Metabolic Engineering for Enhanced Propionic Acid Fermentation by Propionibacterium Acidipropionici

Total Page:16

File Type:pdf, Size:1020Kb

Metabolic Engineering for Enhanced Propionic Acid Fermentation by Propionibacterium Acidipropionici METABOLIC ENGINEERING FOR ENHANCED PROPIONIC ACID FERMENTATION BY PROPIONIBACTERIUM ACIDIPROPIONICI DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Supaporn Suwannakham, B.Eng. ***** The Ohio State University 2005 Dissertation Committee: Approved by Professor Shang-Tian Yang, Adviser Professor Jeffrey J. Chalmers __________________________________ Professor Hua Wang Adviser Graduate Program in Chemical Engineering ABSTRACT Propionic acid is widely used in food and dairy industries. As a result of its antimicrobial activity, propionic acid and its salts are widely used as preservatives in foods and grains. Currently, the market of propionic acid is mainly supplied by production via petrochemical routes. Fermentation by propionibacteria produces mainly propionic and acetic acids from sugars; however, the fermentation suffers from low propionic acid production due to by-product formation and strong propionic acid inhibition on cell growth and the fermentation. The high demand of propionic acid for use as a natural preservative in foods and grains has stimulated developments of new fermentation processes to achieve improved propionic acid production from low-cost biomass and food processing wastes. In this research, novel approaches, at process engineering, metabolic engineering, and genetic engineering levels, were developed for enhanced propionic acid production by Propionibacterium acidipropionici. Fed-batch fermentation of glucose by P. acidipropionici immobilized in a fibrous- bed bioreactor (FBB) with a high cell density (>45 g/L) produced a high final propionic acid concentration of 72 g/L and a high propionate yield of up to 0.65 g/g. A mutant with improved propionate tolerance was obtained by adaptation in the FBB, which resulted in significant physiological and morphological changes. The mutant cells were less sensitive ii to propionate inhibition and had a higher saturated fatty acid content in the cell membrane and a slimmer shape with an increased specific surface area. Metabolic stoichiometric analysis was applied to quantitatively describe the global cellular mechanism in propionic acid fermentation. By feeding carbon sources with different oxidation states, different fermentation end-product compositions were obtained, indicating different controlling mechanisms involving various acid-forming enzymes with significant changes in their activities and overall protein expression pattern. In general, the metabolic pathway shifted toward more propionate formation with a more-reduced substrate. Gene inactivation via gene disruption and integrational mutagenesis was used to knock out the acetate kinase (ack) gene with the goal of eliminating acetate formation and further enhancing propionic acid production by P. acidipropionici. Mutants were obtained by transforming the cells with a partial ack gene fragment, which was introduced either as a linear DNA fragment with a tetracycline resistance cassette within the partial ack gene or in a non-replicative integrational plasmid containing the tetracycline resistance cassette. The ack inactivation in the mutants showed a profound impact on cell growth rate. Compared to the wild type, the ack-deleted mutants achieved ~10% increase in propionate yield and ~10% decrease in acetate yield. iii The FBB, the knowledge of the underlying mechanism in controlling propionic acid fermentation, and the mutants obtained in this research should allow us to develop an economical bioprocess for the production of propionic acid from sugars. iv Dedicated to my mother v ACKNOWLEDGMENTS My great appreciation goes to my adviser, Dr. Shang-Tian Yang, for intellectual and financial support as well as for his inspiring advice, encouragement, enthusiasm, and flexibility throughout my study. I have gained a lot from his insights and I have greatly enjoyed my staying here as his student. I would like to acknowledge with sincere gratitude to the members of my dissertation committee, Dr. Jeffrey J. Chalmers and Dr. Hua Wang. I am grateful for their helpful advices on a variety of topics. I wish to thank Dr. Yan Huang for her help in the work reported in Chapter 5. I am greatly indebted to Dr. Ying Zhu for teaching me the fundamental laboratory skills in conducting the fermentation experiments and the basic molecular biology skills in performing the genetic engineering experiments. I also appreciate Mr. Carl Scott, Mr. Leigh Evrard, and Mr. Paul Green for their technical assistance. My colleagues in my research group, especially Dr. Nuttha Thongchul and Ms. Suwattana Pruksasri, offered many kinds of support and help over the last four years. I benefited a lot from discussions with them and sharing the knowledge on my research. vi I would like to thank Dr. Daniel R. Zeigler (Bacillus Genetic Stock Center, The Ohio State University, Columbus, OH) for supplying pBEST309 and pDG1515, Dr. Desh Pal Verma (Department of Molecular Genetics, The Ohio State University, Columbus, OH) for supplying electroporation device, and Dr. Mitsuo Yamashita (Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan) for his suggestions on genetic engineering experiments. Financial supports from the U.S. Department of Agriculture (CSREES 99-35504- 7800) and the Consortium for Plant Biotechnology Research, Inc. to various phases of this work are also acknowledged. I appreciate Mrs. Panitee Panjakup for her kindly help and encouragement on pursuing my Ph.D. study. I wish to thank best friends of mine, Mr. Chanin Hunsakunathai, Mr. Vichian Suksoir, and Ms. Ratchat Chantawongvuti, for their warm support and understanding during the last four years. Special thank goes to my family for their love and warm support. With their love and support, I could be through ups and downs during my study. Finally, my heartfelt gratitude goes to my mother, Ms. Suwannee, my grandmother, Mrs. Sunee, and my aunt, Ms. Sumalee Peerapongsathorn, for their love and inspiration. My graduation could only be achievable with their warmest support and understanding. vii VITA August 5, 1978…………………………...............................Born – Bangkok, Thailand March, 1999……………………………...............................B.Eng. Chemical Engineering Chulalongkorn University Bangkok, Thailand September, 2000 – March 2005…………………………….Graduate Research Associate Chemical Engineering The Ohio State University PUBLICATION Suwannakham S, Yang S-T. 2005. Enhanced propionic acid fermentation by Propionibacterium acidipropionici mutant obtained by adaptation in a fibrous-bed bioreactor. Biotechnol Bioeng, in press. FIELD OF STUDY Major Field: Chemical Engineering Specialty: Biochemical Engineering viii TABLE OF CONTENTS Page Abstract……………………………………………………………………...............……ii Dedication………………………………………………………………………........……v Acknowledgments………………………………………………………………….....….vi Vita…………………………………………………………………………………..…viii List of Tables……………………………………………………………...................….xiv List of Figures……………………………………………………………………….….xvi Chapters: 1. Introduction……………………………………………………………………..……..1 2. Literature Review……………………………………………………………….….….9 2.1 Propionic Acid Fermentation….......................................................................… …..9 2.1.1 Propionic Acid………………………………………………………..…. ….9 2.1.2 Microorganisms……………………………………………………….……12 2.1.3 Metabolic Pathway…………………………………………………………14 2.1.4 Fermentation Processes……………………………………………….……17 2.2 Cell Immobilization and Fibrous-Bed Bioreactor…………………………….….30 2.2.1 Cell Immobilization…………………………………………………...…..30 2.2.2 Immobilized-Cell Bioreactor……………………………………………. …31 2.2.3 Fibrous-Bed Bioreactor……………………………………………….……32 2.3 Immobilized-Cell Fermentation……………………………………………...……33 2.4 Metabolic Engineering……………………………………………………….……36 2.4.1 Metabolic Flux Analysis……………………………………………………36 2.4.2 Applications of Other Metabolic Engineering Techniques…………...……39 2.5 Genetic Engineering of Propionibacteria…………………………………….……40 2.5.1 Acetic Acid Formation in Propionic Acid Fermentation……………..……40 2.5.2 Acetic Acid Formation Pathway Genes and Enzymes………………..……42 2.5.3 Genetics and Molecular Biology of Propionibacteria………………...……43 2.6 References…………………………………………………………………………50 ix 3. Enhanced Propionic Acid Fermentation by Propionibacterium acidipropionici Mutant Obtained by Adaptation in a Fibrous-Bed Bioreactor…………….........……64 Summary………………………………………………………………………....……64 3.1 Introduction…………………………………………………………………..……66 3.2 Materials and Methods……………………………………………………….……68 3.2.1 Culture and Media…………………………………………………….……68 3.2.2 Free-Cell Fermentation…………………………………………….....……68 3.2.3 Immobilized-Cell Fermentation……………………………………………69 3.2.4 Effect of Propionic Acid on Cell Growth………………………….....……70 3.2.5 Enzyme Assays…………………………………………………….....……70 3.2.6 Membrane-Bound ATPase Assay…………………………………….……71 3.2.7 Cell Membrane Fatty Acid Analysis………………………………….……72 3.2.8 Cell Viability Assay.………………………………………………….……72 3.2.9 Scanning Electron Microscopy……………………………………….…. …72 3.2.10 Analytical Methods…………………………………………………...……73 3.3 Results and Discussion……………………………………………………….……73 3.3.1 Fermentation Kinetics………………………………………………...……73 3.3.2 Propionic Acid Inhibition……………………………………………..……76 3.3.3 Acid-Forming Enzyme Activities…………………………………….…. …78 3.3.4 Membrane-Bound ATPase…………………………………………………81 3.3.5 Membrane Fatty Acid Composition…………………………………..……83 3.3.6 Morphological Change in Mutant…………………………………….……83 3.3.7 Effects of Cell Immobilization in FBB……………………………….……84
Recommended publications
  • Effect of Propionic Acid on Fatty Acid Oxidation and U Reagenesis
    Pediat. Res. 10: 683- 686 (1976) Fatty degeneration propionic acid hyperammonemia propionic acidemia liver ureagenesls Effect of Propionic Acid on Fatty Acid Oxidation and U reagenesis ALLEN M. GLASGOW(23) AND H. PET ER C HASE UniversilY of Colorado Medical Celller, B. F. SlOlillsky LaboralOries , Denver, Colorado, USA Extract phosphate-buffered salin e, harvested with a brief treatment wi th tryps in- EDTA, washed twice with ph os ph ate-buffered saline, and Propionic acid significantly inhibited "CO z production from then suspended in ph os ph ate-buffe red saline (145 m M N a, 4.15 [I-"ejpalmitate at a concentration of 10 11 M in control fibroblasts m M K, 140 m M c/, 9.36 m M PO" pH 7.4) . I n mos t cases the cells and 100 11M in methyl malonic fibroblasts. This inhibition was we re incubated in 3 ml phosph ate-bu ffered sa lin e cont aining 0.5 similar to that produced by 4-pentenoic acid. Methylmalonic acid I1Ci ll-I4Cj palm it ate (19), final concentration approximately 3 11M also inhibited ' 'C0 2 production from [V 'ejpalmitate, but only at a added in 10 II I hexane. Increasing the amount of hexane to 100 II I concentration of I mM in control cells and 5 mM in methyl malonic did not impair palmit ate ox id ation. In two experiments (Fig. 3) the cells. fibroblasts were in cub ated in 3 ml calcium-free Krebs-Ringer Propionic acid (5 mM) also inhibited ureagenesis in rat liver phosphate buffer (2) co nt ain in g 5 g/ 100 ml essent iall y fatty ac id slices when ammonia was the substrate but not with aspartate and free bovine se rum albumin (20), I mM pa lm itate, and the same citrulline as substrates.
    [Show full text]
  • Arxula Adeninivorans
    Biernacki et al. Microb Cell Fact (2017) 16:144 DOI 10.1186/s12934-017-0751-4 Microbial Cell Factories RESEARCH Open Access Enhancement of poly(3‑hydroxybutyrate‑co‑ 3‑hydroxyvalerate) accumulation in Arxula adeninivorans by stabilization of production Mateusz Biernacki1, Marek Marzec1,6, Thomas Roick2, Reinhard Pätz3, Kim Baronian4, Rüdiger Bode5 and Gotthard Kunze1* Abstract Background: In recent years the production of biobased biodegradable plastics has been of interest of research- ers partly due to the accumulation of non-biodegradable plastics in the environment and to the opportunity for new applications. Commonly investigated are the polyhydroxyalkanoates (PHAs) poly(hydroxybutyrate) and poly(hydroxybutyrate-co-hydroxyvalerate) (PHB-V). The latter has the advantage of being tougher and less brittle. The production of these polymers in bacteria is well established but production in yeast may have some advantages, e.g. the ability to use a broad spectrum of industrial by-products as a carbon sources. Results: In this study we increased the synthesis of PHB-V in the non-conventional yeast Arxula adeninivorans by stabilization of polymer accumulation via genetic modifcation and optimization of culture conditions. An A. adenini- vorans strain with overexpressed PHA pathway genes for β-ketothiolase, acetoacetyl-CoA reductase, PHAs synthase and the phasin gene was able to accumulate an unexpectedly high level of polymer. It was found that an opti- 1 mized strain cultivated in a shaking incubator is able to produce up to 52.1% of the DCW of PHB-V (10.8 g L− ) with 12.3%mol of PHV fraction. Although further optimization of cultivation conditions in a fed-batch bioreactor led to lower polymer content (15.3% of the DCW of PHB-V), the PHV fraction and total polymer level increased to 23.1%mol 1 and 11.6 g L− respectively.
    [Show full text]
  • Classification of Medicinal Drugs and Driving: Co-Ordination and Synthesis Report
    Project No. TREN-05-FP6TR-S07.61320-518404-DRUID DRUID Driving under the Influence of Drugs, Alcohol and Medicines Integrated Project 1.6. Sustainable Development, Global Change and Ecosystem 1.6.2: Sustainable Surface Transport 6th Framework Programme Deliverable 4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Due date of deliverable: 21.07.2011 Actual submission date: 21.07.2011 Revision date: 21.07.2011 Start date of project: 15.10.2006 Duration: 48 months Organisation name of lead contractor for this deliverable: UVA Revision 0.0 Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006) Dissemination Level PU Public PP Restricted to other programme participants (including the Commission x Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) DRUID 6th Framework Programme Deliverable D.4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Page 1 of 243 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Authors Trinidad Gómez-Talegón, Inmaculada Fierro, M. Carmen Del Río, F. Javier Álvarez (UVa, University of Valladolid, Spain) Partners - Silvia Ravera, Susana Monteiro, Han de Gier (RUGPha, University of Groningen, the Netherlands) - Gertrude Van der Linden, Sara-Ann Legrand, Kristof Pil, Alain Verstraete (UGent, Ghent University, Belgium) - Michel Mallaret, Charles Mercier-Guyon, Isabelle Mercier-Guyon (UGren, University of Grenoble, Centre Regional de Pharmacovigilance, France) - Katerina Touliou (CERT-HIT, Centre for Research and Technology Hellas, Greece) - Michael Hei βing (BASt, Bundesanstalt für Straßenwesen, Germany).
    [Show full text]
  • (MBR) Technology for Wastewater Treatment and Reclamation: Membrane Fouling
    membranes Review Membrane Bioreactor (MBR) Technology for Wastewater Treatment and Reclamation: Membrane Fouling Oliver Terna Iorhemen *, Rania Ahmed Hamza and Joo Hwa Tay Department of Civil Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; [email protected] (R.A.H.); [email protected] (J.H.T.) * Correspondence: [email protected]; Tel.: +1-403-714-7451 Academic Editor: Marco Stoller Received: 14 April 2016; Accepted: 12 June 2016; Published: 15 June 2016 Abstract: The membrane bioreactor (MBR) has emerged as an efficient compact technology for municipal and industrial wastewater treatment. The major drawback impeding wider application of MBRs is membrane fouling, which significantly reduces membrane performance and lifespan, resulting in a significant increase in maintenance and operating costs. Finding sustainable membrane fouling mitigation strategies in MBRs has been one of the main concerns over the last two decades. This paper provides an overview of membrane fouling and studies conducted to identify mitigating strategies for fouling in MBRs. Classes of foulants, including biofoulants, organic foulants and inorganic foulants, as well as factors influencing membrane fouling are outlined. Recent research attempts on fouling control, including addition of coagulants and adsorbents, combination of aerobic granulation with MBRs, introduction of granular materials with air scouring in the MBR tank, and quorum quenching are presented. The addition of coagulants and adsorbents shows a significant membrane fouling reduction, but further research is needed to establish optimum dosages of the various coagulants/adsorbents. Similarly, the integration of aerobic granulation with MBRs, which targets biofoulants and organic foulants, shows outstanding filtration performance and a significant reduction in fouling rate, as well as excellent nutrients removal.
    [Show full text]
  • Biopharma PAT Quality Attributes, Critical Process Parameters & Key
    Biopharma PAT Quality Attributes, Critical Process Parameters & Key Performance Indicators at the Bioreactor May 2018 White Paper: Biopharma PAT Quality Attributes, Critical Process Parameters & Key Performance Indicators at the Bioreactor Table of Contents PAT Building Blocks .................................................................................................... 3 PAT for Biopharma ...................................................................................................... 5 Culture & Fermentation Process Types ....................................................................... 6 Monitoring Methods .................................................................................................... 8 Critical Process Parameters ...................................................................................... 10 Critical Quality Attributes & Key Performance Indicators ........................................... 14 Recent Applications of In-situ VCD & TCD ................................................................ 17 Conclusions .............................................................................................................. 19 References ................................................................................................................ 20 Focus Spots Intelligent Arc Sensors for pH and DO in-situ Measurement...................................... 10 Dissolved Oxygen User’s Experiences ...................................................................... 11 In-situ Cell Density
    [Show full text]
  • Sodium Propionate and Sodium Butyrate Promote Fatty Acid Oxidation in Hepg2 Cells Under Oxidative Stress
    SODIUM PROPIONATE AND SODIUM BUTYRATE PROMOTE FATTY ACID OXIDATION IN HEPG2 CELLS UNDER OXIDATIVE STRESS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The School of Nutrition and Food Sciences by Kristina Jazmin Cook B.S., Louisiana State University, 2014 May 2020 ACKNOWLEDGMENTS First, I want to give thanks to my God for blessing me with the strength and wisdom to accomplish this goal. With God all things are possible, and I am so thankful that I was given this opportunity. Next, I would like to thank my committee chair, Dr. Jack Losso, for his support, encouragement, and giving me the opportunity to pursue my doctoral degree under his mentorship. I would also like to thank Dr. Frank Greenway and Dr. Ann Coulter at Pennington Biomedical Research Center for letting me work in their laboratory and taking the time to teach and train me. I extend my appreciation to my research advisory committee: Dr. Frank Greenway, Dr. Mike Keenan, and Dr. Zhimin Xu for their valuable time and guidance. I would also like to thank Dr. Joseph Francis, my Dean’s Representative, for accepting to serve on my committee, providing valuable feedback, and allowing me to work in his laboratory while teaching and training me. I would also like to thank my colleagues and lab mates, Nick Magazine and Millicent Yeboah-Awudzi, for all their help and support. I would also like to thank Dr. Marvin Moncada, Dr.
    [Show full text]
  • Dietzia Papillomatosis Sp. Nov., a Novel Actinomycete Isolated from the Skin of an Immunocompetent Patient with Confluent and Reticulated Papillomatosis
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Northumbria Research Link International Journal of Systematic and Evolutionary Microbiology (2008), 58, 68–72 DOI 10.1099/ijs.0.65178-0 Dietzia papillomatosis sp. nov., a novel actinomycete isolated from the skin of an immunocompetent patient with confluent and reticulated papillomatosis Amanda L. Jones,1,2 Roland J. Koerner,3 Sivakumar Natarajan,4 John D. Perry2 and Michael Goodfellow1 Correspondence 1School of Biology, King George VIth Building, University of Newcastle, Roland J. Koerner Newcastle upon Tyne NE1 7RU, UK Roland.Koerner@ 2Department of Microbiology, Freeman Hospital, Newcastle upon Tyne NE7 7DN, UK chs.northy.nhs.uk 3Department of Microbiology, Sunderland Royal Hospital, Kayll Road, Sunderland SR4 7TP, UK 4Department of Dermatology, Sunderland Royal Hospital, Kayll Road, Sunderland SR4 7TP, UK An actinomycete isolated from an immunocompetent patient suffering from confluent and reticulated papillomatosis was characterized using a polyphasic taxonomic approach. The organism had chemotaxonomic and morphological properties that were consistent with its assignment to the genus Dietzia and it formed a distinct phyletic line within the Dietzia 16S rRNA gene tree. It shared a 16S rRNA gene sequence similarity of 98.3 % with its nearest neighbour, the type strain of Dietzia cinnamea, and could be distinguished from the type strains of all Dietzia species using a combination of phenotypic properties. It is apparent from genotypic and phenotypic data that the organism represents a novel species in the genus Dietzia. The name proposed for this taxon is Dietzia papillomatosis; the type strain is N 1280T (5DSM 44961T5NCIMB 14145T).
    [Show full text]
  • Stachytarpheta Cayennensis Aqueous Extract, a New Bioreactor Towards Silver Nanoparticles for Biomedical Applications
    Journal of Biomaterials and Nanobiotechnology, 2019, 10, 102-119 http://www.scirp.org/journal/jbnb ISSN Online: 2158-7043 ISSN Print: 2158-7027 Stachytarpheta cayennensis Aqueous Extract, a New Bioreactor towards Silver Nanoparticles for Biomedical Applications Francois Eya’ane Meva1,2* , Joel Olivier Avom Mbeng1, Cecile Okalla Ebongue1,3, Carsten Schlüsener2, Ülkü Kökҫam-Demir2, Agnes Antoinette Ntoumba4, Phillipe Belle Ebanda Kedi4, Etienne Elanga1, Evrard-Rudy Njike Loudang1, Moise Henri Julien Nko’o1, Edmond Tchoumbi1, Vandi Deli1, Christian Chick Nanga1, Emmanuel Albert Mpondo Mpondo1, Christoph Janiak2 1Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroon 2Institute for Inorganic Chemistry and Structural Chemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany 3Clinical Biology Laboratory, General Hospital of Douala, Douala, Cameroon 4Department of Animal Biology and Physiology, Faculty of Science, University of Douala, Douala, Cameroon How to cite this paper: Meva, F.E., Abstract Mbeng, J.O.A., Ebongue, C.O., Schlüsener, C., Kökҫam-Demir, Ü., Ntoumba, A.A., Kedi, This study reports the preparation and characterization of silver nanopar- P.B.E., Elanga, E., Loudang, E.-R.N., Nko’o, ticles synthesized by the mediation of the plant weed Stachytarpheta cayen- M.H.J., Tchoumbi, E., Deli, V., Nanga, C.C., nensis through solution method. Ultraviolet visible spectroscopy (UV-Vis) Mpondo, E.A.M. and Janiak, C. (2019) Sta- chytarpheta cayennensis Aqueous Extract, a determines the presence of nanoparticles in the solution. Infrared spectros- New Bioreactor towards Silver Nanopar- copy (IR) proves organic molecules at the particles interface. Powder X-ray ticles for Biomedical Applications. Journal diffraction (PXRD) provides phase composition and crystallinity.
    [Show full text]
  • Bioreactor Studies of Heterologous Protein Production by Recombinant Yeast
    BIOREACTOR STUDIES OF HETEROLOGOUS PROTEIN PRODUCTION BY RECOMBINANT YEAST by ZHIGEN ZWNG A thesis presented to the University of Waterloo in fulNlment of the thesis quinment for the degree of Doctor of Philosophy in Chernical Engineering Waterloo, Ontario, Canada, 1997 @ Zhigen Zhang 1997 National tibrary Bibliothi?que nationale l*l dm, du Canada Acquisitions and Acquisitions et Bibliographie Services seMces bubriographiques 395 wellaStreet 395, me wdtingtori OrtawaON KIAW ûtiawaOlJ K1AûN4 Canada Canada Va#& Voinciilline, avm Nom- The author has pteda non- L'auteur a accordé une licence non exclusive licence dowiug the exclwe permettant il Ia National Ijiiiof Canada to Bibliothèque nationale du Cadade reproduce, 10- disttibute or sell reprodnire, *, distn'buerou copies of bis/her thesis by any means vendre des copies de sa thése de and in any fonn or fomLaf making qyelqy manière et sous quelque this thesis avaiiable to interested forme que ce soit pour mettre des persofls- exemplaires de cette thèse à la disposition des persornes intéressées. The auîhor retains owndpof the L'auteur conserve la propriété du copyright m Merthesis. Neither droit d'auteur qui protège sa thèse. Ni the thesis nor substsmtial extracts la thèse ni &s extmits substantiels de fiom it may be printed or otherwiSe celleci ne doivent être imprimés ou reproduced with the author's autrement reproduits sans son permission. autorisalian, nie University of Waterloo requin% the signatures of ali pesons using or photocopying this thesis. Please sign below. and give address and dite. ABSTRACT Fundamend enginee~gstudies were carried out on heterologous protein production using a recombinant Saccharomyces cerevisiae sPain (C468fpGAC9) which expresses Aspergillus mamon glucoamylase gene and secretes glucoamylase into the extracellular medium, as a model system.
    [Show full text]
  • On the Protective Effect of Omega-3 Against Propionic Acid-Induced Neurotoxicity in Rat Pups Afaf K El-Ansary*, Sooad K Al-Daihan and Amina R El-Gezeery
    El-Ansary et al. Lipids in Health and Disease 2011, 10:142 http://www.lipidworld.com/content/10/1/142 RESEARCH Open Access On the protective effect of omega-3 against propionic acid-induced neurotoxicity in rat pups Afaf K El-Ansary*, Sooad K Al-Daihan and Amina R El-Gezeery Abstract Backgrounds: The investigation of the environmental contribution for developmental neurotoxicity is very important. Many environmental chemical exposures are now thought to contribute to the development of neurological disorders, especially in children. Results from animal studies may guide investigations of human populations toward identifying environmental contaminants and drugs that produce or protect from neurotoxicity and may help in the treatment of neurodevelopmental disorders. Objective: To study the protective effects of omega-3 polyunsaturated fatty acid on brain intoxication induced by propionic acid (PPA) in rats. Methods: 24 young male Western Albino rats were enrolled in the present study. They were grouped into three equal groups; oral buffered PPA-treated group given a nuerotoxic dose of 250 mg/Kg body weight/day for 3 days; omega-3 - protected group given a dose of 100 mg/kg body weight/day omega-3 orally daily for 5 days followed by PPA for 3 days, and a third group as control given only phosphate buffered saline. Tumor necrosis factor-a, caspase-3, interlukin-6, gamma amino-buteric acid (GABA), serotonin, dopamine and phospholipids were then assayed in the rats brain’s tissue of different groups. Results: The obtained data showed that PPA caused multiple signs of brain toxicity as measured by depletion of gamaaminobyteric acid (GABA), serotonin (5HT) and dopamine (DA) as three important neurotransmitters that reflect brain function.
    [Show full text]
  • Methods of Extraction, Refining and Concentration of Fish Oil As a Source of Omega-3 Fatty Acids
    Corpoica Cienc Tecnol Agropecuaria, Mosquera (Colombia), 19(3):645-668 september - december / 2018 ISSN 0122-8706 ISSNe 2500-5308 645 Transformation and agro-industry Review article Methods of extraction, refining and concentration of fish oil as a source of omega-3 fatty acids Métodos de extracción, refinación y concentración de aceite de pescado como fuente de ácidos grasos omega 3 Jeimmy Rocío Bonilla-Méndez,1* José Luis Hoyos-Concha2 1 Researcher, Universidad del Cauca, Facultad de Ciencias Agrarias. Popayán, Colombia. Email: [email protected]. orcid.org/0000-0001-5362-5950 2 Lecturer, Universidad del Cauca, Facultad de Ciencias Agrarias. Popayán, Colombia. Email: [email protected]. orcid.org/0000-0001-9025-9734 Editor temático: Miguel Ángel Rincón Cervera (Instituto de Nutrición y Tecnología de los Alimentos [INTA]) Date of receipt: 05/07/2017 Date of approval: 15/03/2018 How to cite this article: Bonilla-Méndez, J. R., & Hoyos-Concha, J. L. (2018). Methods of extraction, refining and concentration of fish oil as a source of omega-3 fatty acids. Corpoica Ciencia y Tecnología Agropecuaria, 19(3), 645-668. DOI: https://doi.org/10.21930/rcta.vol19_num2_art:684 This license allows distributing, remixing, retouching, and creating from the work in a non-commercial manner, as long as credit is given and their new creations are licensed under the same conditions. * Corresponding author. Universidad del Cauca, Facultad de Ciencias Agrarias. Vereda Las Guacas, Popayán, Colombia. 2018 Corporación Colombiana de Investigación Agropecuaria Corpoica Cienc Tecnol Agropecuaria, Mosquera (Colombia), 19(3):645-668 september - december / 2018 ISSN 0122-8706 ISSNe 2500-5308 Abstract Fish oil is an industrial product of high nutritional methods, there are new technologies with potential value because of its Omega-3 polyunsaturated fatty to be applied on fish oil.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 5,358,853 Butler Et Al
    US005358853A United States Patent (19) 11 Patent Number: 5,358,853 Butler et al. 45 Date of Patent: Oct. 25, 1994 LIQUID THROMBOPLASTIN REAGENT (54) OTHER PUBLICATIONS (75) Inventors: James R. Butler, Chapel Hill; Juan L. Day et al, NCCLS Document H28-T, vol. 12 No. 22, Torres, Durham; Rajesh Sharma, pp. 1-14 (1992). (NCCLS is National Committee for Cary, all of N.C. Clinical Lab Standards). Z. Boda et al., “Thromboplastin reagent for prothrom 73 Assignee: Akzo AV, Arnhem, Netherlands bin time determination' Chemical Abstracts, vol. 112, 21 Appl. No.: 924,211 No. 11, Mar. 12, 1990, Abstract No. 95033f, USA. S. Kitchen et al., “A method for the determination of 22 Filed: Aug. 3, 1992 activated factor VII using bovine and rabbit brain thromboplastins: demonstration of increased levels on 51 Int. Cl. ......................... C12Q 1/56; C12Q 1/34; disseminated intravascular coagulation' Chemical Ab G01N 33/48; G01N 1/00 stracts, vol. 109, No. 1, Jul. 4, 1988, Abstract No. 2785c, (52 U.S. Cl. ........................................ 435/13; 435/18; USA. 435/63; 435/68.1; 435/810; 435/212; 435/226; G. Palareti et al. “Use of a new rabbit brain thrombo 424/2; 536/18.7; 436/63; 436/69 plastin reagent (Thromboplastin FS) in the coagulation 58 Field of Search ..................... 435/13, 18, 810, 63, laboratory' Chemical Abstracts, vol. 104, No. 15, Apr. 435/69; 514/21; 436/69, 63; 536/18.7; 424/2 14, 1986, Abstract No. 12602x, USA. 56) References Cited Primary Examiner-Jeffrey E. Russel Assistant Examiner-Louise N. Leary U.S.
    [Show full text]