specific physiological pathways under- We developed the human gene connectome (HGC) to over- come this problem.
    [Show full text]
  • CD82, but Not CD63, Is Linked to Cellular Invasiveness in Human Thyroid Carcinoma
    Aus der Universitätsklinik und Poliklinik für Kinderchirurgie an der Martin-Luther-Universität Halle-Wittenberg (Direktor: Prof. Dr. med. Rainer Finke) und der Universitätsklinik und Poliklinik für Allgemein-, Viszeral- und Gefäßchirurgie an der Martin-Luther-Universität Halle-Wittenberg (Direktor: Prof. Dr. med. Henning Dralle) CD82, but not CD63, is linked to cellular invasiveness in human thyroid carcinoma Dissertation zur Erlangung des akademischen Grades Doktor der Medizin (Dr. med.) vorgelegt der Medizinischen Fakultät der Martin-Luther-Universität Halle-Wittenberg von Zhouxun Chen geboren am 21.06.1974 in Zhejiang, VR China Gutachter: 1. Prof. Dr. med. Rainer Finke (MLU, Halle) 2. PD. Dr. rer. nat. Cornelia Schmutzler (Charité, Berlin) 3. PD. Dr. med. Sabine Hombach-Klonisch (Manitoba, Canada) Eröffnungsdatum des Promotionsverfahrens: 21.09.2006 Datum der öffentlichen Verteidigung: 24.01.2007 urn:nbn:de:gbv:3-000011259 [http://nbn-resolving.de/urn/resolver.pl?urn=nbn%3Ade%3Agbv%3A3-000011259] - II - Meinen Eltern - III - Referat und bibliographische Beschreibung In der vorliegenden experimentellen Arbeit wurde die Bedeutung der Tetraspanine CD82 und CD63 (transmembrane-4-superfamily -TM4SF) für das Wachstum der menschlichen Schilddrüsenkarzinome und für die Ausbildung von Metastasen untersucht. In verschiedenen soliden Tumoren des Menschen spielt CD82 eine wichtige Rolle in den Prozessen der Zelldifferenzierung, der Apoptose, der Zelladhäsion sowie der Metasta- sierung. Es ist bekannt, dass CD82 in Prostatakarzinomen die Ausbildung von Metastasen unterdrückt, dass CD63 die Motilität maligner Melanomzellen reguliert und in die Prozesse der Zelladhäsion involviert ist. Die mRNA- und die Proteinexpression der Tetraspanine CD82 und CD63 wurde mit Hilfe der RT-PCR und der Immunhistochemie in 75 malignen Schilddrüsengeweben (24 FTC, 33 PTC, 18 UTC) sowie in 12 benignen Veränderungen der Schilddrüse (Struma colloides et nodosa) be- stimmt.
    [Show full text]