Biomass Ash: A Past and Future Raw Material for -Making?

Dr. Daniel J. Backhouse Dr. Wei Deng, Adrien Guilbot, Robert Ireson, Martyn Marshall, Prof. Paul A. Bingham

Glassman Europe, Lyon, 17th September 2019 History of Biomass Ash in Glass  1st – 4th Century A.D. produced large amounts of glassware (Cagno et al., 2012)  Primary glass factories produced large quantities of ‘raw glass’  Natron plus lime-rich sand

 Natron mixture of Na2CO3·10H2O and NaHCO3, small amounts of NaCl and Na2SO4 https://en.wikipedia.org/wiki/Roman_glass#/media/File:Munich_Cup_Diatretum_22102016_1.jpg  Primary sources at Wadi Natrun and al-Barnuj , Egypt (Shortland et al., 2010)  Raw glass exported to secondary glass producers across empire  Remelted, worked to produce glass items for local markets  This method of continued after decline of Roman Empire

https://en.wikipedia.org/wiki/Natron#/media/File:Emi_Koussi_crater_natron.jpg

S. Cagno et al., Evidence of early medieval soda ash glass in the archaeological site of San Genesio (Tuscany), J. Archaol. Sci., 39 (2012), 1540-1552. A. Shortland et al., Natron as a in the early vitreous materials industry: sources, beginnings and reasons for decline, J. Archaeol. Sci., 33 (2006), 521-530. History of Biomass Ash in Glass  From 7th – 9th Century A.D., natron availability declined (Shortland et al., 2010)  Demand – glass manufacturing, also medicines and detergents  Political – e.g. Persian invasion (619 A.D.), Muslim in the Corning Museum of Glass vol. 1 # 107 & #109, Fascinating conquest (639 – 642 A.D.), Berber invasions (809, Fragility, Nico Bijnsdorp, P. 401, The Alfred Wolkenberg Collection, Christies’s July 9, 1991 Lot 74, Verres Antiques et De L’Islam, Juin 3 & 4, 1985 Paris, lot 406 867/868, 871 A.D.), Civil war (811 – 832 A.D.) https://ancientglass.wordpress.com/2015/05/13/egyptian-glass-bowl/  By 9th Century, different flux source was required  In Levant and Near East, ash from halophytic plants (e.g. Salicornia and Salsola) used (Kato et al., 2010)  In northern Europe, wood ash used (primarily beech (Fagus)) (Wedepohl & Simon, 2010)  Production of so-called ‘Waldglas’ (‘Forest Glass’) https://www.naturallivingideas.com/wood-ash-uses/  Carolingian Empire from ca. 800 A.D. https://en.wikipedia.org/wiki/Salicornia#/media /File:Salicornia_depressa_WFNY-049B.jpg

A. Shortland et al., Natron as a flux in the early vitreous materials industry: sources, beginnings and reasons for decline, J. Archaeol. Sci., 33 (2006), 521-530. N. Kato, I. Nakai & Y Shindo, Transitions in Islamic plant-ash glass vessels: on-site chemical analyses conducted at the Raya/al-Tur area on the Sinai Peninsula in Egypt, J. Archaeol. Sci., 37 (2010), 1381-1395. K. H. Wedepohl & K. Simon, The chemical composition of medieval wood ash glass from Central Europe, Chemie der Erde, 70 (2010), 89-97. History of Biomass Ash in Glass

 Beech ash contains CaO, K2O and MgO (Wedepohl & Simon, 2010)

 CaO/K2O ratio 1:1 – 2:1 in wood, approx. 16:1 in bark

are (7 – 20 %)K2O·(18 – 25 %)CaO·(49 – 58 %)SiO2 (Wedepohl & Simon, 2010)

 MgO (3.7 – 4.6 %), P2O5 (2.2 – 5.1 %) and Al2O3 (1.6 – 2.9 %)

 Fe2O3 (0.5 – 0.9 %) causes yellow-green colouration  Forest glasses known to be produced on a large scale into the 18th Century (Merchant, 1999)  From 18th Century onwards, manufacture declined  Increased demand for glass products (250 tons of wood for 1 ton glass) (Wedepohl & Simon, 2010)  Move to coal-fired furnaces  Increased quality/consistency requirement https://www.glasmuseum-lauscha.de/waldglas.html

K. H. Wedepohl & K. Simon, The chemical composition of medieval wood ash glass from Central Europe, Chemie der Erde, 70 (2010), 89-97. I. J. Merchant, English Medieval glass-making technology : scientific analysis of the evidence., PhD Thesis, University of Sheffield, 1999. Biomass Ash in Glass - Recent Research  Limited research into biomass ash in glass over last 2 - 3 decades  Rice Husk Ash (RHA) and Rice Straw Ash (RSA) have received most investigation (Lee et al. 2013, Ruangtaweep et al. 2013, Srisittipokakun et al. 2017, Tuscharoen et al. 2012)

 RHA and RSA sources of SiO2 (up to 96% after calcination)  Used in photoluminescent glass (Lee et al. 2013), optical glasses (Srisittipokakun et al. 2017) and glasses for radiation shielding (Tuscharoen et al. 2012)  Research into Sugarcane Bagasse Ash (SCBA) as a raw material for glass ceramics (Teixeira et al. 2014a, Teixeira et al. 2014b)  Plant (Pennisetum Purpureum) ash as a raw material in optical glass (Srisittipokakun et al. 2013)  Yellow discolouration  Woody ashes in preparation of oxynitride glasses (Ali & Jonson 2010)

T. Lee, R. Othman & F.-Y. Yeoh, Development of photoluminescent glass derived from rice husk, Biom. & Biomen., 59 (2013), 380-392 Y. Ruangtaweep, N Srisittipokakun, K. Boonin, P Yasaka & J. Kaewhkao, Characterization of Rice Straw Ash and Utilization in Glass Production, Adv. Mater. Res., 748 (2013), 304-308 N. Srisittipokakun, Y. Ruangtaweep, W. Rachniyom, K. Boonin & J. Kaewkhao, CuO, MnO2 and Fe2O3 doped biomass ash as silica source for glass production in Thailand, Res. in Phys., 7 (2017), 3449-3454 S. Tuscharoen, J. Kaewkhao, P. Limkitjaroenporn, P. Limsuwan & W. Chewpraditkul, Improvement of BaO:B2O3:Fly ash glasses: Radiation shielding, physical and optical properties, Ann. Nuc. Energy, 49 (2012), 109-113 S. R. Teixeira, R. S. Magalhaes, A. Arenales, A. E. Souza, M. Romero & J. M. Rincon, Valorization of sugarcane bagasse ash: Producing glass-ceramic materials, J. Environ. Manage., 134 (2014), 15-19 S. R. Teixeira, A. E. Souza, C. L. Carvalho, V. C. S. Reynoso, M. Romero & J. M. Rincon, Characterization of a wollastonite glass-ceramic material prepared using sugar cane bagasse ash (SCBA) as one of the raw materials, Mater. Character., 98 (2014), 209-214. N. Srisittipokakun, K. Kirdsiri, Y. Ruangtaweep, & J. Kaewkhao, Utilization of Pennisetum purpureum ash for use in glass material, Adv. Mater. Res., 770 (2013), 84-87 S. Ali & B. Jonson, Preparation of oxynitride glasses from woody biofuel ashes, J. Non-Cryst. Solids, 356 (2010), 2774-2777 Why Biomass Ash?  Industrial glass manufacture is:  Energy-intensive - 6500 GWh a-1 in UK for furnaces (DECC, 2015)

 CO2-generating - 2.2 MT in the UK (2012)  IEA report shows increased use of biomass as an energy source in major european economies (IEA, 2018)  increased availability of a range of different biomass ashes

 Alkali and alkaline-earth content https://www.mottmac.com/article/2282/stevens-croft-biomass-power-station-uk  Partial replacement for high-value , soda ash, dolomite  Ashes decarbonised during combustion

 Reduced CO2 content vs. limestone, soda ash, dolomite

 Some ashes have significant K2O contents – mixed-alkali effect to reduce melting temperatures?

'Industrial Decarbonisation & Energy Efficiency Roadmaps to 2050: Glass', Report to Department of Energy and Climate Change and the Department for Business, Innovation and Skills, March 2015. 'Options for increased use of ash from biomass combustion and co-firing', IEA Bioenergy, Task 32: Biomass Combustion and Cofiring, Deliverable D7, 2018. Enviroglass 2/BiomAsh Projects  Fully-funded (Enviroglass 2 – Innovate UK, BiomAsh – BEIS) UK projects working with a consortium including Glass Technology Services as well as raw material distributors and biomass power plants  Focus on bringing biomass ashes as raw materials for use in the glass industry  Enviroglass 2 – Clear Container, Float, Mineral Wool  BiomAsh – Green and amber container glass  Analysis of biomass ashes from 11 UK power plants – 23 ash types in total  Laboratory scale melting of ash-loaded glasses, compared against benchmarks

 Composition optimisation to produce an ash-containing low Tm glass  Pilot-scale trials using Glass Futures facility Experimental Work

Clear Container glass samples produced containing range of ashes • Clear Container (CC) Benchmark • CC + 1, 5, 10 wt.% ash (Target benchmark composition) • 1450 °C 4 h for CC • Anneal at 550 °C 1 h for CC

Analysis • Visual Inspection • X-Ray Fluorescence (XRF) spectroscopy • X-Ray Diffraction (XRD)

• Batch CO2 reduction calculations Analysis of Biomass Ashes

Component (wt.%) 01FA 10BA 10BAa 12FA 14BA 16BA

Na2O 1.10 0.49 0.49 1.27 2.07 1.25 MgO 2.21 1.34 1.54 4.09 1.51 1.41

Al2O3 16.90 0.84 0.86 1.57 8.26 7.16 SiO2 37.86 51.85 55.43 8.63 64.81 59.67 P2O5 1.60 2.07 1.70 3.09 0.68 0.79 SO 3.17 1.39 0.95 5.22 0.20 0.08  Valuable glass-making 3 Cl 0.21 1.01 0.62 0.51 0.06 0.00 components K2O 8.47 24.00 23.81 19.05 3.61 6.12 CaO 15.40 15.96 13.61 49.53 12.35 16.68  CaO, K2O, SiO2, MgO Sc 0.00 0.00 0.00 0.00 0.78 0.00 TiO2 1.15 0.10 0.00 0.27 0.00 0.55 V2O5 0.07 0.00 0.00 0.00 0.02 0.02 Cr2O3 0.05 0.00 0.02 0.00 0.04 0.06 MnO2 0.51 0.08 0.08 2.31 0.20 0.51 Fe2O3 10.67 0.82 0.89 3.38 3.90 5.27 NiO 0.02 0.00 0.00 0.00 0.21 0.00 CuO 0.03 0.00 0.00 0.04 0.98 0.01 ZnO 0.11 0.00 0.00 0.44 0.01 0.14

Rb2O 0.03 0.00 0.00 0.05 0.00 0.02 SrO 0.14 0.06 0.00 0.19 0.04 0.06

ZrO2 0.05 0.01 0.00 0.03 0.05 0.03 BaO 0.22 0.00 0.00 0.37 0.16 0.13 PbO 0.00 0.00 0.00 0.00 0.06 0.00 TOTAL 99.98 100.02 100.00 100.02 99.99 99.95 Carbon 6.26 2.08 1.22 22.24 0.24 N.M. Analysis of Biomass Ashes

Component (wt.%) 01FA 10BA 10BAa 12FA 14BA 16BA

Na2O 1.10 0.49 0.49 1.27 2.07 1.25 MgO 2.21 1.34 1.54 4.09 1.51 1.41

Al2O3 16.90 0.84 0.86 1.57 8.26 7.16 SiO2 37.86 51.85 55.43 8.63 64.81 59.67 P2O5 1.60 2.07 1.70 3.09 0.68 0.79 SO 3.17 1.39 0.95 5.22 0.20 0.08  Valuable glass-making 3 Cl 0.21 1.01 0.62 0.51 0.06 0.00 components K2O 8.47 24.00 23.81 19.05 3.61 6.12 CaO 15.40 15.96 13.61 49.53 12.35 16.68  CaO, K2O, SiO2, MgO Sc 0.00 0.00 0.00 0.00 0.78 0.00 TiO2 1.15 0.10 0.00 0.27 0.00 0.55  Colourants V2O5 0.07 0.00 0.00 0.00 0.02 0.02 Cr O 0.05 0.00 0.02 0.00 0.04 0.06  2 3 Fe2O3 (SO3, carbon), MnO2 MnO2 0.51 0.08 0.08 2.31 0.20 0.51 Fe2O3 10.67 0.82 0.89 3.38 3.90 5.27 NiO 0.02 0.00 0.00 0.00 0.21 0.00 CuO 0.03 0.00 0.00 0.04 0.98 0.01 ZnO 0.11 0.00 0.00 0.44 0.01 0.14

Rb2O 0.03 0.00 0.00 0.05 0.00 0.02 SrO 0.14 0.06 0.00 0.19 0.04 0.06

ZrO2 0.05 0.01 0.00 0.03 0.05 0.03 BaO 0.22 0.00 0.00 0.37 0.16 0.13 PbO 0.00 0.00 0.00 0.00 0.06 0.00 TOTAL 99.98 100.02 100.00 100.02 99.99 99.95 Carbon 6.26 2.08 1.22 22.24 0.24 N.M. Analysis of Biomass Ashes

Component (wt.%) 01FA 10BA 10BAa 12FA 14BA 16BA

Na2O 1.10 0.49 0.49 1.27 2.07 1.25 MgO 2.21 1.34 1.54 4.09 1.51 1.41

Al2O3 16.90 0.84 0.86 1.57 8.26 7.16 SiO2 37.86 51.85 55.43 8.63 64.81 59.67 P2O5 1.60 2.07 1.70 3.09 0.68 0.79 SO 3.17 1.39 0.95 5.22 0.20 0.08  Valuable glass-making 3 Cl 0.21 1.01 0.62 0.51 0.06 0.00 components K2O 8.47 24.00 23.81 19.05 3.61 6.12 CaO 15.40 15.96 13.61 49.53 12.35 16.68  CaO, K2O, SiO2, MgO Sc 0.00 0.00 0.00 0.00 0.78 0.00 TiO2 1.15 0.10 0.00 0.27 0.00 0.55  Colourants V2O5 0.07 0.00 0.00 0.00 0.02 0.02 Cr O 0.05 0.00 0.02 0.00 0.04 0.06  2 3 Fe2O3 (SO3, carbon), MnO2 MnO2 0.51 0.08 0.08 2.31 0.20 0.51 Fe2O3 10.67 0.82 0.89 3.38 3.90 5.27  Problematic components NiO 0.02 0.00 0.00 0.00 0.21 0.00 CuO 0.03 0.00 0.00 0.04 0.98 0.01  Cl, NiO, PbO, carbon ZnO 0.11 0.00 0.00 0.44 0.01 0.14

Rb2O 0.03 0.00 0.00 0.05 0.00 0.02 SrO 0.14 0.06 0.00 0.19 0.04 0.06

ZrO2 0.05 0.01 0.00 0.03 0.05 0.03 BaO 0.22 0.00 0.00 0.37 0.16 0.13 PbO 0.00 0.00 0.00 0.00 0.06 0.00 TOTAL 99.98 100.02 100.00 100.02 99.99 99.95 Carbon 6.26 2.08 1.22 22.24 0.24 N.M. Analysis of Biomass Ashes

k q h h k m m h h k h k m h k h k q k k m h m m m mk q m m q q q q mi q c c mi q

q ns cp cp np kc ns ca kc np q np kc np cp np np ns ca cp q np np np np cp kc cp kc np ca ns cp cp kc cp ca cp kc kc ca q ca q kc ns cp ca np ca ns q ca an q

q an an an mi an an q an q q q q q q q q q an q

an an q ca q an an an an q anan q q q q q q q q

m – mullite q – h – haematite, Fe2O3 k - KAlSi2O6 c – cristobalite mi – microcline, KAlSi3O8 kc – K2Ca(CO3)2 ns – Na3Fe(SO4)3 ca – calcite cp – H2Ca(P2O7) np – Na2CaP4O12 an – anorthite, CaAl2Si2O8 Clear Container Biomass Ash Glasses - Visual Inspection

Biomass Ash 01FA 10BA 10BAa 12FA 16BA

Benchmark

1 wt. %

5 wt. %

10 wt. % X-Ray Fluorescence (XRF) Spectroscopy

Component CC Nominal CC Analysed CC10BA1a CC10BA5a CC10BA10a CC16BA1 CC16BA5 CC16BA10

SiO2 72.00 72.89 71.79 72.25 73.01 72.38 73.31 73.79

Al2O3 1.48 1.27 1.28 1.45 1.16 1.30 1.37 1.34

K2O 0.56 0.43 0.65 1.55 2.68 0.42 0.49 0.58 CaO 11.25 12.23 12.44 12.14 11.69 12.01 11.54 11.10 MgO 1.06 0.43 0.96 0.99 1.03 0.92 0.50 0.17 MnO 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.03

Na2O 13.30 12.46 12.42 10.96 9.78 12.45 12.09 12.04

P2O5 0.00 0.00 0.00 0.07 0.18 0.00 0.00 0.00

SO3 0.25 0.11 0.20 0.18 0.13 0.22 0.17 0.18 SrO 0.00 0.00 0.02 0.01 0.02 0.01 0.01 0.01

Fe2O3 0.05 0.04 0.07 0.20 0.15 0.12 0.30 0.55

TiO2 0.03 0.15 0.11 0.14 0.12 0.12 0.16 0.16

Cr2O3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 BaO 0.01 0.00 0.02 0.03 0.02 0.03 0.01 0.02 ZnO 0.00 0.00 0.02 0.01 0.02 0.01 0.02 0.02

ZrO2 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.00 Total 99.99 100.00 100.00 100.00 100.00 100.00 100.00 100.00 X-Ray Diffraction

CC10BA1a CC16BA1 CC10BA5a CC16BA5 CC10BA10a CC16BA10

5 15 25 35 45 55 65 75 5 15 25 35 45 55 65 75 °2θ °2θ

 All glasses are X-ray amorphous Batch CO2 reduction - 16BA glasses

Total CO 2 in benchmark batch

Raw Material wt. % of Batch CO2 (wt%) CO2 per tonne batch (kg) Soda Ash 18.32 7.61 76.07 Limestone 14.62 6.43 64.29 Dolomite 4.08 0.97 9.74 Total 37.02 15.01 150.09 Soda Ash Limestone Dolomite Total Reduction in Raw Material (wt.%) 0.10 0.14 0.20 0.44

CC16BA1 CO2 reduction (wt.%) 0.04 0.06 0.05 0.15 CO2 reduction per tonne (kg) 0.42 0.62 0.48 1.51 Reduction in Raw Material (wt.%) 0.10 0.29 1.75 2.14

CC16BA5 CO2 reduction (wt.%) 0.04 0.13 0.42 0.59 CO2 reduction per tonne (kg) 0.42 1.28 4.18 5.87 Reduction in Raw Material (wt.%) 0.11 0.47 3.68 4.26

CC16BA10 CO2 reduction (wt.%) 0.05 0.21 0.88 1.13 CO2 reduction per tonne (kg) 0.46 2.07 8.78 11.31

Sample Reduction in CO2 compared to Benchmark (%) CC16BA1 1.00 CC16BA5 3.91 CC16BA10 7.53 Batch CO2 reduction - 10BA glasses

Total CO 2 in benchmark batch

Raw Material wt. % of Batch CO2 (wt%) CO2 per tonne batch (kg) Soda Ash 18.32 7.61 76.07 Limestone 14.62 6.43 64.29 Dolomite 4.08 0.97 9.74 Total 37.02 15.01 150.09 Soda Ash Limestone Dolomite Total Reduction in Raw Material (wt.%) 0.45 0.36 -0.28 0.53

CC10BA1a CO2 reduction (wt.%) 0.19 0.16 -0.07 0.28 CO2 reduction per tonne (kg) 1.87 1.58 -0.67 2.78 Reduction in Raw Material (wt.%) 2.11 0.99 -0.06 3.04

CC10BA5a CO2 reduction (wt.%) 0.88 0.44 -0.01 1.30 CO2 reduction per tonne (kg) 8.76 4.35 -0.14 12.97 Reduction in Raw Material (wt.%) 4.05 1.79 0.23 6.07

CC10BA10a CO2 reduction (wt.%) 1.68 0.79 0.05 2.52 CO2 reduction per tonne (kg) 16.82 7.87 0.55 25.24

Sample Reduction in CO2 compared to Benchmark (%) CC10BA1a 1.85 CC10BA5a 8.64 CC10BA10a 16.81 BiomAsh Project - Green and Amber

We can prepare glasses in our lab by using current ashes from biomass plant: Green glass Amber glass

Without treatment, up to 23 wt.% biomass ash can be added into modified green/amber glass without impact on glass status and colour in lab.

With treatment, up to 25 wt.% biomass ash can be added into modified without colour affects in lab (even higher in green/amber) Conclusions and Further Work  Biomass ash glasses have been known for > 1200 years  Environmental and economic factors require changes in glass manufacturing

 Biomass ashes offer reduced CO2 batches, potential for reduced melting temperatures and lower energy demand  Presence of transition metals, particularly Fe, causes colouration in clear glasses  10 wt.% ash loading with no appreciable colour change demonstrated

 Reformulated biomass ash batches show clear reduction of batch CO2  25 kg te-1 (16 %) reduction for Clear Container  High ash-loadings (> 23 wt.%) possible for green/amber glass  Low melting temperature formulations are being targeted  Mixed-alkali effect

A. Fluegel: "Glass Viscosity Calculation Based on a Global Statistical Modeling Approach"; Glass Technol.: Europ. J. Glass Sci. Technol. A, vol. 48, 2007, no. 1, p 13-30. Acknowledgments

Contributors: Dr Wei Deng (SHU), Martyn Marshall (GTS), Dr Feroz Kabir (SHU), Alex Wardlow (GTS), Adam Jackson (GTS) Supervision: Prof. Paul A. Bingham (SHU), Robert Ireson (GTS)

Enviroglass 2/BiomAsh Consortium

No Copyright Intended

Funding Body