Biomass Ash: a Past and Future Raw Material for Glass-Making?
Total Page:16
File Type:pdf, Size:1020Kb
Biomass Ash: A Past and Future Raw Material for Glass-Making? Dr. Daniel J. Backhouse Dr. Wei Deng, Adrien Guilbot, Robert Ireson, Martyn Marshall, Prof. Paul A. Bingham Glassman Europe, Lyon, 17th September 2019 History of Biomass Ash in Glass 1st – 4th Century A.D. Roman Empire produced large amounts of glassware (Cagno et al., 2012) Primary glass factories produced large quantities of ‘raw glass’ Natron plus lime-rich sand Natron mixture of Na2CO3·10H2O and NaHCO3, small amounts of NaCl and Na2SO4 https://en.wikipedia.org/wiki/Roman_glass#/media/File:Munich_Cup_Diatretum_22102016_1.jpg Primary sources at Wadi Natrun and al-Barnuj , Egypt (Shortland et al., 2010) Raw glass exported to secondary glass producers across empire Remelted, worked to produce glass items for local markets This method of glass production continued after decline of Roman Empire https://en.wikipedia.org/wiki/Natron#/media/File:Emi_Koussi_crater_natron.jpg S. Cagno et al., Evidence of early medieval soda ash glass in the archaeological site of San Genesio (Tuscany), J. Archaol. Sci., 39 (2012), 1540-1552. A. Shortland et al., Natron as a flux in the early vitreous materials industry: sources, beginnings and reasons for decline, J. Archaeol. Sci., 33 (2006), 521-530. History of Biomass Ash in Glass From 7th – 9th Century A.D., natron availability declined (Shortland et al., 2010) Demand – glass manufacturing, also medicines and detergents Political – e.g. Persian invasion (619 A.D.), Muslim Roman Glass in the Corning Museum of Glass vol. 1 # 107 & #109, Fascinating conquest (639 – 642 A.D.), Berber invasions (809, Fragility, Nico Bijnsdorp, P. 401, The Alfred Wolkenberg Collection, Christies’s July 9, 1991 Lot 74, Verres Antiques et De L’Islam, Juin 3 & 4, 1985 Paris, lot 406 867/868, 871 A.D.), Civil war (811 – 832 A.D.) https://ancientglass.wordpress.com/2015/05/13/egyptian-glass-bowl/ By 9th Century, different flux source was required In Levant and Near East, ash from halophytic plants (e.g. Salicornia and Salsola) used (Kato et al., 2010) In northern Europe, wood ash used (primarily beech (Fagus)) (Wedepohl & Simon, 2010) Production of so-called ‘Waldglas’ (‘Forest Glass’) https://www.naturallivingideas.com/wood-ash-uses/ Carolingian Empire from ca. 800 A.D. https://en.wikipedia.org/wiki/Salicornia#/media /File:Salicornia_depressa_WFNY-049B.jpg A. Shortland et al., Natron as a flux in the early vitreous materials industry: sources, beginnings and reasons for decline, J. Archaeol. Sci., 33 (2006), 521-530. N. Kato, I. Nakai & Y Shindo, Transitions in Islamic plant-ash glass vessels: on-site chemical analyses conducted at the Raya/al-Tur area on the Sinai Peninsula in Egypt, J. Archaeol. Sci., 37 (2010), 1381-1395. K. H. Wedepohl & K. Simon, The chemical composition of medieval wood ash glass from Central Europe, Chemie der Erde, 70 (2010), 89-97. History of Biomass Ash in Glass Beech ash contains CaO, K2O and MgO (Wedepohl & Simon, 2010) CaO/K2O ratio 1:1 – 2:1 in wood, approx. 16:1 in bark Glasses are (7 – 20 %)K2O·(18 – 25 %)CaO·(49 – 58 %)SiO2 (Wedepohl & Simon, 2010) MgO (3.7 – 4.6 %), P2O5 (2.2 – 5.1 %) and Al2O3 (1.6 – 2.9 %) Fe2O3 (0.5 – 0.9 %) causes yellow-green colouration Forest glasses known to be produced on a large scale into the 18th Century (Merchant, 1999) From 18th Century onwards, manufacture declined Increased demand for glass products (250 tons of wood for 1 ton glass) (Wedepohl & Simon, 2010) Move to coal-fired furnaces Increased quality/consistency requirement https://www.glasmuseum-lauscha.de/waldglas.html K. H. Wedepohl & K. Simon, The chemical composition of medieval wood ash glass from Central Europe, Chemie der Erde, 70 (2010), 89-97. I. J. Merchant, English Medieval glass-making technology : scientific analysis of the evidence., PhD Thesis, University of Sheffield, 1999. Biomass Ash in Glass - Recent Research Limited research into biomass ash in glass over last 2 - 3 decades Rice Husk Ash (RHA) and Rice Straw Ash (RSA) have received most investigation (Lee et al. 2013, Ruangtaweep et al. 2013, Srisittipokakun et al. 2017, Tuscharoen et al. 2012) RHA and RSA sources of SiO2 (up to 96% after calcination) Used in photoluminescent glass (Lee et al. 2013), optical glasses (Srisittipokakun et al. 2017) and glasses for radiation shielding (Tuscharoen et al. 2012) Research into Sugarcane Bagasse Ash (SCBA) as a raw material for glass ceramics (Teixeira et al. 2014a, Teixeira et al. 2014b) Plant (Pennisetum Purpureum) ash as a raw material in optical glass (Srisittipokakun et al. 2013) Yellow discolouration Woody ashes in preparation of oxynitride glasses (Ali & Jonson 2010) T. Lee, R. Othman & F.-Y. Yeoh, Development of photoluminescent glass derived from rice husk, Biom. & Biomen., 59 (2013), 380-392 Y. Ruangtaweep, N Srisittipokakun, K. Boonin, P Yasaka & J. Kaewhkao, Characterization of Rice Straw Ash and Utilization in Glass Production, Adv. Mater. Res., 748 (2013), 304-308 N. Srisittipokakun, Y. Ruangtaweep, W. Rachniyom, K. Boonin & J. Kaewkhao, CuO, MnO2 and Fe2O3 doped biomass ash as silica source for glass production in Thailand, Res. in Phys., 7 (2017), 3449-3454 S. Tuscharoen, J. Kaewkhao, P. Limkitjaroenporn, P. Limsuwan & W. Chewpraditkul, Improvement of BaO:B2O3:Fly ash glasses: Radiation shielding, physical and optical properties, Ann. Nuc. Energy, 49 (2012), 109-113 S. R. Teixeira, R. S. Magalhaes, A. Arenales, A. E. Souza, M. Romero & J. M. Rincon, Valorization of sugarcane bagasse ash: Producing glass-ceramic materials, J. Environ. Manage., 134 (2014), 15-19 S. R. Teixeira, A. E. Souza, C. L. Carvalho, V. C. S. Reynoso, M. Romero & J. M. Rincon, Characterization of a wollastonite glass-ceramic material prepared using sugar cane bagasse ash (SCBA) as one of the raw materials, Mater. Character., 98 (2014), 209-214. N. Srisittipokakun, K. Kirdsiri, Y. Ruangtaweep, & J. Kaewkhao, Utilization of Pennisetum purpureum ash for use in glass material, Adv. Mater. Res., 770 (2013), 84-87 S. Ali & B. Jonson, Preparation of oxynitride glasses from woody biofuel ashes, J. Non-Cryst. Solids, 356 (2010), 2774-2777 Why Biomass Ash? Industrial glass manufacture is: Energy-intensive - 6500 GWh a-1 in UK for furnaces (DECC, 2015) CO2-generating - 2.2 MT in the UK (2012) IEA report shows increased use of biomass as an energy source in major european economies (IEA, 2018) increased availability of a range of different biomass ashes Alkali and alkaline-earth content https://www.mottmac.com/article/2282/stevens-croft-biomass-power-station-uk Partial replacement for high-value limestone, soda ash, dolomite Ashes decarbonised during combustion Reduced CO2 content vs. limestone, soda ash, dolomite Some ashes have significant K2O contents – mixed-alkali effect to reduce melting temperatures? 'Industrial Decarbonisation & Energy Efficiency Roadmaps to 2050: Glass', Report to Department of Energy and Climate Change and the Department for Business, Innovation and Skills, March 2015. 'Options for increased use of ash from biomass combustion and co-firing', IEA Bioenergy, Task 32: Biomass Combustion and Cofiring, Deliverable D7, 2018. Enviroglass 2/BiomAsh Projects Fully-funded (Enviroglass 2 – Innovate UK, BiomAsh – BEIS) UK projects working with a consortium including Glass Technology Services as well as raw material distributors and biomass power plants Focus on bringing biomass ashes as raw materials for use in the glass industry Enviroglass 2 – Clear Container, Float, Mineral Wool BiomAsh – Green and amber container glass Analysis of biomass ashes from 11 UK power plants – 23 ash types in total Laboratory scale melting of ash-loaded glasses, compared against benchmarks Composition optimisation to produce an ash-containing low Tm glass Pilot-scale trials using Glass Futures facility Experimental Work Clear Container glass samples produced containing range of ashes • Clear Container (CC) Benchmark • CC + 1, 5, 10 wt.% ash (Target benchmark composition) • 1450 °C 4 h for CC • Anneal at 550 °C 1 h for CC Analysis • Visual Inspection • X-Ray Fluorescence (XRF) spectroscopy • X-Ray Diffraction (XRD) • Batch CO2 reduction calculations Analysis of Biomass Ashes Component (wt.%) 01FA 10BA 10BAa 12FA 14BA 16BA Na2O 1.10 0.49 0.49 1.27 2.07 1.25 MgO 2.21 1.34 1.54 4.09 1.51 1.41 Al2O3 16.90 0.84 0.86 1.57 8.26 7.16 SiO2 37.86 51.85 55.43 8.63 64.81 59.67 P2O5 1.60 2.07 1.70 3.09 0.68 0.79 SO 3.17 1.39 0.95 5.22 0.20 0.08 Valuable glass-making 3 Cl 0.21 1.01 0.62 0.51 0.06 0.00 components K2O 8.47 24.00 23.81 19.05 3.61 6.12 CaO 15.40 15.96 13.61 49.53 12.35 16.68 CaO, K2O, SiO2, MgO Sc 0.00 0.00 0.00 0.00 0.78 0.00 TiO2 1.15 0.10 0.00 0.27 0.00 0.55 V2O5 0.07 0.00 0.00 0.00 0.02 0.02 Cr2O3 0.05 0.00 0.02 0.00 0.04 0.06 MnO2 0.51 0.08 0.08 2.31 0.20 0.51 Fe2O3 10.67 0.82 0.89 3.38 3.90 5.27 NiO 0.02 0.00 0.00 0.00 0.21 0.00 CuO 0.03 0.00 0.00 0.04 0.98 0.01 ZnO 0.11 0.00 0.00 0.44 0.01 0.14 Rb2O 0.03 0.00 0.00 0.05 0.00 0.02 SrO 0.14 0.06 0.00 0.19 0.04 0.06 ZrO2 0.05 0.01 0.00 0.03 0.05 0.03 BaO 0.22 0.00 0.00 0.37 0.16 0.13 PbO 0.00 0.00 0.00 0.00 0.06 0.00 TOTAL 99.98 100.02 100.00 100.02 99.99 99.95 Carbon 6.26 2.08 1.22 22.24 0.24 N.M.