MATERIAL SAFETY DATA SHEET Prepared to U.S
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
United States Patent Office Patented Jan
2,732,410 United States Patent Office Patented Jan. 24, 1956 2 The process can be carried out in various ways. Thus, 2,732,410 the vaporized halogen fluoride can be passed, if desired PROCESS FOR PREPARNG TETRAFLUORO with an inert carrier gas such as nitrogen, argon or helium, ETHYLENE BY REACTING CARBON AND through a column of carbon heated at a temperature of A BINARY HALOGEN FLUORDE at least 1500 C. in a suitable reactor, e. g., a graphite Mark W. Farlow, Holly Oak, and Earl L. Muetterties, tube placed inside a resistance furnace or an induction Hockessin, Dei, assignors to E. I. du Post de Neois's furnace. The gaseous reaction products are then imme and Company, Wilmington, Del, a corporation of Dela diately treated, as described below, to remove any un Ware reacted halogen fluoride and any free chlorine or bromine, 0 in order to minimize or eliminate the possibility of their No Drawing. Application January 12, 1955, reacting with the tetrafluoroethylene present in the re Serial No. 481,482 action product. A preferred mode of operation consists in 4 Claims. (C. 260-653) reacting the halogen fluoride with the carbon electrodes of a carbon arc, where the temperature is estimated to be in This invention relates to a new process of preparing 15 the range of 2500 to 3500-4000 C., and again immediate compounds containing only carbon and fluorine, or car ly removing from the effluent gas any halogen fluoride and bon, fluorine and another halogen, such compounds be free reactive halogen which may be present. -
Sulfur Hexafluoride Hazard Summary Identification
Common Name: SULFUR HEXAFLUORIDE CAS Number: 2551-62-4 RTK Substance number: 1760 DOT Number: UN 1080 Date: April 2002 ------------------------------------------------------------------------- ------------------------------------------------------------------------- HAZARD SUMMARY * Sulfur Hexafluoride can affect you when breathed in. * If you think you are experiencing any work-related health * Sulfur Hexafluoride can irritate the skin causing a rash or problems, see a doctor trained to recognize occupational burning feeling on contact. Direct skin contact can cause diseases. Take this Fact Sheet with you. frostbite. * Exposure to hazardous substances should be routinely * Sulfur Hexafluoride may cause severe eye burns leading evaluated. This may include collecting personal and area to permanent damage. air samples. You can obtain copies of sampling results * Breathing Sulfur Hexafluoride can irritate the nose and from your employer. You have a legal right to this throat. information under OSHA 1910.1020. * Breathing Sulfur Hexafluoride may irritate the lungs causing coughing and/or shortness of breath. Higher WORKPLACE EXPOSURE LIMITS exposures can cause a build-up of fluid in the lungs OSHA: The legal airborne permissible exposure limit (pulmonary edema), a medical emergency, with severe (PEL) is 1,000 ppm averaged over an 8-hour shortness of breath. workshift. * High exposure can cause headache, confusion, dizziness, suffocation, fainting, seizures and coma. NIOSH: The recommended airborne exposure limit is * Sulfur Hexafluoride may damage the liver and kidneys. 1,000 ppm averaged over a 10-hour workshift. * Repeated high exposure can cause deposits of Fluorides in the bones and teeth, a condition called “Fluorosis.” This ACGIH: The recommended airborne exposure limit is may cause pain, disability and mottling of the teeth. -
Effects of Fluoride and Other Halogen Ions on the External Stress Corrosion Cracking of Type 304 Austenitic Stainless Steel
NUREG/CR-6539 _ Effects of Fluoride and Other Halogen Ions on the External Stress Corrosion Cracking of Type 304 Austenitic Stainless Steel M low, F. B. Ilutto, Jr. Tutco Scientific Corporation Prepared for U.S. Nuclear Regulatory Commission pfo)D'' ~%, 1 a- ! '% .. lill|Il||# lilllll:[ll[Ill]Ol|Ill E M 72A8A!8 * 7 * CR-6539 R PDR __ . - . .-- I | ! ' AVAILABILITY NOTICE Availabilny of Reference Matenals Cited in NRC Pubhcations Most documents cited in NRC publications will be available from one of the following sources: 1. The NRC Public Document Room, 2120 L Street, NW., Lower Level. Washington, DC 20555-0001 i | 2. The Superintendent of Documents, U.S. Government Pnnting Office, P. O. Box 37082. Washington, DC 20402-9328 l 3. The National Technical information Service Springfield, VA 22161-0002 Although the listing that follows represents the majority of documents cited in NRC publications, it is not in- tended to be exhaustive. Referenced documents available for inspection and copylng for a fee from the NRC Public Document Room include NRC correspondence and internal NRC memoranda; NRC bulletins, circulars, information notices, in- spection and investigation notices; licensee event reports; vendor reports and correspondence; Commissen papers; and applicant and licensee documents and correspondence. The following documents in the NUREG series are aves slo for purchase from the Government Printing Office: formal NRC staff and contractor reports, NRC-sponsored conference proceedings, internatior,al agreement reports, grantee reports, and NRC booklets and brochures. Also available are regulatory guides NRC regula- tions in the Code of Federal Regulations, and Nuclear Regulatory Commission issuances. -
Ammonium Fluoride Product Stewardship Summary February 2012
Ammonium Fluoride Product Stewardship Summary February 2012 (NH4)F Chemical Name: Ammonium Fluoride Chemical Category (if applicable): Inorganic neutral halide Synonyms: Neutral ammonium fluoride; Commercial ammonium fluoride; and (NH4)F CAS Number: 12125-01-8 CAS Name: Ammonium fluoride EC (EINECS) Number: 235-185-9 Other identifier (Please specify): GPS0050 Honeywell manufactures ammonium fluoride that is used by industry in the manufacture of electronic materials. Exposure can occur at either an ammonium fluoride manufacturing facility or at other manufacturing, packaging or storage facilities that handle ammonium fluoride. Persons involved in maintenance, sampling and testing activities, or in the loading and unloading of packages containing ammonium fluoride are at risk of exposure, but worker exposure can be controlled with the use of proper general mechanical ventilation and personal protective equipment. Workplace exposure limits for fluoride ion have been established for use in worksite safety programs. When ammonium fluoride is a component of consumer products, users should follow manufacturer’s use and/or label instructions. Ammonium fluoride dusts released to the atmosphere and deposited in soil or surface water in the vicinity of production sites have negligible impact on the environment. Please see the MSDS for additional information. Ammonium fluoride is a nonflammable solid that is stable under normal conditions. Ammonium fluoride is corrosive to metals and glass. It can react with acids to liberate hydrogen fluoride and bases to liberate ammonia. When heated to decomposition, it will release toxic hydrogen fluoride gas and ammonia. Contact of ammonium fluoride with water or extended skin contact under moist conditions can produce hydrofluoric acid (HF), a very dangerous acid that can cause burns of the skin and eyes. -
Reaction of Potassium Fluoride with Organic Halogen Compounds. I
Reaction of Potassium Fluoride with Organic Halogen Compounds. I) Reactions of Potassium Fluoride with Organic Halides, Acids, aad Esters in presence ef Dimethyl Formamide and their Pyrolytic Decaboxylation in presence of Potassium Fluoride By You Sun Kim Atomic Energy Research Institute, Korea 有機 할로겐 化合物과 弗化加里의 反應 (第1報) 有機 할라어드, 酸 및 에스테르와 弗化加里의 디메칠 호쁨아마이드 溶蝶系 反應 및 高混■■脫炭酸-熱分解反應 金 裕 *善 (1963. 6. 19 受理) Abstract Reactions between potassium fluride with organic halogen-containning carboxylic acids in dimethyl formamide solvent gave a decarboxylation reaction for the case of fluoro carboxylic acids of the type of CF3 COOH, C3F7COOH, and C2F5COOH, whereas an additional partial fluorination together with dimeri zation reaction occured for the chlorine containning acids of the type of CH2CICOOH, CH3CHCICOOH, CHCI2COOH and o-Cl-CeHi-COOH. The phenyl halides showed no reactivity, but the halides with two electron attracting substituents on the benzene ring gave mainly dimerization reaction. The esters and alcohols gave an usual fluorination reaction. The same reactions in absence of the solvent at the elevated temperature increase the yield of the dimerized product and gave the cyclized product, fluorenone, in case of o-chlorobenzoic acid. It was found that the fluorination usually precede the decarboxylation reaction by checking the stiochemical sequence of reaction. Catalytic influence of potassium fluoride were discussed and the mechanism of the reaction was considered. 耍 約 「디메望호름아마이드」溶媒系에서 有機含할로겐化合物을 弗化加里와 反應시켜 본 結果 CFsCOOH, CsF’COOH, CzFQOOH 와 같은 含弗素有機酸에서는 脫炭酸反應이 일어나며, 含鹽素有機酸, CH2C1COOH. CH3CHC1COOH, CHC12- COOH 및 o-CK사LCOOH 은 一部 弗化反應이 일어 나고 雙合어imerization) 反應이 隨伴된다는 것을 究明하였다. -
ADA Fluoridation Facts 2018
Fluoridation Facts Dedication This 2018 edition of Fluoridation Facts is dedicated to Dr. Ernest Newbrun, respected researcher, esteemed educator, inspiring mentor and tireless advocate for community water fluoridation. About Fluoridation Facts Fluoridation Facts contains answers to frequently asked questions regarding community water fluoridation. A number of these questions are responses to myths and misconceptions advanced by a small faction opposed to water fluoridation. The answers to the questions that appear in Fluoridation Facts are based on generally accepted, peer-reviewed, scientific evidence. They are offered to assist policy makers and the general public in making informed decisions. The answers are supported by over 400 credible scientific articles, as referenced within the document. It is hoped that decision makers will make sound choices based on this body of generally accepted, peer-reviewed science. Acknowledgments This publication was developed by the National Fluoridation Advisory Committee (NFAC) of the American Dental Association (ADA) Council on Advocacy for Access and Prevention (CAAP). NFAC members participating in the development of the publication included Valerie Peckosh, DMD, chair; Robert Crawford, DDS; Jay Kumar, DDS, MPH; Steven Levy, DDS, MPH; E. Angeles Martinez Mier, DDS, MSD, PhD; Howard Pollick, BDS, MPH; Brittany Seymour, DDS, MPH and Leon Stanislav, DDS. Principal CAAP staff contributions to this edition of Fluoridation Facts were made by: Jane S. McGinley, RDH, MBA, Manager, Fluoridation and Preventive Health Activities; Sharon (Sharee) R. Clough, RDH, MS Ed Manager, Preventive Health Activities and Carlos Jones, Coordinator, Action for Dental Health. Other significant staff contributors included Paul O’Connor, Senior Legislative Liaison, Department of State Government Affairs. -
2. Relevance to Public Health
FLUORIDES, HYDROGEN FLUORIDE, AND FLUORINE 15 2. RELEVANCE TO PUBLIC HEALTH 2.1 BACKGROUND AND ENVIRONMENTAL EXPOSURES TO FLUORIDES, HYDROGEN FLUORIDE, AND FLUORINE IN THE UNITED STATES Fluorine is the most electronegative and reactive of all elements; fluoride is the ionic form of fluorine. Fluorine and anhydrous hydrogen fluoride are naturally occurring gases that have a variety of industrial uses including the production of fluorine-containing chemicals, pharmaceuticals, high octane gasoline, and fluorescent light bulbs; aqueous hydrofluoric acid is a liquid used for stainless steel pickling, glass etching, and metal coatings. The general population is typically exposed to very low levels of gaseous fluoride (primarily as hydrogen fluoride); in the United States and Canada, the levels ranged from 0.01 to 1.65 µg/m3. Populations living near industrial sources of hydrogen fluoride, including coal burning facilities, may be exposed to higher levels of hydrogen fluoride in the air. Additionally, vegetables and fruits grown near these sources may contain higher levels of fluoride, particularly from fluoride- containing dust settling on the plants. Fluoride salts, generically referred to as fluorides, are naturally occurring components of rocks and soil. One of the more commonly used fluoride salt is sodium fluoride; its principal use is for the prevention of dental caries. Sodium fluoride and other fluoride compounds, such as fluorosilicic acid and sodium hexafluorisilicate, are used in the fluoridation of public water. Sodium monofluorophosphate and stanneous fluoride are commonly used in dentifrices such as toothpaste. The general population can be exposed to fluoride through the consumption of fluoridated drinking water, food, and dentifrices. -
HYDROGEN FLUORIDE Safety Data Sheet
Revision Date 14-May-2015 , Version 1 _________________________________________________________________________________ HYDROGEN FLUORIDE Safety Data Sheet _________________________________________________________________________________ 1. IDENTIFICATION Product identifier Product Name HYDROGEN FLUORIDE Other means of identification Safety data sheet number LIND-P070 UN/ID no. UN1052 Synonyms Hydrofluoric acid, anhydrous Recommended use of the chemical and restrictions on use Recommended Use Industrial and professional use. Uses advised against Consumer use Details of the supplier of the safety data sheet Linde Gas North America LLC - Linde Merchant Production Inc. - Linde LLC 575 Mountain Ave. Murray Hill, NJ 07974 Phone: 908-464-8100 www.lindeus.com Linde Gas Puerto Rico, Inc. Road 869, Km 1.8 Barrio Palmas, Catano, PR 00962 Phone: 787-641-7445 www.pr.lindegas.com Linde Canada Limited 5860 Chedworth Way Mississauga, Ontario L5R 0A2 Phone: 905-501-1700 www.lindecanada.com * May include subsidiaries or affiliate companies/divisions. For additional product information contact your local customer service. Emergency telephone number Company Phone Number 800-232-4726 (Linde National Operations Center, US) 905-501-0802 (Canada) CHEMTREC: 1-800-424-9300 (North America) +1-703-527-3887 (International) 2. HAZARDS IDENTIFICATION _____________________________________________________________________________________________ Page 1 / 11 LIND-P070 HYDROGEN FLUORIDE Revision Date 14-May-2015 _____________________________________________________________________________________________ -
Section 2. Hazards Identification OSHA/HCS Status : This Material Is Considered Hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200)
SAFETY DATA SHEET Nonflammable Gas Mixture: Carbon Dioxide / Carbonyl Sulfide / Dichlorofluoromethane (R12) / Nitrogen / Sulfur Dioxide / Sulfuryl Fluoride / Tetrafluoromethane (R14) / Thionyl Fluoride Section 1. Identification GHS product identifier : Nonflammable Gas Mixture: Carbon Dioxide / Carbonyl Sulfide / Dichlorofluoromethane (R12) / Nitrogen / Sulfur Dioxide / Sulfuryl Fluoride / Tetrafluoromethane (R14) / Thionyl Fluoride Other means of : Not available. identification Product use : Synthetic/Analytical chemistry. SDS # : 019443 Supplier's details : Airgas USA, LLC and its affiliates 259 North Radnor-Chester Road Suite 100 Radnor, PA 19087-5283 1-610-687-5253 24-hour telephone : 1-866-734-3438 Section 2. Hazards identification OSHA/HCS status : This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200). Classification of the : GASES UNDER PRESSURE - Compressed gas substance or mixture HAZARDOUS TO THE OZONE LAYER - Category 1 GHS label elements Hazard pictograms : Signal word : Warning Hazard statements : Contains gas under pressure; may explode if heated. May displace oxygen and cause rapid suffocation. Harms public health and the environment by destroying ozone in the upper atmosphere. Precautionary statements General : Read and follow all Safety Data Sheets (SDS’S) before use. Read label before use. Keep out of reach of children. If medical advice is needed, have product container or label at hand. Close valve after each use and when empty. Use equipment rated for cylinder pressure. Do not open valve until connected to equipment prepared for use. Use a back flow preventative device in the piping. Use only equipment of compatible materials of construction. Do not depend on odor to detect presence of gas. Prevention : Not applicable. Response : Not applicable. -
SYNTHESES Volume XIV Editors AARON WOLD JOHN K
INORGANIC SYNTHESES Volume XIV Editors AARON WOLD JOHN K. RUFF Professor of Engineering Associate Professor of Chemistry and Chemistry University of Georgia Brown University, Providence, R.I. Athens, Ca. INORGANIC SYNTHESES Volume XIV McCRAW-HILL BOOK COMPANY New York St. Louis San Francisco Diisseldorf Johannesburg Kualo Lumpur London Mexico Montreal New Delhi Panama Rio de Janeiro Singapore Sydney Toronto INORGANIC SYNTHESES, VOLUME XIV Copyright 0 1973 by McGraw-Hill, Inc. All Rights Rewved. Printed in the United States of America. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise. without the prior written permission of the publisher. Library of Congress Catalog Card Number 39-23015 07-07 1320-0 1234567890 KPKP 76543 To RONALD NYHOLM and DAVID WADSLEY CONTENTS Reface ........................................... xi Notice to Contributors ................................... xiii Chapter One PHOSPHORUS COMPOUNDS ............... 1 1 . Phosphine ....................................... 1 2 . tert-Butyldichlorophosphineand Di-tert-butylchlorophosphinc......... 4 A . tert-Butyldichlorophosphinc ......................... 5 B . Di-tert-butylchlorophosphinc ......................... 6 3. 1.2-Bis(phosphino)ethane ............................. 10 4 . Tctramcthyldiphosphineand Flexible Aliphatic (Dimethylphosphino) Ligands ........................... 14 A . TetramethyldiphosFhine............................. 15 B . -
Fluorides, Hydrogen Fluoride, and Fluorine Cas # 7681-49-4, 7664-39-3, 7782-41-4
FLUORIDES, HYDROGEN FLUORIDE, AND FLUORINE CAS # 7681-49-4, 7664-39-3, 7782-41-4 Division of Toxicology ToxFAQsTM September 2003 This fact sheet answers the most frequently asked health questions (FAQs) about fluorides, hydrogen fluoride, and fluorine. For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. It is important you understand this information because these substances may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present. HIGHLIGHTS: Fluorides are naturally occurring compounds. Low levels of fluorides can help prevent dental cavities. At high levels, fluorides can result in tooth and bone damage. Hydrogen fluoride and fluorine are naturally-occurring gases that are very irritating to the skin, eyes, and respiratory tract. These substances have been found in at least 188 of the 1,636 National Priorities List sites identified by the Environmental Protection Agency (EPA). What are fluorides, hydrogen fluoride, and are carried by wind and rain to nearby water, soil, and food fluorine? sources. Fluorides, hydrogen fluoride, and fluorine are chemically ‘Fluorides in water and soil will form strong associations related. Fluorine is a naturally-occurring, pale yellow-green with sediment or soil particles. gas with a sharp odor. It combines with metals to make ‘Fluorides will accumulate in plants and animals. In fluorides such as sodium fluoride and calcium fluoride, both animals, the fluoride accumulates primarily in the bones or white solids. -
Inorganic Seminar Abstracts
C 1 « « « • .... * . i - : \ ! -M. • ~ . • ' •» »» IB .< L I B RA FLY OF THE. UN IVERSITY Of 1LLI NOIS 546 1^52-53 Return this book on or before the Latest Date stamped below. University of Illinois Library «r L161— H41 Digitized by the Internet Archive in 2012 with funding from University of Illinois Urbana-Champaign http://archive.org/details/inorganicsemi195253univ INORGANIC SEMINARS 1952 - 1953 TABLE OF CONTENTS 1952 - 1953 Page COMPOUNDS CONTAINING THE SILICON-SULFUR LINKAGE 1 Stanley Kirschner ANALYTICAL PROCEDURES USING ACETIC ACID AS A SOLVENT 5 Donald H . Wilkins THE SOLVENT PHOSPHORYL CHLORIDE, POCl 3 12 S.J. Gill METHODS FOR PREPARATION OF PURE SILICON 17 Alex Beresniewicz IMIDODISULFINAMIDE 21 G.R. Johnston FORCE CONSTANTS IN POLYATOMIC MOLECILES 28 Donn D. Darsow METATHESIS IN LIQUID ARSENIC TRICHLORIDE 32 Harold H. Matsuguma THE RHENI DE OXIDATION STATE 40 Robert L. Rebertus HALOGEN CATIONS 45 L.H. Diamond REACTIONS OF THE NITROSYL ION 50 M.K. Snyder THE OCCURRENCE OF MAXIMUM OXIDATION STATES AMONG THE FLUOROCOMPLEXES OF THE FIRST TRANSITION SERIES 56 D.H. Busch POLY- and METAPHOSPHATES 62 V.D. Aftandilian PRODUCTION OF SILICON CHLORIDES BY ELECTRICAL DISCHARGE AND HIGH TEMPERATURE TECHNIQUES 67 VI. £, Cooley FLUORINE CONTAINING OXYHALIDES OF SULFUR 72 E.H. Grahn PREPARATION AND PROPERTIES OF URANYL CARBONATES 76 Richard *• Rowe THE NATURE OF IODINE SOLUTIONS 80 Ervin c olton SOME REACTIONS OF OZONE 84 Barbara H. Weil ' HYDRAZINE BY ELECTROLYSIS IN LIQUID AMMONIA 89 Robert N. Hammer NAPHTHAZARIN COMPLEXES OF THORIUM AND RARE EARTH METAL IONS 93 Melvin Tecotzky THESIS REPORT 97 Perry Kippur ION-PAIR FORMATION IN ACETIC ACID 101 M.M.