Immune Netw. 2019 Apr;19(2):e9 https://doi.org/10.4110/in.2019.19.e9 pISSN 1598-2629·eISSN 2092-6685 Original Article Short-chain Fatty Acids Inhibit Staphylococcal Lipoprotein-induced Nitric Oxide Production in Murine Macrophages Jeong Woo Park 1,†, Hyun Young Kim1,†, Min Geun Kim1, Soyoung Jeong1, Cheol-Heui Yun 2, Seung Hyun Han 1,* 1Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 08826, Korea 2Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea Received: Oct 24, 2018 ABSTRACT Revised: Feb 2, 2019 Accepted: Feb 8, 2019 Staphylococcus aureus, a Gram-positive pathogen, can cause severe inflammation in humans, *Correspondence to leading to various life-threatening diseases. The lipoprotein is a major virulence factor in S. Seung Hyun Han aureus-induced infectious diseases and is responsible for excessive inflammatory mediators Department of Oral Microbiology and such as nitric oxide (NO). Short-chain fatty acids (SCFAs) including butyrate, propionate, Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, and acetate are microbial metabolites in the gut that are known to have anti-inflammatory Building 86 (Room 304), 1 Gwanak-ro, effects in the host. In this study, we investigated the effects of SCFAs onS. aureus lipoprotein Gwanak-gu, Seoul 08826, Korea. (Sa.LPP)-induced NO production in mouse macrophages. Butyrate and propionate, but not E-mail:
[email protected] acetate, inhibited Sa.LPP-induced production of NO in RAW 264.7 cells and bone marrow- derived macrophages.