Membrane Biophysics Module 13

Total Page:16

File Type:pdf, Size:1020Kb

Membrane Biophysics Module 13 Paper 12: Membrane Biophysics Module 13: Membrane potential, Transmembranes potential & its measurement by microelectrodes In all cell types, there is an electrical potential difference exits between the inside and outside of the cell resulting from the differential concentrations of sodium and potassium on either side of the membrane. This is termed the membrane potential of the cell. While this phenomenon is present in all cells, it is especially important in muscle and nerve cells, because changes in their membrane potentials are used to code and transmit information or signals. More specifically, the action potentials are electrical signals; these signals carry efferent messages to the central nervous system for processing and afferent messages away from the brain to elicit a specific reaction or movement. The membrane potential is measured in units of volts. (A volt is defined in terms of energy per unit charge; that is, one volt is equal to one joule/coulomb). Learning Objectives Understanding the membrane potential How to calculate membrane potential ? To understand how the membrane potential is generated The contribution of the Na + /K + ATPase Transmembrane Potential Resting potential Action potential Measurement of Transmembrane Potential by Microelectrodes 1. Introduction What is an electrical potential difference? An electrical potential difference exists between two locations when there is a net separation of charge between the two locations. All living cells maintain a potential difference across their membrane. This membrane potential is due to difference in concentration and permeability of sodium and potassium on either side of the membrane. Because of the unequal concentrations of ions across a membrane, the membrane has an electrical charge, inside negative. Changes in membrane potential to elicit action potentials and give cells the ability to send messages to different parts of the body. Some cells, such as nerve and muscle cells are capable of generating quickly changing electrochemical impulses at their membranes, and these impulses are used to transmit signals along the nerve or muscle membranes. In other types of cells, such as macrophages, glandular cells, and ciliated cells, local changes in membrane potentials also stimulate many of the cellular functions. The membrane potential is created due to various proteins embedded within the cell membrane, as well as the structure of the phospholipid lipid bilayer. From a physiological point of view, the membrane potential is responsible for sending messages to and from the central nervous system. It is also very important in cellular biology and shows how cell biology is fundamentally connected with electrochemistry and physiology. 2. Background Membrane potential plays an important role across multiple scientific disciplines such as, Physiology, Biology and Chemistry. In 1902, Julius Bernstein, a German physiologist, came up with a hypothesis for how neurons work. His hypothesis basically stated that the resting potential of a nerve cell was due to a concentration potential of potassium ions. Professor Bernstein hypothesized that there were three contributing factors to membrane potential; membrane permeability and difference in potassium ion (K+) concentrations, higher inside and lower on the outside of the cell. Walther H. Nernst, German physicist who is known for the development of the Nernst equation and won the 1920 Nobel Prize in chemistry, was a major contributor to the study of membrane potential. Nernst helped establish the modern field of physical chemistry and contributed to electrochemistry, thermodynamics and solid state physics. He developed the Nernst equation to solve for the equilibrium potential for a specific ion. Goldman, Hodgkin and Katz furthered the study of membrane potential by developing the Goldman-Hodgkin-Katz equation to account for any ion that might permeate the membrane and affect its potential. The study of membrane potential utilizes electrochemistry and physiology to formulate a conclusive idea of how the charges are separated across a membrane. 3. Physiology of Membrane Potential Cell membrane works as a barrier between the inner and outer surface of a cell. In discussing the concept of membrane potentials and how they function, the establishment of membrane potential is essential. The membrane that surrounds a cell is composed of phospholipids, glycolipids, cholesterol and proteins. The primary structure is a lipid bilayer. Phospholipid molecules have an electrically charged head that attracts water and a hydrocarbon tail that repels water; they line up side by side in two opposing layers, with their heads on the inner or outer surface of the membrane and their tails in the core, from which water is excluded. The other lipids affect the structural properties of the membrane. The proteins embedded in the lipid bilayer, the Na+/K+ ATPase, ion transporters, and voltage gated channels, and it is the site of vesicular transport. The membrane structure regulates entry ions and exit of ions to determine the concentration of specific ions inside of the cell. Membrane potentials in cells are determined primarily by three factors: a) the concentration of ions on the either side of the membrane; b) the permeability of the cell membrane to those ions through specific ion channels; and c) by the activity of electrogenic pumps (e.g., Na+/K+- ATPase and Ca2+ transport pumps) that maintain the ion concentrations across the membrane. Figure 1. Model of membrane lipid bilayer 3.1 Understanding membrane potential The following points important to understand how the membrane potential works The difference between the electrical and chemical gradient is important. Electrical Gradient Opposes the chemical gradient. Represents the difference in electrical charge across the membrane Chemical Gradient Opposes the electrical gradient Represents the difference in the concentration of a specific ion across the membrane. A good example is K+. The membrane is very permeable to K+ and the K+ ion concentration inside the cell is high, therefore a positive charge is flowing out of the cell along with K+. The K+ ion concentration inside the cell decreases causing the concentration gradient to flow towards the outside of the cell. This also causes the inside of the cell to become more electronegative increasing its electrical gradient. The Nernst equation can help us relate the numerical values of concentration to the electrical gradient. Leak Channels Channels that are always open Permit unregulated flow of ions down an electrochemical gradient. Na+/K+ ATPase Actively transports Na+ ions out of the cell and K+ ions into the cell. Helps to maintain the concentration gradient and to counteract the leak channels. Figure 2. Differences in the concentration of ions on both sides of a cell membrane produce a voltage difference called the membrane potential. The major contributions usually come from sodium (Na+) and chloride (Cl–) ions which have high concentrations in the extracellular side, and potassium (K+) ions, which along with large protein anions have high concentrations in the intracellular side of the membrane. 3.2 How to calculate membrane potential of a cell ? The calculation for the charge of an ion across a membrane, The Nernst Potential, is relatively easy to calculate. The equation is as follows: (RT/zF) log([I]out/[I]in) RT/F is approximately 61, therefore the equation can be written as (61/z) ln([I]out/[I]in) Derived under resting membrane conditions when the work required to move an ion across the membrane (up its concentration gradient) equals the electrical work required to move an ion against a voltage gradient. R= gas constant (8.314 jules/oK.mol) T= temperature (oK) F= Faraday constant (96, 000 coulombs/mol) z= the electric charge on the ion. For example, z is +1 for K+, +2 for Mg2+ etc. z have no unit. [I]out= ion concentration outside the cell [I] in= ion concentration inside the cell The only difference in the Goldman-Hodgkin-Katz equation is that is adds together the concentrations of all permeable ions as follows + + - + + - i (RT/zF) log([K ]o+[Na ]o+[Cl ]o /[K ]i+[Na ]i+[Cl ] ) 3.3 To understand how the membrane potential is generated Cell membranes maintain a small voltage or "potential" across the membrane in its normal or resting state. In the rest state, the inside of the cell membrane is negative with respect to the outside. The voltage arises from differences in concentration of the K+ and Na+ ions. The membrane potential of a cell derives ultimately from two factors: electrical force and diffusion. Electrical force arises from the mutual attraction between particles with opposite electrical charges (positive and negative) and the mutual repulsion between particles with the same type of charge (both positive or both negative). Diffusion arises from the statistical tendency of particles to redistribute from regions where they are highly concentrated to regions where the concentration is low 3.3a Electrical force In the selectively permeable cell membranes are ion channels which allow K+ ions to pass into the interior of the cell, but block Na+ ions. Negatively charged proteins on the interior of the cell are also denied passage across the membrane. In addition, there are active transport mechanisms at work. There is a process called the Na + /K + ATPase, which utilizes ATP to pump out three Na+ ions and pump in two K+ ions. The collective action of these mechanisms leaves the interior of the membrane about -70 mV with respect to the outside. 3.3b Membrane potentials caused by diffusion “Diffusion Potential” caused by an ion centration difference on the two sides of the membrane. The potassium concentration is great inside, but very low outside the membrane. Let us assume that the membrane in this instance is permeable to the potassium ions, but not to any other ions. Because of the large potassium concentration gradient from inside to outside, there is a strong tendency for extra numbers of potassium ions to diffuse outward through the membrane.
Recommended publications
  • Glossary - Cellbiology
    1 Glossary - Cellbiology Blotting: (Blot Analysis) Widely used biochemical technique for detecting the presence of specific macromolecules (proteins, mRNAs, or DNA sequences) in a mixture. A sample first is separated on an agarose or polyacrylamide gel usually under denaturing conditions; the separated components are transferred (blotting) to a nitrocellulose sheet, which is exposed to a radiolabeled molecule that specifically binds to the macromolecule of interest, and then subjected to autoradiography. Northern B.: mRNAs are detected with a complementary DNA; Southern B.: DNA restriction fragments are detected with complementary nucleotide sequences; Western B.: Proteins are detected by specific antibodies. Cell: The fundamental unit of living organisms. Cells are bounded by a lipid-containing plasma membrane, containing the central nucleus, and the cytoplasm. Cells are generally capable of independent reproduction. More complex cells like Eukaryotes have various compartments (organelles) where special tasks essential for the survival of the cell take place. Cytoplasm: Viscous contents of a cell that are contained within the plasma membrane but, in eukaryotic cells, outside the nucleus. The part of the cytoplasm not contained in any organelle is called the Cytosol. Cytoskeleton: (Gk. ) Three dimensional network of fibrous elements, allowing precisely regulated movements of cell parts, transport organelles, and help to maintain a cell’s shape. • Actin filament: (Microfilaments) Ubiquitous eukaryotic cytoskeletal proteins (one end is attached to the cell-cortex) of two “twisted“ actin monomers; are important in the structural support and movement of cells. Each actin filament (F-actin) consists of two strands of globular subunits (G-Actin) wrapped around each other to form a polarized unit (high ionic cytoplasm lead to the formation of AF, whereas low ion-concentration disassembles AF).
    [Show full text]
  • Biopsychology 2012 – Sec 003 (Dr
    Biopsychology 2012 – sec 003 (Dr. Campeau) Study Guide for First Midterm What are some fun facts about the human brain? - there are approximately 100 billion neurons in the brain; - each neuron makes between 1000 to 10000 connections with other neurons; - speed of action potentials varies from less than 1 mph and up to 100 mph. What is a neuron? A very specialized cell type whose function is to receive, process, and send information; these cells are found in the central nervous system (CNS – brain, spinal cord, retina) and the peripheral nervous system (PNS – the rest of the body). What is a nerve? They are axons of individual neurons in bundles or strands of many axons. What are the major parts of a neuron? - cell membrane: “skin” of the neuron; - cytoplasm: everything inside the skin; - nucleus: contains chromosomes (DNA); - ribosomes: generate proteins from mRNA; - mitochondria: energy “generator” of cells (produce ATP); - mitochondria: moves “stuff” inside the neuron (like a tow rope); - soma: cell body, excluding dendrites and axons; - dendrites and spines: part of the neuron usually receiving information from other neurons; - axons: part of the neuron that transmits information to other neurons; - myelin sheath: surrounds axons and provides electrical “insulation”; - nodes of Ranvier: small area on axons devoid of myelin sheath; - presynaptic terminal: area of neuron where neurotransmitter is stored and released by action potentials. What are the different neuron types according to function? 1. Sensory neurons: neurons specialized to “receive” information about the environment. 2. Motor neurons: neurons specialized to produce movement (contraction of muscles). 3. Interneurons or Intrinsic neurons: neurons, usually with short axons, that handle local information.
    [Show full text]
  • Nernst Potentials and Membrane Potential Changes
    UNDERSTANDING MEMBRANE POTENTIAL CHANGES IN TERMS OF NERNST POTENTIALS: For seeing how a change in conductance to ions affects the membrane potential, follow these steps: 1. Make a graph with membrane potential on the vertical axis (-100 to +55) and time on the horizontal axis. 2. Draw dashed lines indicating the standard Nernst potential (equilibrium potential) for each ion: Na+ = +55 mV, K+ = -90mV, Cl- = -65 mV. 3. Draw lines below the horizontal axis showing the increased conductance to individual ions. 4. Start plotting the membrane potential on the left. Most graphs will start at resting potential (-70 mV) 5. When current injection (Stim) is present, move the membrane potential upward to Firing threshold. 6. For the time during which membrane conductance to a particular ion increases, move the membrane potential toward the Nernst potential for that ion. 7. During the time when conductance to a particular ion decreases, move the membrane potential away from the Nernst potential of that ion, toward a position which averages the conductances of the other ions. 8. When conductances return to their original value, membrane potential will go to its starting value. +55mV ACTION POTENTIAL SYNAPTIC POTENTIALS 0mV Membrane potential Firing threshold Firing threshold -65mV -90mV Time Time Na+ K+ Conductances Stim CHANGES IN MEMBRANE POTENTIAL ALLOW NEURONS TO COMMUNICATE The membrane potential of a neuron can be measured with an intracellular electrode. This 1 provides a measurement of the voltage difference between the inside of the cell and the outside. When there is no external input, the membrane potential will usually remain at a value called the resting potential.
    [Show full text]
  • Neurotransmitter Actions
    Central University of South Bihar Panchanpur, Gaya, India E-Learning Resources Department of Biotechnology NB: These materials are taken/borrowed/modified/compiled from various resources like research articles and freely available internet websites, and are meant to be used solely for the teaching purpose in a public university, and for serving the needs of specified educational programmes. Dr. Jawaid Ahsan Assistant Professor Department of Biotechnology Central University of South Bihar (CUSB) Course Code: MSBTN2003E04 Course Name: Neuroscience Neurotransmitter Actions • Excitatory Action: – A neurotransmitter that puts a neuron closer to an action potential (facilitation) or causes an action potential • Inhibitory Action: – A neurotransmitter that moves a neuron further away from an action potential • Response of neuron: – Responds according to the sum of all the neurotransmitters received at one time Neurotransmitters • Acetylcholine • Monoamines – modified amino acids • Amino acids • Neuropeptides- short chains of amino acids • Depression: – Caused by the imbalances of neurotransmitters • Many drugs imitate neurotransmitters – Ex: Prozac, zoloft, alcohol, drugs, tobacco Release of Neurotransmitters • When an action potential reaches the end of an axon, Ca+ channels in the neuron open • Causes Ca+ to rush in – Cause the synaptic vesicles to fuse with the cell membrane – Release the neurotransmitters into the synaptic cleft • After binding, neurotransmitters will either: – Be destroyed in the synaptic cleft OR – Taken back in to surrounding neurons (reuptake) Excitable cells: Definition: Refers to the ability of some cells to be electrically excited resulting in the generation of action potentials. Neurons, muscle cells (skeletal, cardiac, and smooth), and some endocrine cells (e.g., insulin- releasing pancreatic β cells) are excitable cells.
    [Show full text]
  • Electrical Activity of the Heart: Action Potential, Automaticity, and Conduction 1 & 2 Clive M
    Electrical Activity of the Heart: Action Potential, Automaticity, and Conduction 1 & 2 Clive M. Baumgarten, Ph.D. OBJECTIVES: 1. Describe the basic characteristics of cardiac electrical activity and the spread of the action potential through the heart 2. Compare the characteristics of action potentials in different parts of the heart 3. Describe how serum K modulates resting potential 4. Describe the ionic basis for the cardiac action potential and changes in ion currents during each phase of the action potential 5. Identify differences in electrical activity across the tissues of the heart 6. Describe the basis for normal automaticity 7. Describe the basis for excitability 8. Describe the basis for conduction of the cardiac action potential 9. Describe how the responsiveness relationship and the Na+ channel cycle modulate cardiac electrical activity I. BASIC ELECTROPHYSIOLOGIC CHARACTERISTICS OF CARDIAC MUSCLE A. Electrical activity is myogenic, i.e., it originates in the heart. The heart is an electrical syncitium (i.e., behaves as if one cell). The action potential spreads from cell-to-cell initiating contraction. Cardiac electrical activity is modulated by the autonomic nervous system. B. Cardiac cells are electrically coupled by low resistance conducting pathways gap junctions located at the intercalated disc, at the ends of cells, and at nexus, points of side-to-side contact. The low resistance pathways (wide channels) are formed by connexins. Connexins permit the flow of current and the spread of the action potential from cell-to-cell. C. Action potentials are much longer in duration in cardiac muscle (up to 400 msec) than in nerve or skeletal muscle (~5 msec).
    [Show full text]
  • The Excitable Cell. Resting Membrane Potential and Action Potential (1&2)
    The excitable cell. Resting Membrane Potential and Action Potential (1&2) Dr Sergey Kasparov School of Medical Sciences, Room E9 THIS TOPIC IS ALSO COVERED IN TUTORIALS! Teaching home page: http://www.bristol.ac.uk/phys-pharm/media/teaching/ Why do we call these cells “excitable”? Real action potentials.avi The key point: Bioelectricity is generated by the ions moving across cellular membranes Concentration of selected solutes in intracellular fluid and extracellular fluid in millimols mM 160 140 120 100 Insi de the cell 80 60 In extracellular fluid 40 20 0 1 The Na+/K+ pump outside inside [[mMmM]] + + [[mMmM]] + + + + + + + Na 145 + + 15 + K 4 + + 140 ATPATP ••isis an active ion transporter (ATP‐dependent) ••isis responsible for creating and upholding Na+ and K+ concentration gradients ••isis electrogenic – pumps 3 Na+ versus 2 K+ ions Reminder: Movement of ions is affected by concentration gradient and the electrical field Chemical driving force _ _ + + _ + + Electrical driving force _ + + _ + + + _+ _ + _ + + + + _ + _ + _ + + _ Net flux + + + + _ + _ + + V REMINDER: Diffusion through Ion Channels A leak channel A gated channel Both leak and gated channels allow movement of molecules (mainly inorganic ions) down the electrochemical gradient. So, if the gradient reverses, the ions will flow in the opposite direction. 1. The channels are aqueous pores through the membrane. 2. The channels are usually quite selective, for example some only pass Na+, others K+, still others – Cl- 3. Gated channels may be opened or closed by various factors
    [Show full text]
  • The Action Potential
    See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/6316219 The action potential ARTICLE in PRACTICAL NEUROLOGY · JULY 2007 Source: PubMed CITATIONS READS 16 64 2 AUTHORS, INCLUDING: Mark W Barnett The University of Edinburgh 21 PUBLICATIONS 661 CITATIONS SEE PROFILE Available from: Mark W Barnett Retrieved on: 24 October 2015 192 Practical Neurology HOW TO UNDERSTAND IT Pract Neurol 2007; 7: 192–197 The action potential Mark W Barnett, Philip M Larkman t is over 60 years since Hodgkin and called ion channels that form the permeation Huxley1 made the first direct recording of pathways across the neuronal membrane. the electrical changes across the neuro- Although the first electrophysiological nal membrane that mediate the action recordings from individual ion channels were I 2 potential. Using an electrode placed inside a not made until the mid 1970s, Hodgkin and squid giant axon they were able to measure a Huxley predicted many of the properties now transmembrane potential of around 260 mV known to be key components of their inside relative to outside, under resting function: ion selectivity, the electrical basis conditions (this is called the resting mem- of voltage-sensitivity and, importantly, a brane potential). The action potential is a mechanism for quickly closing down the transient (,1 millisecond) reversal in the permeability pathways to ensure that the polarity of this transmembrane potential action potential only moves along the axon in which then moves from its point
    [Show full text]
  • Neuronal Signaling Neuroscience Fundamentals > the Nerve Cell > the Nerve Cell
    Neuronal Signaling Neuroscience Fundamentals > The Nerve Cell > The Nerve Cell NEURONAL SIGNALING SUMMARY ACTION POTENTIALS See: Action Potentials Key Features • All-or-nothing events • Self-propagating • Conduction speed determined by axon diameter (thicker means faster) and amount of myelination (more myelin means faster transmission). CHEMICAL SYNAPSE Steps of Chemical Synapsis 1) The action potential travels down axon of presynaptic neuron. 2) Vesicle fuses with plasma membrane and releases neurotransmitter into the synaptic cleft. 3) Neurotransmitters bind to ligand-gated ion channels, opening them. 4) Ions entering through the open channels cause a depolarization of the membrane, opening voltage-gated ion channels. 5) Ions pass through these voltage-gated ion channels, causing further depolarization of the membrane. 6) This depolarization (action potential) travels along the membrane as more voltage-gated ion channels are opened. ELECTRICAL SYNAPSE • Cytoplasms of adjacent neurons are connected, allowing ions (and action potentials) to travel directly to the next cell. NEURONAL CODING OF STIMULUS STRENGTH Action Potential Frequency • Stimulus strength is based on frequency of action potentials. Action Potential Strength • Strong stimuli can produce another action potential during the relative refractory period. 1 / 7 ABSOLUTE REFRACTORY PERIOD No further action potentials • Voltage-gated sodium channels are open or inactivated so another stimulus, no matter its strength, CANNOT elicit another action potential. RELATIVE REFRACTORY
    [Show full text]
  • A Simple Description of Biological Transmembrane Potential from Simple Biophysical Considerations and Without Equivalent Circuits
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.02.073635; this version posted May 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. A simple description of biological transmembrane potential from simple biophysical considerations and without equivalent circuits Marco Arieli Herrera-Valdez1; 1 Systems Physiology Laboratory, Department of Mathematics, Facultad de Ciencias, Universidad Nacional Autónoma de México, CDMX, México. [email protected] Abstract Biological membranes mediate different physiological processes necessary for life, including but not limited to electrical signalling, volume regulation, and other different forms of communica- tion within and between cells. Ion movement is one of the physical processes underlying many of such processes. In turn, the difference between the electrical potentials around a biological membrane, called transmembrane potential, or membrane potential for short, is one of the key biophysical variables affecting ion movement. Most of the equations available to describe the change in membrane potential are based on analogies with resistive-capacitative electrical circuits. These equivalent circuit models were originally proposed in seminal studies dating back to 1872, and possibly earlier, and assume resistance and capacitance as measures of the permeable and the impermeable properties of the membrane, respectively. These models have been successful in shedding light on our understanding of electrical activity in cells, especially at times when the basic structure, biochemistry and biophysics of biological membrane systems were not well known.
    [Show full text]
  • Membrane Potentials As Signals
    Membrane Potentials as Signals The membrane potential allows a cell to function as a battery, providing electrical power to activities within the cell and between cells. KEY POINTS A membrane potential is the difference in electrical potential between the interior and the exterior of a biological cell. In electrically excitable cells, changes in membrane potential are used for transmitting signals within the cell. The opening and closing of ion channels can induce changes from the resting potential. Depolarization is when the interior voltage becomes more positive and hyperpolarization when it becomes more negative. TERMS Graded potentials Graded potentials vary in size and arise from the summation of the individual actions of ligand- gated ion channel proteins, and decrease over time and space. Depolarization Depolarization is a change in a cell's membrane potential, making it more positive, or less negative, and may result in generation of an action potential. Action potential A short term change in the electrical potential that travels along a cell such as a nerve or muscle fiber. EXAMPLE In neurons, a sufficiently large depolarization can evoke an action potential in which the membrane potential changes rapidly. Give us feedback on this content: Membrane potential (also transmembrane potential or membrane voltage) is the difference in electrical potential between the interior and the exterior of a biological cell. All animal cells are surrounded by a plasma membrane composed of a lipid bilayer with a variety of types of proteins embedded in it. The membrane serves as both an insulator and a diffusion barrier to the movement of ions.
    [Show full text]
  • NOCICEPTORS and the PERCEPTION of PAIN Alan Fein
    NOCICEPTORS AND THE PERCEPTION OF PAIN Alan Fein, Ph.D. Revised May 2014 NOCICEPTORS AND THE PERCEPTION OF PAIN Alan Fein, Ph.D. Professor of Cell Biology University of Connecticut Health Center 263 Farmington Ave. Farmington, CT 06030-3505 Email: [email protected] Telephone: 860-679-2263 Fax: 860-679-1269 Revised May 2014 i NOCICEPTORS AND THE PERCEPTION OF PAIN CONTENTS Chapter 1: INTRODUCTION CLASSIFICATION OF NOCICEPTORS BY THE CONDUCTION VELOCITY OF THEIR AXONS CLASSIFICATION OF NOCICEPTORS BY THE NOXIOUS STIMULUS HYPERSENSITIVITY: HYPERALGESIA AND ALLODYNIA Chapter 2: IONIC PERMEABILITY AND SENSORY TRANSDUCTION ION CHANNELS SENSORY STIMULI Chapter 3: THERMAL RECEPTORS AND MECHANICAL RECEPTORS MAMMALIAN TRP CHANNELS CHEMESTHESIS MEDIATORS OF NOXIOUS HEAT TRPV1 TRPV1 AS A THERAPEUTIC TARGET TRPV2 TRPV3 TRPV4 TRPM3 ANO1 ii TRPA1 TRPM8 MECHANICAL NOCICEPTORS Chapter 4: CHEMICAL MEDIATORS OF PAIN AND THEIR RECEPTORS 34 SEROTONIN BRADYKININ PHOSPHOLIPASE-C AND PHOSPHOLIPASE-A2 PHOSPHOLIPASE-C PHOSPHOLIPASE-A2 12-LIPOXYGENASE (LOX) PATHWAY CYCLOOXYGENASE (COX) PATHWAY ATP P2X RECEPTORS VISCERAL PAIN P2Y RECEPTORS PROTEINASE-ACTIVATED RECEPTORS NEUROGENIC INFLAMMATION LOW pH LYSOPHOSPHATIDIC ACID Epac (EXCHANGE PROTEIN DIRECTLY ACTIVATED BY cAMP) NERVE GROWTH FACTOR Chapter 5: Na+, K+, Ca++ and HCN CHANNELS iii + Na CHANNELS Nav1.7 Nav1.8 Nav 1.9 Nav 1.3 Nav 1.1 and Nav 1.6 + K CHANNELS + ATP-SENSITIVE K CHANNELS GIRK CHANNELS K2P CHANNELS KNa CHANNELS + OUTWARD K CHANNELS ++ Ca CHANNELS HCN CHANNELS Chapter 6: NEUROPATHIC PAIN ANIMAL
    [Show full text]
  • Ion Transport, Resting Potential, and Cellular Homeostasis Introduction
    BIOEN 6003 Lecture Notes 1 Ion Transport, Resting Potential, and Cellular Homeostasis Introduction These notes cover the basics of membrane composition, transport, resting potential, and cellular homeostasis. After a brief introduction to the first two topics, we will spend most of our time on the 3rd and 4th. We will discuss ions that are subject both to diffusion and to an electric field. Current flux in this case is described by a nonlinear partial differential equation (PDE), the Nernst-Planck equation. Under equilibrium conditions (i.e., with no flux) the Nernst-Planck equation can be simplified to give the Nernst equation, a simple algebraic formula that we can use to calculate the value of membrane potential at which a given ion undergoes no net flux. We will derive a circuit-theory-based model of steady-state, non-equilibrium conditions in multi-ion systems. We will also discuss how ionic pumps can be accounted for mathematically. Because of limitations in time, we will not examine several important and interesting questions related to this material. We will skip several classic and important derivations (e.g., derivations of conductance in semi-permeable membranes, and the time- and length-scales over which the condition of electroneutrality applies). Hille is a terrific book, but it does not cover this material that well. The best detailed derivation of these results I have seen is in Weiss, Cellular Biophysics, Vol. 1, MIT Press. Composition of cell membranes 1. The lipid bilayer, composed of phospholipids (polar heads, hydrophobic tails). Bilayer is the most stable structure in a charged aqueous environment.
    [Show full text]