Dentición Vertebrados. Introdución • Órganos Ectodérmicos • Los Dientes Tienen Su Origen En El Exoesqueleto (Esqueleto Dérmico)

Total Page:16

File Type:pdf, Size:1020Kb

Dentición Vertebrados. Introdución • Órganos Ectodérmicos • Los Dientes Tienen Su Origen En El Exoesqueleto (Esqueleto Dérmico) Dentición vertebrados. Introdución • Órganos ectodérmicos • Los dientes tienen su origen en el exoesqueleto (esqueleto dérmico). En los elasmobranquios está compuesto por estructuras externas, mineralizadas (fosfaticas: apatito), duras que incluyen las escamas placoideas que cubren la superficie del cuerpo, la cavidad bucal y el esqueleto branquial. Las escamas placoideas son de varios tipos: dentículos dermales, espinas cefálicas y en las aletas, dientes rostrales, en los tiburones sierra y Tummers, 2004 peces espada y dientes orales. Morfogénesis Durante la morfogénesis el desarrollo ontogenético de los diferentes órganos conduce a las morfologías tan distintas presentes en el adulto y que realizan funciones radicalmente diferentes (Tummers, 2004) Tummers, 2004 Desarrollo, ontogenia dental Histología dental • Dentina, Esmalte Histología: partes de un diente tecodonto A. Corona. B. Raíz 1. Esmalte 2. Dentina 3. Cavidad pulpar 4. Encías 5. Raíz 6. Hueso 7. Arterias 8. Venas 9. Con las arterias y venas, terminaciones nerviosas 10.Ligamentos periodontales Desarrollo de un incisivo humano Crecimiento de un molar humano Aiello & Dean, 1990 Epitelio y mesénquima dental Aiello & Dean, 1990 Sección de la union del esmalte (marrón) y dentina (blanco). Las líneas blancas indican la dirección de los prismas de Estrias de esmalte y de los túbulos de Retzius dentina respectivamente Funciones de los dientes • Arrancar • Retener • Peinar y cuidar el pelo • Descortezar • roer • Cortar • Moler Funciones de los dientes • Peinar y cuidar el pelo • Nature 289, 583 - 585 • February 1981 • Function of the mandibular tooth comb in living and extinct mammals • Kenneth D. Rose, Alan Walker & Louis L. Jacobs doi:10.1038/289583a0 Los dientes en los distintos vertebrados • Los dientes de los elasmobranquios varían desde el tipo prensil al triturador. Entre estos extremos hay multitud de complejos patrones. • En los condrictios hay todo tipo de dentición (de arriba abajo): • Dientes para retener • Moler • Triturar • Serrar Implantación dental • Implantación de los dientes en las mandíbulas • Los dientes de los Reptiles están fusionados o adheridos a piezas óseas; esta implantación dental se realiza de dos maneras. Los dientes están fusionados directamente a la mandíbula (tipo acrodonto) por lo que carecen de una raíz propiamente dicha. En otros reptiles parte de la longitud del diente se encuentra por debajo del tejido blando (la encía) pero se encuentra situado en un surco, alineado con otros dientes (tipo pleurodonto) o bien hay pequeños alveolos en este surco en los que parcialmente se inserta (tipo subtecodonto). • Implantación por anquilosis • es el tipo que se encuentra en todos los reptiles actuales a excepción de los cocodrilos. El diente se une al soporte óseo por sinostosis por medio de un tejido "paradental". Se reconocen varios tipos de implantación por anquilosis: • Acrodonta en la cual todos los dientes están fijados por su base sobre el borde de las piezas esqueléticas, es el que se da en Rhynchocephalos, Agámidos, Camaleónidos, y Trogonophinos-Amphisbenidos En las serpientes los dientes se fijan por su base en pequeñas cúpulas de los márgenes de las piezas óseas, se trata de un tipo particular de acrodoncia. • Pleurodonta en la cual el soporte óseo se realiza sobre un surco con la margen externa o labial muy desarrollada a lo largo del cual los dientes se fijan por su cara lateral. La dentición pleurodonta caracteriza a los Lacertilia aparte de las familias anteriormente citadas y a los Amphisbenidos salvo los Trogonophinos-Amphisbenidos. • Hay tipos intermedios • Implantación en un alvéolo • es el tipo tecodonto que es propio de los cocodrilos y mamíferos de entre los tetrápodos actuales. Los dientes tienen una larga raiz implantada en un alveolo al cual están unidos por el ligamento periodontal que se fija a una capa de cemento que cubre la raiz 8 en mamíferos cuyos dientes son de crecimiento contínuo y, por lo tanto carecen de raíz, el cemento cubre parcialmente la corona y el esmalte falta en algunas regiones para posibilitar la inserción del ligamento, que no podría hacerlo al esmalte). Implantación dental • Implantación de los dientes en las mandíbulas • Los dientes de los Reptiles están fusionados o adheridos a piezas óseas; esta implantación dental se realiza de dos maneras. Los dientes están fusionados directamente a la mandíbula (tipo acrodonto) por lo que carecen de una raíz propiamente dicha. En otros reptiles parte de la longitud del diente se encuentra por debajo del tejido blando (la encía) pero se encuentra situado en un surco, alineado con otros dientes (tipo pleurodonto) o bien hay pequeños alveolos en este surco en los que parcialmente se inserta (tipo subtecodonto). • Implantación por anquilosis • es el tipo que se encuentra en todos los reptiles actuales a excepción de los cocodrilos. El diente se une al soporte óseo por sinostosis por medio de un tejido "paradental". Se reconocen varios tipos de implantación por anquilosis: • Acrodonta en la cual todos los dientes están fijados por su base sobre el borde de las piezas esqueléticas, es el que se da en Rhynchocephalos, Agámidos, Camaleónidos, y Trogonophinos-Amphisbenidos En las serpientes los dientes se fijan por su base en pequeñas cúpulas de los márgenes de las piezas óseas, se trata de un tipo particular de acrodoncia. A Squamate Cladogram LEPIDOSAUROMORPHA |-- RHYNCHOCEPHALIA `--Squamata |--Iguania | |-- Tropiduridae | |--Acrodonta | | |-- Priscagamidae | | `--+--Agamidae | | | |-- Amphibolurinae | | | `--Draconinae | | `-- Chamaeleonidae | `--Iguanids `-- SCLEROGLOSSA Implantación dental • En las serpientes los dientes se fijan por su base en pequeñas cúpulas de los márgenes de las piezas óseas, se trata de un tipo particular de acrodoncia. Implantación dental • Pleurodonta en la cual el soporte óseo se realiza sobre un surco con la margen externa o labial muy desarrollada a lo largo del cual los dientes se fijan por su cara lateral. La dentición pleurodonta caracteriza a los Lacertilia aparte de las familias anteriormente citadas y a los Amphisbenidos salvo los Trogonophinos-Amphisbenidos. Implantación dental • Implantación en un alvéolo • es el tipo tecodonto que es propio de los cocodrilos y mamíferos de entre los tetrápodos actuales. Los dientes tienen una larga raiz implantada en un alveolo al cual están unidos por el ligamento periodontal que se fija a una capa de cemento que cubre la raiz 8 en mamíferos cuyos dientes son de crecimiento contínuo y, por lo tanto carecen de raíz, el cemento cubre parcialmente la corona y el esmalte falta en algunas regiones para posibilitar la inserción del ligamento, que no podría hacerlo al esmalte). Reemplazamiento dental Tiburones y rayas tienen una dentición polifiodonta, esto es que los viejos dientes son reemplazados por nuevos dientes durante su vida. Los dientes se desarrollan a lo largo de la superficie interna del cartílago en asociación con un replegamiento del tejido epidérmico. Están sujetos a la membrana dental y avanzan anteriormente en forma parecida a una cinta mecánica, hacen erupción y se vuelven funcionales durante un tiempo. Lo primero que se forma es la corona, construida de esmalte (o esmaltoide). La raiz se forma posteriormente, rellena la corona y se encuentra completamente formada cuando el diente alcanza la posición funcional. Muchos dientes caen durante el proceso de alimentación, pero muchos otros caen simplemente por el proceso de movimiento de la cinta mecánica. Esta es una de las razones por las que los dientes de tiburones son tan comunes en el registro fósil. Los dientes que se sueltan en vida pueden tener coronas rotas o desgastadas, pero las raices estarán siempre completamente desarrolladas. En contraste, los dientes caidos como resultado de la muerte de un individuo contendrán todos los estadios de crecimientos, desde la corona de esmaltoide hasta el diente completo con las raíces bien desarrolladas. Reemplazamiento dental Dinosaurios: dientes tecodontos Remplazamiento contínuo Reemplazamiento dental Mamíferos: dientes tecodontos de un sólo reemplazamiento durante la ontogenia.
Recommended publications
  • JVP 26(3) September 2006—ABSTRACTS
    Neoceti Symposium, Saturday 8:45 acid-prepared osteolepiforms Medoevia and Gogonasus has offered strong support for BODY SIZE AND CRYPTIC TROPHIC SEPARATION OF GENERALIZED Jarvik’s interpretation, but Eusthenopteron itself has not been reexamined in detail. PIERCE-FEEDING CETACEANS: THE ROLE OF FEEDING DIVERSITY DUR- Uncertainty has persisted about the relationship between the large endoskeletal “fenestra ING THE RISE OF THE NEOCETI endochoanalis” and the apparently much smaller choana, and about the occlusion of upper ADAM, Peter, Univ. of California, Los Angeles, Los Angeles, CA; JETT, Kristin, Univ. of and lower jaw fangs relative to the choana. California, Davis, Davis, CA; OLSON, Joshua, Univ. of California, Los Angeles, Los A CT scan investigation of a large skull of Eusthenopteron, carried out in collaboration Angeles, CA with University of Texas and Parc de Miguasha, offers an opportunity to image and digital- Marine mammals with homodont dentition and relatively little specialization of the feeding ly “dissect” a complete three-dimensional snout region. We find that a choana is indeed apparatus are often categorized as generalist eaters of squid and fish. However, analyses of present, somewhat narrower but otherwise similar to that described by Jarvik. It does not many modern ecosystems reveal the importance of body size in determining trophic parti- receive the anterior coronoid fang, which bites mesial to the edge of the dermopalatine and tioning and diversity among predators. We established relationships between body sizes of is received by a pit in that bone. The fenestra endochoanalis is partly floored by the vomer extant cetaceans and their prey in order to infer prey size and potential trophic separation of and the dermopalatine, restricting the choana to the lateral part of the fenestra.
    [Show full text]
  • Redalyc.Comparative Studies of Supraocular Lepidosis in Squamata
    Multequina ISSN: 0327-9375 [email protected] Instituto Argentino de Investigaciones de las Zonas Áridas Argentina Cei, José M. Comparative studies of supraocular lepidosis in squamata (reptilia) and its relationships with an evolutionary taxonomy Multequina, núm. 16, 2007, pp. 1-52 Instituto Argentino de Investigaciones de las Zonas Áridas Mendoza, Argentina Disponible en: http://www.redalyc.org/articulo.oa?id=42801601 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto ISSN 0327-9375 COMPARATIVE STUDIES OF SUPRAOCULAR LEPIDOSIS IN SQUAMATA (REPTILIA) AND ITS RELATIONSHIPS WITH AN EVOLUTIONARY TAXONOMY ESTUDIOS COMPARATIVOS DE LA LEPIDOSIS SUPRA-OCULAR EN SQUAMATA (REPTILIA) Y SU RELACIÓN CON LA TAXONOMÍA EVOLUCIONARIA JOSÉ M. CEI † las subfamilias Leiosaurinae y RESUMEN Enyaliinae. Siempre en Iguania Observaciones morfológicas Pleurodonta se evidencian ejemplos previas sobre un gran número de como los inconfundibles patrones de especies permiten establecer una escamas supraoculares de correspondencia entre la Opluridae, Leucocephalidae, peculiaridad de los patrones Polychrotidae, Tropiduridae. A nivel sistemáticos de las escamas específico la interdependencia en supraoculares de Squamata y la Iguanidae de los géneros Iguana, posición evolutiva de cada taxón Cercosaura, Brachylophus,
    [Show full text]
  • Crotaphytus Collaris)
    bioRxiv preprint doi: https://doi.org/10.1101/270983; this version posted March 19, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Evidence for sex microchromosomes in a species with temperature- 2 influenced sex determination (Crotaphytus collaris) 3 Authors: Jodie M. Wiggins1, Enrique Santoyo-Brito1, Jon B. Scales2, Stanley F. Fox1 4 1. Department of Integrative Biology, Oklahoma State University, OK 74078, USA 5 2. Department of Biology, Midwestern State University, TX 76308, USA 6 Keywords 7 8 Sex-determining mechanism, genotypic sex determination, temperature-dependent sex 9 determination, gene-dosage, sex microchromosome, reptile, Crotaphytus collaris 10 11 Abstract 12 13 The characteristics of a species’ evolution can be powerfully influenced by its mode of sex 14 determination and, indeed, sex determination mechanisms vary widely among eukaryotes. In 15 non-avian reptiles, sex was long thought to be determined bimodally, either by temperature or 16 genetics. Here we add to the growing evidence that sex determining mechanisms in reptiles fall 17 along a continuum rather than existing as a mutually exclusive dichotomy. Using qPCR, we 18 demonstrate that the lizard Crotaphytus collaris possesses sex-based gene dosage consistent with 19 the presence of sex michrochromosomes, despite that extreme incubation temperatures can 20 influence hatchling sex ratio. Our results suggest a temperature override that switches genotypic 21 females to phenotypic males at high and low temperatures.
    [Show full text]
  • Docent Manual
    2018 Docent Manual Suzi Fontaine, Education Curator Montgomery Zoo and Mann Wildlife Learning Museum 7/24/2018 Table of Contents Docent Information ....................................................................................................................................................... 2 Dress Code................................................................................................................................................................. 9 Feeding and Cleaning Procedures ........................................................................................................................... 10 Docent Self-Evaluation ............................................................................................................................................ 16 Mission Statement .................................................................................................................................................. 21 Education Program Evaluation Form ...................................................................................................................... 22 Education Master Plan ............................................................................................................................................ 23 Animal Diets ............................................................................................................................................................ 25 Mammals ....................................................................................................................................................................
    [Show full text]
  • Sex Chromosomes Are Conserved Across Iguanas
    Downloaded from http://rsbl.royalsocietypublishing.org/ on March 6, 2015 Evolutionary biology Cretaceous park of sex determination: sex chromosomes are conserved rsbl.royalsocietypublishing.org across iguanas Michail Rovatsos1, Martina Pokorna´1,2, Marie Altmanova´1 Research and Luka´ˇs Kratochvı´l1 Cite this article: Rovatsos M, Pokorna´ M, 1Faculty of Science, Department of Ecology, Charles University in Prague, Vinicˇna´ 7, Praha 2, Czech Republic 2 Altmanova´ M, Kratochvı´l L. 2014 Cretaceous Institute of Animal Physiology and Genetics, Academy of the Sciences of the Czech Republic, Rumburska´ 89, Libeˇchov, Czech Republic park of sex determination: sex chromosomes are conserved across iguanas. Biol. Lett. 10: Many poikilothermic vertebrate lineages, especially among amphibians and 20131093. fishes, possess a rapid turnover of sex chromosomes, while in endotherms http://dx.doi.org/10.1098/rsbl.2013.1093 there is a notable stability of sex chromosomes. Reptiles in general exhibit variability in sex-determining systems; as typical poikilotherms, they might be expected to have a rapid turnover of sex chromosomes. However, molecular data which would enable the testing of the stability of sex chromosomes are Received: 21 December 2013 lacking in most lineages. Here, we provide molecular evidence that sex Accepted: 13 February 2014 chromosomes are highly conserved across iguanas, one of the most species- rich clade of reptiles. We demonstrate that members of the New World families Iguanidae, Tropiduridae, Leiocephalidae, Phrynosomatidae, Dactyloidae and Crotaphytidae, as well as of the family Opluridae which is restricted to Mada- gascar, all share homologous sex chromosomes. As our sampling represents Subject Areas: the majority of the phylogenetic diversity of iguanas, the origin of iguana evolution sex chromosomes can be traced back in history to the basal splitting of this group which occurred during the Cretaceous period.
    [Show full text]
  • Evolution of Developmental Sequences in Lepidosaurs
    Evolution of developmental sequences in lepidosaurs Tomasz Skawi«ski and Bartosz Borczyk Department of Evolutionary Biology and Conservation of Vertebrates, University of Wroclaw, Wrocªaw, Poland ABSTRACT Background. Lepidosaurs, a group including rhynchocephalians and squamates, are one of the major clades of extant vertebrates. Although there has been extensive phylo- genetic work on this clade, its interrelationships are a matter of debate. Morphological and molecular data suggest very different relationships within squamates. Despite this, relatively few studies have assessed the utility of other types of data for inferring squamate phylogeny. Methods. We used developmental sequences of 20 events in 29 species of lepidosaurs. These sequences were analysed using event-pairing and continuous analysis. They were transformed into cladistic characters and analysed in TNT. Ancestral state reconstructions were performed on two main phylogenetic hypotheses of squamates (morphological and molecular). Results. Cladistic analyses conducted using characters generated by these methods do not resemble any previously published phylogeny. Ancestral state reconstructions are equally consistent with both morphological and molecular hypotheses of squamate phylogeny. Only several inferred heterochronic events are common to all methods and phylogenies. Discussion. Results of the cladistic analyses, and the fact that reconstructions of heterochronic events show more similarities between certain methods rather than phylogenetic hypotheses, suggest that
    [Show full text]
  • Multiple Evolutionary Origins and Losses of Tooth Complexity
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.15.042796; this version posted April 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Multiple evolutionary origins and losses of tooth 2 complexity in squamates 3 4 Fabien Lafuma*a, Ian J. Corfe*a, Julien Clavelb,c, Nicolas Di-Poï*a 5 6 aDevelopmental Biology Program, Institute of Biotechnology, University of Helsinki, FIN- 7 00014 Helsinki, Finland 8 bDepartment of Life Sciences, The Natural History Museum, London SW7 5DB, United 9 Kingdom 10 cLaboratoire d’Écologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), Université 11 Claude Bernard Lyon 1 – UMR CNRS 5023, ENTPE, F-69622 Villeurbanne, France 12 13 *Mail: [email protected]; [email protected]; [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.04.15.042796; this version posted April 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 14 Teeth act as tools for acquiring and processing food and so hold a prominent role in 15 vertebrate evolution1,2. In mammals, dental-dietary adaptations rely on tooth shape and 16 complexity variations controlled by cusp number and pattern – the main features of the 17 tooth surface3,4.
    [Show full text]
  • Download/4084574/Burrow Young1999.Pdf 1262 Burrow, C
    bioRxiv preprint doi: https://doi.org/10.1101/2019.12.19.882829; this version posted December 27, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 1aCC-BY-ND 4.0 International license. Recalibrating the transcriptomic timetree of jawed vertebrates 1 David Marjanović 2 Department of Evolutionary Morphology, Science Programme “Evolution and Geoprocesses”, 3 Museum für Naturkunde – Leibniz Institute for Evolutionary and Biodiversity Research, Berlin, 4 Germany 5 Correspondence: 6 David Marjanović 7 [email protected] 8 Keywords: timetree, calibration, divergence date, Gnathostomata, Vertebrata 9 Abstract 10 Molecular divergence dating has the potential to overcome the incompleteness of the fossil record in 11 inferring when cladogenetic events (splits, divergences) happened, but needs to be calibrated by the 12 fossil record. Ideally but unrealistically, this would require practitioners to be specialists in molecular 13 evolution, in the phylogeny and the fossil record of all sampled taxa, and in the chronostratigraphy of 14 the sites the fossils were found in. Paleontologists have therefore tried to help by publishing 15 compendia of recommended calibrations, and molecular biologists unfamiliar with the fossil record 16 have made heavy use of such works. Using a recent example of a large timetree inferred from 17 molecular data, I demonstrate that calibration dates cannot be taken from published compendia 18 without risking strong distortions to the results, because compendia become outdated faster than they 19 are published. The present work cannot serve as such a compendium either; in the slightly longer 20 term, it can only highlight known and overlooked problems.
    [Show full text]
  • Escaping the Evolutionary Trap? Sex Chromosome Turnover in Basilisks and Related Lizards (Corytophanidae: Squamata)
    Evolutionary biology Escaping the evolutionary trap? Sex royalsocietypublishing.org/journal/rsbl chromosome turnover in basilisks and related lizards (Corytophanidae: Squamata) Research 1,2 2 2,3,4 Cite this article: Nielsen SV, Guzmán-Méndez Stuart V. Nielsen , Irán Andira Guzmán-Méndez , Tony Gamble , IA, Gamble T, Blumer M, Pinto BJ, Kratochvíl L, Madison Blumer5, Brendan J. Pinto2,3, Lukáš Kratochvíl6 and Michail Rovatsos6 Rovatsos M. 2019 Escaping the evolutionary 1 trap? Sex chromosome turnover in basilisks Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA 2Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA and related lizards (Corytophanidae: 3Milwaukee Public Museum, 800 W. Wells Street, Milwaukee, WI 53233, USA Squamata). Biol. Lett. 15: 20190498. 4Bell Museum of Natural History, University of Minnesota, Saint Paul, MN 55108, USA 5 http://dx.doi.org/10.1098/rsbl.2019.0498 Keck Science Department, Scripps College, Claremont, CA 91711, USA 6Department of Ecology, Faculty of Science, Charles University, Viničná 7, 12844 Prague 2, Czech Republic IAG, 0000-0001-5217-2689; MB, 0000-0001-6859-8668; BJP, 0000-0002-4243-5788; LK, 0000-0002-3515-729X; MR, 0000-0002-8429-5680 Received: 8 July 2019 Accepted: 18 September 2019 Most pleurodont lizard families (anoles, iguanas and their relatives), with the exception of the basilisks and casquehead lizards (family Corytophani- dae), share homologous XX/XY sex chromosomes, syntenic with chicken chromosome 15. Here, we used a suite of methods (i.e. RADseq, RNAseq and qPCR) to identify corytophanid sex chromosomes for the first time. We Subject Areas: reveal that all examined corytophanid species have partially degenerated evolution XX/XY sex chromosomes, syntenic with chicken chromosome 17.
    [Show full text]
  • Phylogenetic Relationships of Corytophanid Lizards
    PhylogeneticBlackwell Publishing, Ltd. relationships of corytophanid lizards (Iguania, Squamata, Reptilia) based on partitioned and total evidence analyses of sperm morphology, gross morphology, and DNA data GUSTAVO H. C. VIEIRA, GUARINO R. COLLI & SÔNIA N. BÁO Accepted: 21 June 2005 Vieira, G. H. C., Colli, G. R. & Báo, S. N. (2005). Phylogenetic relationships of corytophanid doi:10.1111/j.1463-6409.2005.00208.x lizards (Iguania, Squamata, Reptilia) based on partitioned and total evidence analyses of sperm morphology, gross morphology, and DNA data. — Zoologica Scripta, 34, 605–625. We conducted partitioned and combined Bayesian and parsimony phylogenetic analyses of corytophanid lizards (Iguania) using mtDNA, gross morphology, and sperm ultrastructure data sets. Bayesian and parsimony hypotheses showed little disagreement. The combined analysis, but not any of the partitioned ones, showed strong support for the monophyly of Corytophanidae and its three genera, Basiliscus, Corytophanes, and Laemanctus. Basiliscus is the sister taxon of a well-supported clade formed by Corytophanes and Laemanctus. The relation- ships of species within Basiliscus and Corytophanes received weak support, regardless of the method used. We defend those relationships as feasible and open to further testing. Data derived from the ultrastructure of spermatozoa are potentially a good source of characters for systematic inferences of Iguania and its major lineages. A Brooks Parsimony Analysis based on the geographic distributions of corytophanids and the phylogenetic tree obtained from the combined analysis suggested a Central American origin of the group, a recent colonization of northern South America, and the role of epeirogenic uplifts and the formation of lowlands during the late Tertiary in the differentiation of corytophanids.
    [Show full text]
  • Morfología, Distribución Geográfica Y Microhábitat De Los Lagartos Cubanos Del Género Anolis (Lepidosauria: Iguania)
    INSTITUTO DE ECOLOGÍA Y SISTEMÁTICA MINISTERIO DE CIENCIA, TECNOLOGÍA Y MEDIO AMBIENTE Morfología, distribución geográfica y microhábitat de los lagartos cubanos del género Anolis (Lepidosauria: Iguania) AUTORA: Lic. Lourdes Rodríguez Schettino TUTOR: Dr. Alberto Coy Otero Tesis en opción al grado científico de Doctor en Ciencias Biológicas La Habana 1999 A mis padres, esposo e hijos SÍNTESIS En el género Anolis Daudin, 1802, se incluyen más de 250 especies, distribuidas desde Norte hasta Sur América, incluyendo las Antillas Mayores y Menores, las Islas Bahamas y algunas islas del Pacífico. En Cuba viven 51 especies (94.1 % endémicas), número que es el mayor registrado para un país. Para conservarlas adecuadamente, los objetivos trazados fueron: preparar una clave para su identificación y verificar la presencia de grupos de especies morfológicamente afines; actualizar la distribución geográfica y altitudinal; caracterizar los tipos de substratos que utilizan y comprobar si existe distribución vertical sobre ellos. Para alcanzarlos, se revisó la literatura al respecto, se tomaron diferentes medidas a los ejemplares depositados en colecciones, se revisaron los ficheros de las colecciones, se visitaron numerosas localidades a través de todo el país, donde se realizaron censos de las especies y observaciones sobre el tipo de substrato y la altura sobre el suelo a que se encontraban. Con todo este trabajo se logró por primera vez: preparar un compendio sobre las especies cubanas del género; identificarlas mediante la clave confeccionada; comprobar
    [Show full text]
  • Autoreferát (717.4Kb)
    Univerzita Karlova, Přírodovědecká fakulta Katedra ekologie Charles University, Faculty of Science Department of Ecology Doktorský studijní program: Ekologie Doctoral study programme: Ecology Autoreferát disertační práce Summary of the Doctoral thesis Evoluce pohlavních chromozomů a karyotypů u leguánů (Squamata: Pleurodonta) Evolution of sex chromosomes and karyotypes in iguanas (Squamata: Pleurodonta) Mgr. Marie Altmanová Školitel / Supervisor: prof. Lukáš Kratochvíl, Ph.D. Školitel-konzultant / Supervisor-consultant: RNDr. Martina Johnson Pokorná, Ph.D. Praha, 2017 Abstrakt Disertační práce je souborem pěti publikovaných původních prací a jednoho rukopisu a je zaměřena na evoluci pohlavních chromosomů a karyotypu leguánů (Pleurodonta). Na základě primární rešerše dostupných dat byla u leguánů zjištěna pouze samčí heterogamie (XX/XY) s ancestrálním karyotypem 2n = 36 chromosomů. U řady vyšetřených druhů však nebyly základními cytogenetickými metodami pohlavní chromosomy odhaleny pravděpodobně z důvodu jejich homomorfie. Částečně známý obsah pohlavního chromosomu X druhu Anolis carolinensis umožnil porovnání relativní genové dávky X-specifických genů mezi samcem a samicí u zástupců všech leguáních čeledí, čímž byly odhaleny homologické a dobře diferencované pohlavní chromosomy napříč všemi leguány s výjimkou bazilišků. Vzhledem ke srovnatelnému stáří s pohlavními chromosomy savců a ptáků, zpochybňují výsledky význam endotermie pro vznik stabilních pohlavních chromosomů. Nápadným znakem leguánů je v karyotypu poměrně častý výskyt mnohočetných
    [Show full text]