AT 2016Dah and at 2017Fyp: the First Classical Novae Discovered Within A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Andromeda Galaxy's Most Important Merger
The Andromeda Galaxy’s most important merger ~ 2 Gyrs ago as M32’s likely progenitor Richard D’Souza* & Eric F. Bell Although the Andromeda Galaxy’s (M31) proximity offers a singular opportunity to understand how mergers affect galaxies1, uncertainty remains about M31’s most important mergers. Previous studies focused individually on the giant stellar stream2 or the impact of M32 on M31’s disk3,4, thereby suggesting many significant satellite interactions5. Yet, models of M31’s disk heating6 and the similarity between the stellar populations of different tidal substructures in M31’s outskirts7 both suggested a single large merger. M31’s outer low- surface brightness regions (its stellar halo) is built up from the tidal debris of satellites5 and provides decisive guidance about its important mergers8. Here we use cosmological models of galaxy formation9,10 to show that M31’s massive11 and metal-rich12 stellar halo, containing intermediate-age stars7, dramatically narrows the range of allowed interactions, requiring a 10 single dominant merger with a large galaxy (M*~2.5x10 M¤, the third largest member of the Local Group) ~2 Gyr ago. This single event explains many observations that were previously considered separately: its compact and metal-rich satellite M3213 is likely to be the stripped core of the disrupted galaxy, M31’s rotating inner stellar halo14 contains most of the merger debris, and the giant stellar stream15 is likely to have been thrown out during the merger. This interaction may explain M31’s global burst of star formation ~2 Gyr ago16 in which ~1/5 of its stars were formed. -
Nd AAS Meeting Abstracts
nd AAS Meeting Abstracts 101 – Kavli Foundation Lectureship: The Outreach Kepler Mission: Exoplanets and Astrophysics Search for Habitable Worlds 200 – SPD Harvey Prize Lecture: Modeling 301 – Bridging Laboratory and Astrophysics: 102 – Bridging Laboratory and Astrophysics: Solar Eruptions: Where Do We Stand? Planetary Atoms 201 – Astronomy Education & Public 302 – Extrasolar Planets & Tools 103 – Cosmology and Associated Topics Outreach 303 – Outer Limits of the Milky Way III: 104 – University of Arizona Astronomy Club 202 – Bridging Laboratory and Astrophysics: Mapping Galactic Structure in Stars and Dust 105 – WIYN Observatory - Building on the Dust and Ices 304 – Stars, Cool Dwarfs, and Brown Dwarfs Past, Looking to the Future: Groundbreaking 203 – Outer Limits of the Milky Way I: 305 – Recent Advances in Our Understanding Science and Education Overview and Theories of Galactic Structure of Star Formation 106 – SPD Hale Prize Lecture: Twisting and 204 – WIYN Observatory - Building on the 308 – Bridging Laboratory and Astrophysics: Writhing with George Ellery Hale Past, Looking to the Future: Partnerships Nuclear 108 – Astronomy Education: Where Are We 205 – The Atacama Large 309 – Galaxies and AGN II Now and Where Are We Going? Millimeter/submillimeter Array: A New 310 – Young Stellar Objects, Star Formation 109 – Bridging Laboratory and Astrophysics: Window on the Universe and Star Clusters Molecules 208 – Galaxies and AGN I 311 – Curiosity on Mars: The Latest Results 110 – Interstellar Medium, Dust, Etc. 209 – Supernovae and Neutron -
September 2005
Amateur astronomers get better looking... Pay club dues at the General Meeting, or by mail. $30 individual, $40 family Volume 25 Number 9 nightwatch September 2005 President’s Address August General Meeting Summer is nearly over; autumn is almost here. Two visitors joined our meeting, Chris Peterson and In the upcoming months we have planned a public star James, along with a long time member who doesn’t get party at Barnes & Noble Booksellers in Rancho a chance to come to our meetings very often, William Cucamonga. We have had several events in Fritz. We look forward to seeing them all again soon. conjunction with Barnes & Noble and they have all Lee Collins’ What’s Up for the month discussed the been fun. The next one will be on the evening of Summer Triangle and the many nebulae to be seen in Thursday, October 13th. th this area which also contains views of our own Milky On October 29 we will have a joint star party Way when the sky is dark enough. While two of the with the Riverside Astronomical Society at their site near Landers. It will be interesting to see the many Star Party Sites improvements, which have been made to site since the (MBC) Mecca Beach Campground last time we were there. The Riverside group is a great (CS) Cottonwood Springs campground, Joshua Tree Natl. Pk bunch and this will be a lot of fun. (CC) Cow Canyon Saddle, near Mount Baldy Village We will have our Mars observing session with (MS) Mesquite Springs campground, Death Valley National Pk the 60-inch telescope on Mount Wilson Friday, (CWP) Claremont Wilderness Park parking lot November 11th. -
Atlas Menor Was Objects to Slowly Change Over Time
C h a r t Atlas Charts s O b by j Objects e c t Constellation s Objects by Number 64 Objects by Type 71 Objects by Name 76 Messier Objects 78 Caldwell Objects 81 Orion & Stars by Name 84 Lepus, circa , Brightest Stars 86 1720 , Closest Stars 87 Mythology 88 Bimonthly Sky Charts 92 Meteor Showers 105 Sun, Moon and Planets 106 Observing Considerations 113 Expanded Glossary 115 Th e 88 Constellations, plus 126 Chart Reference BACK PAGE Introduction he night sky was charted by western civilization a few thou - N 1,370 deep sky objects and 360 double stars (two stars—one sands years ago to bring order to the random splatter of stars, often orbits the other) plotted with observing information for T and in the hopes, as a piece of the puzzle, to help “understand” every object. the forces of nature. The stars and their constellations were imbued with N Inclusion of many “famous” celestial objects, even though the beliefs of those times, which have become mythology. they are beyond the reach of a 6 to 8-inch diameter telescope. The oldest known celestial atlas is in the book, Almagest , by N Expanded glossary to define and/or explain terms and Claudius Ptolemy, a Greco-Egyptian with Roman citizenship who lived concepts. in Alexandria from 90 to 160 AD. The Almagest is the earliest surviving astronomical treatise—a 600-page tome. The star charts are in tabular N Black stars on a white background, a preferred format for star form, by constellation, and the locations of the stars are described by charts. -
Neutral Hydrogen in Local Group Dwarf Galaxies
Neutral Hydrogen in Local Group Dwarf Galaxies Jana Grcevich Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2013 c 2013 Jana Grcevich All rights reserved ABSTRACT Neutral Hydrogen in Local Group Dwarfs Jana Grcevich The gas content of the faintest and lowest mass dwarf galaxies provide means to study the evolution of these unique objects. The evolutionary histories of low mass dwarf galaxies are interesting in their own right, but may also provide insight into fundamental cosmological problems. These include the nature of dark matter, the disagreement be- tween the number of observed Local Group dwarf galaxies and that predicted by ΛCDM, and the discrepancy between the observed census of baryonic matter in the Milky Way’s environment and theoretical predictions. This thesis explores these questions by studying the neutral hydrogen (HI) component of dwarf galaxies. First, limits on the HI mass of the ultra-faint dwarfs are presented, and the HI content of all Local Group dwarf galaxies is examined from an environmental standpoint. We find that those Local Group dwarfs within 270 kpc of a massive host galaxy are deficient in HI as compared to those at larger galactocentric distances. Ram- 4 3 pressure arguments are invoked, which suggest halo densities greater than 2-3 10− cm− × out to distances of at least 70 kpc, values which are consistent with theoretical models and suggest the halo may harbor a large fraction of the host galaxy’s baryons. We also find that accounting for the incompleteness of the dwarf galaxy count, known dwarf galaxies whose gas has been removed could have provided at most 2.1 108 M of HI gas to the Milky Way. -
News from the Society for Astronomical Sciences
eu News from the Society for Astronomical Sciences Vol. 14 No.3 (November, 2016) Getting Ready for SAS- 2017 The 2017 SAS Symposium will be held on June 15-16-17, 2017, at the Ontario Airport Hotel. There will be Work- shops on topics of interest to the small-telescope research community, Technical Papers on research results and project plans, and our Sponsors will have new products on display. The SAS Program Committee is pre- paring the details of the Symposium and looking into some new features. Here’s what you can start doing now: Block the dates (June 15-16-17, 2017) on your calendar. Make travel reservations. Keep working on your projects, and decide which one you would like to present. Start preparing your Abstract Invite your colleagues who are interested in small-telescope re- Reminders ... search activities. Membership Renewal: Even if you Workshop Videos: Video recordings of can’t attend the annual Symposium, most of the Workshops from recent years are available from SAS. If you Kudos or Criticisms? we value your support of the Society for Astronomical Sciences, and your were registered for the Workshop, then the recording is free. If you were not a We are looking forward to seeing re- interest in small-telescope science. registered attendee, then the price is sults on a wide diversity of projects You can renew your membership on $50 per workshop. Contact Bob and objects at SAS-2017! If you have the SAS website (SocAstroSci.org), by Buchheim ([email protected]) for any questions or ideas for the Sympo- going to the MEMBERSHIP/REGISTRATION the details. -
Andromeda IX: a New Dwarf Spheroidal Satellite Of
Andromeda IX: A New Dwarf Spheroidal Satellite of M31 Daniel B. Zucker1,10, Alexei Y. Kniazev1, Eric F. Bell1, David Mart´inez-Delgado1, Eva K. Grebel1,2, Hans-Walter Rix1, Constance M. Rockosi3, Jon A. Holtzman4, Rene A. M. Walterbos4, James Annis5, Donald G. York6, Zeljkoˇ Ivezi´c7, J. Brinkmann8, Howard Brewington8, Michael Harvanek8, Greg Hennessy9, S. J. Kleinman8, Jurek Krzesinski8, Dan Long8, Peter R. Newman8, Atsuko Nitta8, Stephanie A. Snedden8 ABSTRACT We report the discovery of a new dwarf spheroidal satellite of M31, An- dromeda IX, based on resolved stellar photometry from the Sloan Digital Sky Survey (SDSS). Using both SDSS and public archival data we have estimated its distance and other physical properties, and compared these to the properties of a previously known dwarf spheroidal companion, Andromeda V, also observed by SDSS. Andromeda IX is the lowest surface brightness galaxy found to date −2 (µV,0 ∼ 26.8 mag arcsec ), and at the distance we estimate from the position of the tip of Andromeda IX’s red giant branch, (m − M)0 ∼ 24.5 (805 kpc), Andromeda IX would also be the faintest galaxy known (MV ∼ −8.3). Subject headings: galaxies: dwarf — galaxies: individual (Andromeda V) — galaxies: individual (Andromeda IX) — galaxies: evolution — Local Group 1Max-Planck-Institut f¨ur Astronomie, K¨onigstuhl 17, D-69117 Heidelberg, Germany; [email protected] 2Astronomisches Institut, Universit¨at Basel, Venusstrasse 7,CH-4102 Binningen, Switzerland arXiv:astro-ph/0404268v2 16 Aug 2004 3Astronomy Department, University of Washington, Box 351580, Seattle WA 98195-1580 4Department of Astronomy, New Mexico State University, 1320 Frenger Mall, Las Cruces NM 88003-8001 5Fermi National Accelerator Laboratory, P.O. -
Target Selection for the SUNS and DEBRIS Surveys for Debris Discs in the Solar Neighbourhood
Mon. Not. R. Astron. Soc. 000, 1–?? (2009) Printed 18 November 2009 (MN LATEX style file v2.2) Target selection for the SUNS and DEBRIS surveys for debris discs in the solar neighbourhood N. M. Phillips1, J. S. Greaves2, W. R. F. Dent3, B. C. Matthews4 W. S. Holland3, M. C. Wyatt5, B. Sibthorpe3 1Institute for Astronomy (IfA), Royal Observatory Edinburgh, Blackford Hill, Edinburgh, EH9 3HJ 2School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9SS 3UK Astronomy Technology Centre (UKATC), Royal Observatory Edinburgh, Blackford Hill, Edinburgh, EH9 3HJ 4Herzberg Institute of Astrophysics (HIA), National Research Council of Canada, Victoria, BC, Canada 5Institute of Astronomy (IoA), University of Cambridge, Madingley Road, Cambridge, CB3 0HA Accepted 2009 September 2. Received 2009 July 27; in original form 2009 March 31 ABSTRACT Debris discs – analogous to the Asteroid and Kuiper-Edgeworth belts in the Solar system – have so far mostly been identified and studied in thermal emission shortward of 100 µm. The Herschel space observatory and the SCUBA-2 camera on the James Clerk Maxwell Telescope will allow efficient photometric surveying at 70 to 850 µm, which allow for the detection of cooler discs not yet discovered, and the measurement of disc masses and temperatures when combined with shorter wavelength photometry. The SCUBA-2 Unbiased Nearby Stars (SUNS) survey and the DEBRIS Herschel Open Time Key Project are complimentary legacy surveys observing samples of ∼500 nearby stellar systems. To maximise the legacy value of these surveys, great care has gone into the target selection process. This paper describes the target selection process and presents the target lists of these two surveys. -
Atmospheric Velocity Fields in Tepid Main Sequence Stars
A&A 503, 973–984 (2009) Astronomy DOI: 10.1051/0004-6361/200912083 & c ESO 2009 Astrophysics Atmospheric velocity fields in tepid main sequence stars, J. D. Landstreet1,2, F. Kupka3,6,H.A.Ford2,4,5,T.Officer2,T.A.A.Sigut2, J. Silaj2, S. Strasser2, and A. Townshend2 1 Armagh Observatory, College Hill, Armagh BT61 9DG, Northern Ireland 2 Department of Physics & Astronomy, University of Western Ontario, London, ON N6A 3K7, Canada e-mail: [email protected] 3 Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching, Germany 4 Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia 5 Australia Telescope National Facility, CSIRO, Epping, NSW 1710, Australia 6 Observatoire de Paris, LESIA, CNRS UMR 8109, 92195, Meudon, France Received 16 March 2009 / Accepted 11 June 2009 ABSTRACT −1 Context. The line profiles of the stars with ve sin i below a few km s can reveal direct signatures of local velocity fields such as convection in stellar atmospheres. This effect is well established in cool main sequence stars, and has been detected and studied in three A stars. Aims. This paper reports observations of main sequence B, A and F stars (1) to identify additional stars with sufficiently low values of ve sin i to search for spectral line profile signatures of local velocity fields and (2) to explore how the signatures of the local velocity fields in the atmosphere depend on stellar parameters such as effective temperature and peculiarity type. Methods. We have carried out a spectroscopic survey of B and A stars of low ve sin i at high resolution. -
A Bayesian Approach to Locating the Red Giant Branch Tip Magnitude
submitted to Astrophysical Journal Preprint typeset using LATEX style emulateapj v. 5/2/11 A BAYESIAN APPROACH TO LOCATING THE RED GIANT BRANCH TIP MAGNITUDE (PART II); DISTANCES TO THE SATELLITES OF M31 A. R.Conn1, 2, 3,R.A.Ibata3,G.F.Lewis4,Q.A.Parker1, 2, 5,D.B.Zucker1,2, 5, N. F. Martin3, A. W. McConnachie6, M. J. Irwin7, N. Tanvir8,M.A.Fardal9,A.M.N.Ferguson10,S.C.Chapman7, and D. Valls-Gabaud11 submitted to Astrophysical Journal ABSTRACT In ‘A Bayesian Approach to Locating the Red Giant Branch Tip Magnitude (PART I),’ a new technique was introduced for obtaining distances using the TRGB standard candle. Here we describe a useful com- plement to the technique with the potential to further reduce the uncertainty in our distance measurements by incorporating a matched-filter weighting scheme into the model likelihood calculations. In this scheme, stars are weighted according to their probability of being true object members. We then re-test our modified algorithm using random-realization artificial data to verify the validity of the generated posterior probability distributions (PPDs) and proceed to apply the algorithm to the satellite system of M31, culminating in a 3D view of the system. Further to the distributions thus obtained, we apply a satellite-specific prior on the satel- lite distances to weight the resulting distance posterior distributions, based on the halo density profile. Thus in a single publication, using a single method, a comprehensive coverage of the distances to the companion galaxies of M31 is presented, encompassing the dwarf spheroidals Andromedas I - III, V, IX-XXVII and XXX along with NGC147, NGC 185, M33 and M31 itself. -
AURA/NOAO ANNUAL PROJECT REPORT FY 2004 Submitted to the National Science Foundation Via Fastlane November 1, 2004
AURA/NOAO ANNUAL PROJECT REPORT FY 2004 Submitted to the National Science Foundation via FastLane November 1, 2004 Three-color composite image of spiral galaxy NGC4402 taken at the WIYN 3.5-meter telescope on Kitt Peak using the WIYN Tip-Tilt module, an adaptive optics device that uses a movable mirror to provide first-order compensation for the jittery motion of the incoming image caused by variable atmospheric conditions and telescope vibrations. NGC4402 is interacting with the intergalactic medium of the Virgo Cluster. Photo Courtesy: H. Crowl (Yale University) and WIYN/NOAO/AURA/NSF NATIONAL OPTICAL ASTRONOMY OBSERVATORY TABLE OF CONTENTS EXECUTIVE SUMMARY .........................................................................................................iii 1 SCIENTIFIC ACTIVITIES AND FINDINGS....................................................................1 1.1 NOAO Gemini Science Center, 1 A Luminous Lyman-α Emitting Galaxy at Redshift z=6.535, 1 Accretion Signatures in Massive Star Formation, 1 1.2 Cerro Tololo Inter-American Observatory (CTIO), 3 The Halo of Our Galaxy: Structured, Not Smooth, 3 Science with ISPI at the Blanco, 3 1.3 Kitt Peak National Observatory (KPNO), 4 2 THE NATIONAL GROUND-BASED O/IR OBSERVING SYSTEM ..............................6 2.1 The Gemini Telescopes, 6 Support of U.S. Gemini Users and Proposers, 6 Providing U.S. Scientific Input to Gemini, 7 U.S. Gemini Instrumentation Program, 7 2.2 CTIO Telescopes, 8 Blanco 4-Meter Telescope, 8 SOAR 4-m Telescope, 9 Blanco Instrumentation, 9 SOAR Instrumentation, 10 SMARTS Consortium and Other Small Telescopes, 10 2.3 KPNO Telescopes, 11 Performance Upgrades at WIYN, 11 New Instrument and Upgrades, 12 New Major Tenant for KPNO, 12 Site Protection, 13 2.4 Enhanced Community Access to the Independent Observatories, 13 MMT Observatory and the Hobby-Eberly Telescope, 13 W. -
OCA CLUB MEETING STAR PARTIES COMING up the Free and Open Club the Anza Star Party Is on November 22Nd
November 2003 Free to members, subscriptions $12 for 12 issues Volume 30, Number 11 This picture of the Witch Head Nebula (IC 2118) was taken by Bill Patterson on 9/28/03 near Mt. Pinos, CA. It may be viewed in glorious color at the Anacortes Telescope and Wild Bird Photo Gallery: http://www.buytelescopes.com/gallery/view_photo.asp?pid=792 and in the Image Gallery at the Orange County Astronomers website. OCA CLUB MEETING STAR PARTIES COMING UP The free and open club The Anza star party is on November 22nd. The next session of the meeting will be held Friday, The Black Star Canyon site will be open this Beginners Class will be held November 14th at 7:30 PM month on November 15th. Members are on Friday November 7th (and in the Irvine Lecture Hall of encouraged to check the website calendar, next month on December 5th) the Hashinger Science for the latest updates on star parties and at the Centennial Heritage Center at Chapman other events. Museum (formerly the University in Orange. The Discovery Museum of Orange featured speaker this Please check the website calendar for the County) at 3101 West month is yet to be outreach events this month! Volunteers Harvard Street in Santa Ana. announced as of press are always welcome! time. You are also reminded to check the web ETX SIG: Nov. 3rd site frequently for updates to the calendar Astro-Imagers SIG: Nov. 18th of events and other club news. The EOA SIG: Nov. 19th Astrophysics SIG: Dec. 19th time had come for him to pass on wide range of his interests President’s primary responsibility for the website (www.sipe.com).