Group Cohomology Which Totally Intertwines the Algebraic and Topological Aspects of the Subject
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Fundamental Group
The Fundamental Group Tyrone Cutler July 9, 2020 Contents 1 Where do Homotopy Groups Come From? 1 2 The Fundamental Group 3 3 Methods of Computation 8 3.1 Covering Spaces . 8 3.2 The Seifert-van Kampen Theorem . 10 1 Where do Homotopy Groups Come From? 0 Working in the based category T op∗, a `point' of a space X is a map S ! X. Unfortunately, 0 the set T op∗(S ;X) of points of X determines no topological information about the space. The same is true in the homotopy category. The set of `points' of X in this case is the set 0 π0X = [S ;X] = [∗;X]0 (1.1) of its path components. As expected, this pointed set is a very coarse invariant of the pointed homotopy type of X. How might we squeeze out some more useful information from it? 0 One approach is to back up a step and return to the set T op∗(S ;X) before quotienting out the homotopy relation. As we saw in the first lecture, there is extra information in this set in the form of track homotopies which is discarded upon passage to [S0;X]. Recall our slogan: it matters not only that a map is null homotopic, but also the manner in which it becomes so. So, taking a cue from algebraic geometry, let us try to understand the automorphism group of the zero map S0 ! ∗ ! X with regards to this extra structure. If we vary the basepoint of X across all its points, maybe it could be possible to detect information not visible on the level of π0. -
Cohomological Descent on the Overconvergent Site
COHOMOLOGICAL DESCENT ON THE OVERCONVERGENT SITE DAVID ZUREICK-BROWN Abstract. We prove that cohomological descent holds for finitely presented crystals on the overconvergent site with respect to proper or fppf hypercovers. 1. Introduction Cohomological descent is a robust computational and theoretical tool, central to p-adic cohomology and its applications. On one hand, it facilitates explicit calculations (analo- gous to the computation of coherent cohomology in scheme theory via Cechˇ cohomology); on another, it allows one to deduce results about singular schemes (e.g., finiteness of the cohomology of overconvergent isocrystals on singular schemes [Ked06]) from results about smooth schemes, and, in a pinch, sometimes allows one to bootstrap global definitions from local ones (for example, for a scheme X which fails to embed into a formal scheme smooth near X, one actually defines rigid cohomology via cohomological descent; see [lS07, comment after Proposition 8.2.17]). The main result of the series of papers [CT03,Tsu03,Tsu04] is that cohomological descent for the rigid cohomology of overconvergent isocrystals holds with respect to both flat and proper hypercovers. The barrage of choices in the definition of rigid cohomology is burden- some and makes their proofs of cohomological descent very difficult, totaling to over 200 pages. Even after the main cohomological descent theorems [CT03, Theorems 7.3.1 and 7.4.1] are proved one still has to work a bit to get a spectral sequence [CT03, Theorem 11.7.1]. Actually, even to state what one means by cohomological descent (without a site) is subtle. The situation is now more favorable. -
Homological Algebra
Homological Algebra Donu Arapura April 1, 2020 Contents 1 Some module theory3 1.1 Modules................................3 1.6 Projective modules..........................5 1.12 Projective modules versus free modules..............7 1.15 Injective modules...........................8 1.21 Tensor products............................9 2 Homology 13 2.1 Simplicial complexes......................... 13 2.8 Complexes............................... 15 2.15 Homotopy............................... 18 2.23 Mapping cones............................ 19 3 Ext groups 21 3.1 Extensions............................... 21 3.11 Projective resolutions........................ 24 3.16 Higher Ext groups.......................... 26 3.22 Characterization of projectives and injectives........... 28 4 Cohomology of groups 32 4.1 Group cohomology.......................... 32 4.6 Bar resolution............................. 33 4.11 Low degree cohomology....................... 34 4.16 Applications to finite groups..................... 36 4.20 Topological interpretation...................... 38 5 Derived Functors and Tor 39 5.1 Abelian categories.......................... 39 5.13 Derived functors........................... 41 5.23 Tor functors.............................. 44 5.28 Homology of a group......................... 45 1 6 Further techniques 47 6.1 Double complexes........................... 47 6.7 Koszul complexes........................... 49 7 Applications to commutative algebra 52 7.1 Global dimensions.......................... 52 7.9 Global dimension of -
Classification of Finite Abelian Groups
Math 317 C1 John Sullivan Spring 2003 Classification of Finite Abelian Groups (Notes based on an article by Navarro in the Amer. Math. Monthly, February 2003.) The fundamental theorem of finite abelian groups expresses any such group as a product of cyclic groups: Theorem. Suppose G is a finite abelian group. Then G is (in a unique way) a direct product of cyclic groups of order pk with p prime. Our first step will be a special case of Cauchy’s Theorem, which we will prove later for arbitrary groups: whenever p |G| then G has an element of order p. Theorem (Cauchy). If G is a finite group, and p |G| is a prime, then G has an element of order p (or, equivalently, a subgroup of order p). ∼ Proof when G is abelian. First note that if |G| is prime, then G = Zp and we are done. In general, we work by induction. If G has no nontrivial proper subgroups, it must be a prime cyclic group, the case we’ve already handled. So we can suppose there is a nontrivial subgroup H smaller than G. Either p |H| or p |G/H|. In the first case, by induction, H has an element of order p which is also order p in G so we’re done. In the second case, if ∼ g + H has order p in G/H then |g + H| |g|, so hgi = Zkp for some k, and then kg ∈ G has order p. Note that we write our abelian groups additively. Definition. Given a prime p, a p-group is a group in which every element has order pk for some k. -
Mathematics 310 Examination 1 Answers 1. (10 Points) Let G Be A
Mathematics 310 Examination 1 Answers 1. (10 points) Let G be a group, and let x be an element of G. Finish the following definition: The order of x is ... Answer: . the smallest positive integer n so that xn = e. 2. (10 points) State Lagrange’s Theorem. Answer: If G is a finite group, and H is a subgroup of G, then o(H)|o(G). 3. (10 points) Let ( a 0! ) H = : a, b ∈ Z, ab 6= 0 . 0 b Is H a group with the binary operation of matrix multiplication? Be sure to explain your answer fully. 2 0! 1/2 0 ! Answer: This is not a group. The inverse of the matrix is , which is not 0 2 0 1/2 in H. 4. (20 points) Suppose that G1 and G2 are groups, and φ : G1 → G2 is a homomorphism. (a) Recall that we defined φ(G1) = {φ(g1): g1 ∈ G1}. Show that φ(G1) is a subgroup of G2. −1 (b) Suppose that H2 is a subgroup of G2. Recall that we defined φ (H2) = {g1 ∈ G1 : −1 φ(g1) ∈ H2}. Prove that φ (H2) is a subgroup of G1. Answer:(a) Pick x, y ∈ φ(G1). Then we can write x = φ(a) and y = φ(b), with a, b ∈ G1. Because G1 is closed under the group operation, we know that ab ∈ G1. Because φ is a homomorphism, we know that xy = φ(a)φ(b) = φ(ab), and therefore xy ∈ φ(G1). That shows that φ(G1) is closed under the group operation. -
Chapter 9 Quadratic Residues
Chapter 9 Quadratic Residues 9.1 Introduction Definition 9.1. We say that a 2 Z is a quadratic residue mod n if there exists b 2 Z such that a ≡ b2 mod n: If there is no such b we say that a is a quadratic non-residue mod n. Example: Suppose n = 10. We can determine the quadratic residues mod n by computing b2 mod n for 0 ≤ b < n. In fact, since (−b)2 ≡ b2 mod n; we need only consider 0 ≤ b ≤ [n=2]. Thus the quadratic residues mod 10 are 0; 1; 4; 9; 6; 5; while 3; 7; 8 are quadratic non-residues mod 10. Proposition 9.1. If a; b are quadratic residues mod n then so is ab. Proof. Suppose a ≡ r2; b ≡ s2 mod p: Then ab ≡ (rs)2 mod p: 9.2 Prime moduli Proposition 9.2. Suppose p is an odd prime. Then the quadratic residues coprime to p form a subgroup of (Z=p)× of index 2. Proof. Let Q denote the set of quadratic residues in (Z=p)×. If θ :(Z=p)× ! (Z=p)× denotes the homomorphism under which r 7! r2 mod p 9–1 then ker θ = {±1g; im θ = Q: By the first isomorphism theorem of group theory, × jkerθj · j im θj = j(Z=p) j: Thus Q is a subgroup of index 2: p − 1 jQj = : 2 Corollary 9.1. Suppose p is an odd prime; and suppose a; b are coprime to p. Then 1. 1=a is a quadratic residue if and only if a is a quadratic residue. -
Lecture 15. De Rham Cohomology
Lecture 15. de Rham cohomology In this lecture we will show how differential forms can be used to define topo- logical invariants of manifolds. This is closely related to other constructions in algebraic topology such as simplicial homology and cohomology, singular homology and cohomology, and Cechˇ cohomology. 15.1 Cocycles and coboundaries Let us first note some applications of Stokes’ theorem: Let ω be a k-form on a differentiable manifold M.For any oriented k-dimensional compact sub- manifold Σ of M, this gives us a real number by integration: " ω : Σ → ω. Σ (Here we really mean the integral over Σ of the form obtained by pulling back ω under the inclusion map). Now suppose we have two such submanifolds, Σ0 and Σ1, which are (smoothly) homotopic. That is, we have a smooth map F : Σ × [0, 1] → M with F |Σ×{i} an immersion describing Σi for i =0, 1. Then d(F∗ω)isa (k + 1)-form on the (k + 1)-dimensional oriented manifold with boundary Σ × [0, 1], and Stokes’ theorem gives " " " d(F∗ω)= ω − ω. Σ×[0,1] Σ1 Σ1 In particular, if dω =0,then d(F∗ω)=F∗(dω)=0, and we deduce that ω = ω. Σ1 Σ0 This says that k-forms with exterior derivative zero give a well-defined functional on homotopy classes of compact oriented k-dimensional submani- folds of M. We know some examples of k-forms with exterior derivative zero, namely those of the form ω = dη for some (k − 1)-form η. But Stokes’ theorem then gives that Σ ω = Σ dη =0,sointhese cases the functional we defined on homotopy classes of submanifolds is trivial. -
Math 210B. Annihilation of Cohomology of Finite Groups 1. Motivation an Important Fact in the Cohomology Theory of Finite Groups
Math 210B. Annihilation of cohomology of finite groups 1. Motivation An important fact in the cohomology theory of finite groups is that if G is a finite group then Hn(G; M) is killed by #G for any n > 0 and any G-module M. This is not at all obvious from the abstract definition (via injective resolutions, say), nor even from the viewpoint of the explicit \bar resolution" method of computing group cohomology. In this handout we present the proof of this fundamental fact as a marvelous concrete application of the abstract fact that erasable δ-functors are universal (Grothendieck's conceptualization of the \degree-shifting" method that had long been used in earlier versions of cohomology theories throughout algebra and topology). Before we turn to the proof, we record a remarkable consequence: Theorem 1.1. If G is finite and M is a G-module that is finitely generated as an abelian group then Hn(G; M) is finite for all n > 0. Proof. From the bar resolution, we see that Hn(G; M) is finitely generated as an abelian group, as the terms of the bar resolution complex are the abelian groups Map(Gj;M) which are visibly finitely generated (as each Gj is a finite set). Hence, since it is also killed by #G, it must be finite! Actually, the finiteness of such higher cohomologies can be seen in an entirely different way, at the cost of losing the precise information of being annihilated by the specific integer #G (which is very useful in some applications). -
A TEXTBOOK of TOPOLOGY Lltld
SEIFERT AND THRELFALL: A TEXTBOOK OF TOPOLOGY lltld SEI FER T: 7'0PO 1.OG 1' 0 I.' 3- Dl M E N SI 0 N A I. FIRERED SPACES This is a volume in PURE AND APPLIED MATHEMATICS A Series of Monographs and Textbooks Editors: SAMUELEILENBERG AND HYMANBASS A list of recent titles in this series appears at the end of this volunie. SEIFERT AND THRELFALL: A TEXTBOOK OF TOPOLOGY H. SEIFERT and W. THRELFALL Translated by Michael A. Goldman und S E I FE R T: TOPOLOGY OF 3-DIMENSIONAL FIBERED SPACES H. SEIFERT Translated by Wolfgang Heil Edited by Joan S. Birman and Julian Eisner @ 1980 ACADEMIC PRESS A Subsidiary of Harcourr Brace Jovanovich, Publishers NEW YORK LONDON TORONTO SYDNEY SAN FRANCISCO COPYRIGHT@ 1980, BY ACADEMICPRESS, INC. ALL RIGHTS RESERVED. NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT PERMISSION IN WRITING FROM THE PUBLISHER. ACADEMIC PRESS, INC. 11 1 Fifth Avenue, New York. New York 10003 United Kingdom Edition published by ACADEMIC PRESS, INC. (LONDON) LTD. 24/28 Oval Road, London NWI 7DX Mit Genehmigung des Verlager B. G. Teubner, Stuttgart, veranstaltete, akin autorisierte englische Ubersetzung, der deutschen Originalausgdbe. Library of Congress Cataloging in Publication Data Seifert, Herbert, 1897- Seifert and Threlfall: A textbook of topology. Seifert: Topology of 3-dimensional fibered spaces. (Pure and applied mathematics, a series of mono- graphs and textbooks ; ) Translation of Lehrbuch der Topologic. Bibliography: p. Includes index. 1. -
Chapter 25 Finite Simple Groups
Chapter 25 Finite Simple Groups Chapter 25 Finite Simple Groups Historical Background Definition A group is simple if it has no nontrivial proper normal subgroup. The definition was proposed by Galois; he showed that An is simple for n ≥ 5 in 1831. It is an important step in showing that one cannot express the solutions of a quintic equation in radicals. If possible, one would factor a group G as G0 = G, find a normal subgroup G1 of maximum order to form G0/G1. Then find a maximal normal subgroup G2 of G1 and get G1/G2, and so on until we get the composition factors: G0/G1,G1/G2,...,Gn−1/Gn, with Gn = {e}. Jordan and Hölder proved that these factors are independent of the choices of the normal subgroups in the process. Jordan in 1870 found four infinite series including: Zp for a prime p, SL(n, Zp)/Z(SL(n, Zp)) except when (n, p) = (2, 2) or (2, 3). Between 1982-1905, Dickson found more infinite series; Miller and Cole showed that 5 (sporadic) groups constructed by Mathieu in 1861 are simple. Chapter 25 Finite Simple Groups In 1950s, more infinite families were found, and the classification project began. Brauer observed that the centralizer has an order 2 element is important; Feit-Thompson in 1960 confirmed the 1900 conjecture that non-Abelian simple group must have even order. From 1966-75, 19 new sporadic groups were found. Thompson developed many techniques in the N-group paper. Gorenstein presented an outline for the classification project in a lecture series at University of Chicago in 1972. -
3-Manifold Groups
3-Manifold Groups Matthias Aschenbrenner Stefan Friedl Henry Wilton University of California, Los Angeles, California, USA E-mail address: [email protected] Fakultat¨ fur¨ Mathematik, Universitat¨ Regensburg, Germany E-mail address: [email protected] Department of Pure Mathematics and Mathematical Statistics, Cam- bridge University, United Kingdom E-mail address: [email protected] Abstract. We summarize properties of 3-manifold groups, with a particular focus on the consequences of the recent results of Ian Agol, Jeremy Kahn, Vladimir Markovic and Dani Wise. Contents Introduction 1 Chapter 1. Decomposition Theorems 7 1.1. Topological and smooth 3-manifolds 7 1.2. The Prime Decomposition Theorem 8 1.3. The Loop Theorem and the Sphere Theorem 9 1.4. Preliminary observations about 3-manifold groups 10 1.5. Seifert fibered manifolds 11 1.6. The JSJ-Decomposition Theorem 14 1.7. The Geometrization Theorem 16 1.8. Geometric 3-manifolds 20 1.9. The Geometric Decomposition Theorem 21 1.10. The Geometrization Theorem for fibered 3-manifolds 24 1.11. 3-manifolds with (virtually) solvable fundamental group 26 Chapter 2. The Classification of 3-Manifolds by their Fundamental Groups 29 2.1. Closed 3-manifolds and fundamental groups 29 2.2. Peripheral structures and 3-manifolds with boundary 31 2.3. Submanifolds and subgroups 32 2.4. Properties of 3-manifolds and their fundamental groups 32 2.5. Centralizers 35 Chapter 3. 3-manifold groups after Geometrization 41 3.1. Definitions and conventions 42 3.2. Justifications 45 3.3. Additional results and implications 59 Chapter 4. The Work of Agol, Kahn{Markovic, and Wise 63 4.1. -
Algebraic Number Theory II
Algebraic number theory II Uwe Jannsen Contents 1 Infinite Galois theory2 2 Projective and inductive limits9 3 Cohomology of groups and pro-finite groups 15 4 Basics about modules and homological Algebra 21 5 Applications to group cohomology 31 6 Hilbert 90 and Kummer theory 41 7 Properties of group cohomology 48 8 Tate cohomology for finite groups 53 9 Cohomology of cyclic groups 56 10 The cup product 63 11 The corestriction 70 12 Local class field theory I 75 13 Three Theorems of Tate 80 14 Abstract class field theory 83 15 Local class field theory II 91 16 Local class field theory III 94 17 Global class field theory I 97 0 18 Global class field theory II 101 19 Global class field theory III 107 20 Global class field theory IV 112 1 Infinite Galois theory An algebraic field extension L/K is called Galois, if it is normal and separable. For this, L/K does not need to have finite degree. For example, for a finite field Fp with p elements (p a prime number), the algebraic closure Fp is Galois over Fp, and has infinite degree. We define in this general situation Definition 1.1 Let L/K be a Galois extension. Then the Galois group of L over K is defined as Gal(L/K) := AutK (L) = {σ : L → L | σ field automorphisms, σ(x) = x for all x ∈ K}. But the main theorem of Galois theory (correspondence between all subgroups of Gal(L/K) and all intermediate fields of L/K) only holds for finite extensions! To obtain the correct answer, one needs a topology on Gal(L/K): Definition 1.2 Let L/K be a Galois extension.