Softpest Multitrap - Management of Strawberry Blossom Weevil and European Tarnished Plant Bug in Organic Strawberry and Raspberry Using Semiochemical Traps
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Integration of Entomopathogenic Fungi Into IPM Programs: Studies Involving Weevils (Coleoptera: Curculionoidea) Affecting Horticultural Crops
insects Review Integration of Entomopathogenic Fungi into IPM Programs: Studies Involving Weevils (Coleoptera: Curculionoidea) Affecting Horticultural Crops Kim Khuy Khun 1,2,* , Bree A. L. Wilson 2, Mark M. Stevens 3,4, Ruth K. Huwer 5 and Gavin J. Ash 2 1 Faculty of Agronomy, Royal University of Agriculture, P.O. Box 2696, Dangkor District, Phnom Penh, Cambodia 2 Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, Queensland 4350, Australia; [email protected] (B.A.L.W.); [email protected] (G.J.A.) 3 NSW Department of Primary Industries, Yanco Agricultural Institute, Yanco, New South Wales 2703, Australia; [email protected] 4 Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga, New South Wales 2650, Australia 5 NSW Department of Primary Industries, Wollongbar Primary Industries Institute, Wollongbar, New South Wales 2477, Australia; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +61-46-9731208 Received: 7 September 2020; Accepted: 21 September 2020; Published: 25 September 2020 Simple Summary: Horticultural crops are vulnerable to attack by many different weevil species. Fungal entomopathogens provide an attractive alternative to synthetic insecticides for weevil control because they pose a lesser risk to human health and the environment. This review summarises the available data on the performance of these entomopathogens when used against weevils in horticultural crops. We integrate these data with information on weevil biology, grouping species based on how their developmental stages utilise habitats in or on their hostplants, or in the soil. -
Anthonomus Eugenii Pepper Weevil
Pest specific plant health response plan: Outbreaks of Anthonomus eugenii Figure 1. Adult Anthonomus eugenii. © Fera Science Ltd 1 © Crown copyright 2020 You may re-use this information (not including logos) free of charge in any format or medium, under the terms of the Open Government Licence. To view this licence, visit www.nationalarchives.gov.uk/doc/open-government-licence/ or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or e-mail: [email protected] This document is also available on our website at: https://planthealthportal.defra.gov.uk/pests-and-diseases/contingency-planning/ Any enquiries regarding this document should be sent to us at: The UK Chief Plant Health Officer Department for Environment, Food and Rural Affairs Room 11G32 National Agri-Food Innovation Campus Sand Hutton York YO41 1LZ Email: [email protected] 2 Contents 1. Introduction and scope ......................................................................................................... 4 2. Summary of threat................................................................................................................. 4 3. Risk assessments ................................................................................................................. 5 4. Actions to prevent outbreaks ............................................................................................... 5 5. Response .............................................................................................................................. -
IOBC/WPRS Working Group “Integrated Plant Protection in Fruit
IOBC/WPRS Working Group “Integrated Plant Protection in Fruit Crops” Subgroup “Soft Fruits” Proceedings of Workshop on Integrated Soft Fruit Production East Malling (United Kingdom) 24-27 September 2007 Editors Ch. Linder & J.V. Cross IOBC/WPRS Bulletin Bulletin OILB/SROP Vol. 39, 2008 The content of the contributions is in the responsibility of the authors The IOBC/WPRS Bulletin is published by the International Organization for Biological and Integrated Control of Noxious Animals and Plants, West Palearctic Regional Section (IOBC/WPRS) Le Bulletin OILB/SROP est publié par l‘Organisation Internationale de Lutte Biologique et Intégrée contre les Animaux et les Plantes Nuisibles, section Regionale Ouest Paléarctique (OILB/SROP) Copyright: IOBC/WPRS 2008 The Publication Commission of the IOBC/WPRS: Horst Bathon Luc Tirry Julius Kuehn Institute (JKI), Federal University of Gent Research Centre for Cultivated Plants Laboratory of Agrozoology Institute for Biological Control Department of Crop Protection Heinrichstr. 243 Coupure Links 653 D-64287 Darmstadt (Germany) B-9000 Gent (Belgium) Tel +49 6151 407-225, Fax +49 6151 407-290 Tel +32-9-2646152, Fax +32-9-2646239 e-mail: [email protected] e-mail: [email protected] Address General Secretariat: Dr. Philippe C. Nicot INRA – Unité de Pathologie Végétale Domaine St Maurice - B.P. 94 F-84143 Montfavet Cedex (France) ISBN 978-92-9067-213-5 http://www.iobc-wprs.org Integrated Plant Protection in Soft Fruits IOBC/wprs Bulletin 39, 2008 Contents Development of semiochemical attractants, lures and traps for raspberry beetle, Byturus tomentosus at SCRI; from fundamental chemical ecology to testing IPM tools with growers. -
Artículos Originales
BOLETIN DEL MUSEO ENTOMOLÓGICO FRANCISCO LUÍS GALLEGO ARTÍCULOS ORIGINALES SPECIES OF THE BEETLE GENUS ANTHONOMUS GERMAR, 1817 (CURCULIONIDAE: CURCULIONINAE: ANTHONOMINI) OF QUARANTINE IMPORTANCE INTERCEPTED AT U.S. PORTS OF ENTRY Allan H. Smith-Pardo. Entomologist. USDA-APHIS-PPQ, 389 Oyster Point Blvd., Suite 2, South San Francisco, CA. 94080. United States of America. [email protected] Abstract This paper presents a discussion on the taxonomy of weevils of the genus Anthonomus and presents diagnostic characters useful for the identification of adult and immature stages of the genus. In addition, I ran a search in the USDA’s AQAS database for interceptions of species of Anthonomus of quarantine importance that have been intercepted at United States ports of entry. In total, six species of quarantine importance have been intercepted: Anthonomus flavus, Anthonomus grandis, Anthonomus melanosticus, Anthonomus pomorum, Anthonomus rubi, and Anthonomus sisyphus. Photographs and information on the origin and hosts of these interceptions are included. Key words Weevil, pest, crop, imported commodities, diagnostic character Resumen En este artículo se presenta una discusión acerca de la taxonomía de escarabajos- picudos del genero Anthonomus y se presentan los caracteres diagnósticos para la identificación de estadios inmaduros y de adultos. Adicionalmente, se hizo una búsqueda de las intercepciones de especies del genero Anthonomus de 7 Volumen 7 • Número 1 Marzo • 2015 importancia cuarentenaria en los EEUU plants of the family Rosaceae and is an que han sido interceptados en puertos de important pest of strawberry (Fragaria x entrada. En total se han interceptado seis ananassa) and raspberry (Rubus idaeus); especies de importancia cuarentenaria and the pepper weevil, Anthonomus de acuerdo a la base de datos AQAS del eugenii, which feeds on plants of the USDA: Anthonomus flavus, Anthonomus genus Capsicum and Solanum] or as grandis, Anthonomus melanosticus, biological control agents of invasive Anthonomus pomorum, Anthonomus rubi plants [e.g. -
(Coleoptera) from European Eocene Ambers
geosciences Review A Review of the Curculionoidea (Coleoptera) from European Eocene Ambers Andrei A. Legalov 1,2 1 Institute of Systematics and Ecology of Animals, Siberian Branch, Russian Academy of Sciences, Frunze Street 11, 630091 Novosibirsk, Russia; [email protected]; Tel.: +7-9139471413 2 Biological Institute, Tomsk State University, Lenina Prospekt 36, 634050 Tomsk, Russia Received: 16 October 2019; Accepted: 23 December 2019; Published: 30 December 2019 Abstract: All 142 known species of Curculionoidea in Eocene amber are documented, including one species of Nemonychidae, 16 species of Anthribidae, six species of Belidae, 10 species of Rhynchitidae, 13 species of Brentidae, 70 species of Curcuionidae, two species of Platypodidae, and 24 species of Scolytidae. Oise amber has eight species, Baltic amber has 118 species, and Rovno amber has 16 species. Nine new genera and 18 new species are described from Baltic amber. Four new synonyms are noted: Palaeometrioxena Legalov, 2012, syn. nov. is synonymous with Archimetrioxena Voss, 1953; Paleopissodes weigangae Ulke, 1947, syn. nov. is synonymous with Electrotribus theryi Hustache, 1942; Electrotribus erectosquamata Rheinheimer, 2007, syn. nov. is synonymous with Succinostyphlus mroczkowskii Kuska, 1996; Protonaupactus Zherikhin, 1971, syn. nov. is synonymous with Paonaupactus Voss, 1953. Keys for Eocene amber Curculionoidea are given. There are the first records of Aedemonini and Camarotini, and genera Limalophus and Cenocephalus in Baltic amber. Keywords: Coleoptera; Curculionoidea; fossil weevil; new taxa; keys; Palaeogene 1. Introduction The Curculionoidea are one of the largest and most diverse groups of beetles, including more than 62,000 species [1] comprising 11 families [2,3]. They have a complex morphological structure [2–7], ecological confinement, and diverse trophic links [1], which makes them a convenient group for characterizing modern and fossil biocenoses. -
Report on Beetles (Coleoptera) Collected from the Dartington Hall Estate, 2013 by Dr Martin Luff
Report on beetles (Coleoptera) collected from the Dartington Hall Estate, 2013 by Dr Martin Luff. 1. Introduction This year has been a particularly busy one for my work on the beetles of the Estate. I recorded numbers of species on 11 separate dates from April (at the end of the cold spring) through to mid- November. The generally warm and dry summer enabled me to record much more by sweeping herbaceous vegetation around field margins, especially in Hill Park. At the end of May I was assisted by an old friend of mine, and former fellow student, Dr Colin Welch (RCW), who is an authority on the Staphylinidae (rove beetles). I was also provided with the contents of the nest boxes from Dartington Hills in February and September, thanks to Will Wallis and Mike Newby. Finally Mary Bartlett again encouraged me to examine the fauna of her compost heap in November. 2. Results A total of 201 beetle species from 35 families were recorded. This is considerably more than in any previous year that I have collected at Dartington. Of these, 85 species were not recorded in my earlier lists (Luff, 2010-12). The overall number of species that I have recorded from the Estate is now 369, which is almost 10% of the entire British beetle fauna. The bird nest boxes yielded 13 species, with over half being new to the Estate, despite having examined the boxes in previous years; the contents of the boxes were also rather different between spring and autumn, with only four species common to both. -
The Mexican Cotton-Boll Weevil (Anthonomus Grandis Boh.)
Circular No. 14, Second Series. (Revision of No. 6.) United States Department of Agriculture, DIVISION OF ENTOMOLOGY. THE MEXICAN COTTON-BOLL WEEVIL. (Anthonomus grandis Bob.) SCOPE OF THE CIRCULAR. Circular No. 6 was published in April, 1895, and contained a brief report of the observations made up to that time, and the conclusions based on those observations, concerning the Mexican cotton boll weevil, an insect of Central American origin which, during 1894, attracted considera- ble attention in the cotton fields of south Texas. The investi- gation was continued during the summer, fall, and early winter of 1895, especially by Mr. Schwarz, who visited Texas in May and June and again from October to De- cember, and by Mr. Town send, who was FlG.l. Anthonomus grandis: a, adult beetle; b, pupa: larva—all enlarged. stationed in the State during the greater part of the summer. The writer went to Texas in December, and in companj- with Mr. Schwarz carefully studied the condition of affairs at that season and talked with many prominent cotton growers. The object of the present circular is to lay before cot- ton planters the results of this supplementary investigation. In order to make it complete in itself, such facts as are needed are repeated from Circular No. 6. GENERAL APPEARANCE AND METHOD OF WORK. This insect is a small, grayish weevil, of the shape and general appearance shown in fig. 1, «, and measuring a little less than a quar- ter of an inch in length. It is found in the cotton fields throughout the season, puncturing and laying its eggs in the squares and bolls. -
Insects and Related Arthropods Associated with of Agriculture
USDA United States Department Insects and Related Arthropods Associated with of Agriculture Forest Service Greenleaf Manzanita in Montane Chaparral Pacific Southwest Communities of Northeastern California Research Station General Technical Report Michael A. Valenti George T. Ferrell Alan A. Berryman PSW-GTR- 167 Publisher: Pacific Southwest Research Station Albany, California Forest Service Mailing address: U.S. Department of Agriculture PO Box 245, Berkeley CA 9470 1 -0245 Abstract Valenti, Michael A.; Ferrell, George T.; Berryman, Alan A. 1997. Insects and related arthropods associated with greenleaf manzanita in montane chaparral communities of northeastern California. Gen. Tech. Rep. PSW-GTR-167. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Dept. Agriculture; 26 p. September 1997 Specimens representing 19 orders and 169 arthropod families (mostly insects) were collected from greenleaf manzanita brushfields in northeastern California and identified to species whenever possible. More than500 taxa below the family level wereinventoried, and each listing includes relative frequency of encounter, life stages collected, and dominant role in the greenleaf manzanita community. Specific host relationships are included for some predators and parasitoids. Herbivores, predators, and parasitoids comprised the majority (80 percent) of identified insects and related taxa. Retrieval Terms: Arctostaphylos patula, arthropods, California, insects, manzanita The Authors Michael A. Valenti is Forest Health Specialist, Delaware Department of Agriculture, 2320 S. DuPont Hwy, Dover, DE 19901-5515. George T. Ferrell is a retired Research Entomologist, Pacific Southwest Research Station, 2400 Washington Ave., Redding, CA 96001. Alan A. Berryman is Professor of Entomology, Washington State University, Pullman, WA 99164-6382. All photographs were taken by Michael A. Valenti, except for Figure 2, which was taken by Amy H. -
Pest Categorisation of Anthonomus Bisignifer
SCIENTIFIC OPINION ADOPTED: 10 November 2017 doi: 10.2903/j.efsa.2017.5073 Pest categorisation of Anthonomus bisignifer EFSA Panel on Plant Health (PLH), Michael Jeger, Claude Bragard, David Caffier, Thierry Candresse, Elisavet Chatzivassiliou, Katharina Dehnen-Schmutz, Gianni Gilioli, Jean-Claude Gregoire, Josep Anton Jaques Miret, Maria Navajas Navarro, Bjorn€ Niere, Stephen Parnell, Roel Potting, Trond Rafoss, Vittorio Rossi, Gregor Urek, Ariena Van Bruggen, Wopke Van der Werf, Jonathan West, Stephan Winter, Ciro Gardi, Filippo Bergeretti and Alan MacLeod Abstract The Panel on Plant Health performed a pest categorisation of the strawberry blossom weevil, Anthonomus bisignifer Schenkling, (Coleoptera: Curculionidae), for the EU. Anthonomus bisignifer is a well-defined and distinguishable species, recognised as an occasional pest of strawberry (Fragaria) fruit production in Japan where it is also feeds on Rubus and Rosa spp. Adults clip developing buds, preventing fruit development and reducing yield. Losses are variable and are likely to depend on the cultivars attacked. Severe damage to Fragaria spp. has been reported but is rare. Flowers of ornamental garden Rosa spp. are more commonly damaged. Anthonomus bisignifer is not known to occur in the EU. A. bisignifer is listed in Annex IIAI of Council Directive 2000/29/EC. Host plants for planting could provide a pathway although only a few non-EU countries can export Fragaria plants for planting to the EU and A. bisignifer is not known to occur in any of them. However, Rubus and Rosa plants for planting could provide a potential pathway to introduce A. bisignifer. Considering climatic similarities of the region where A. bisignifer occurs and where hosts occur in the EU, A. -
Biorational Tree-Fruit Pest Management, an Area That Ron Was So Instrumental in Nurturing
BIORATIONAL T REE-FRUIT PEST MANAGEMENT This page intentionally left blank BIORATIONAL T REE-FRUIT PEST MANAGEMENT Edited by Martín Aluja Tracy C. Leskey and Charles Vincent CABI is a trading name of CAB International CABI Head Offi ce CABI North American Offi ce Nosworthy Way 875 Massachusetts Avenue Wallingford 7th Floor Oxfordshire OX10 8DE Cambridge, MA 02139 UK USA Tel: +44 (0)1491 832111 Tel: +1 617 395 4056 Fax: +44 (0)1491 833508 Fax: +1 617 354 6875 E-mail: [email protected] E-mail: [email protected] Website: www.cabi.org © CAB International 2009. All rights reserved. No part of this publication may be reproduced in any form or by any means, electronically, mechanically, by photocopying, recording or otherwise, without the prior permission of the copyright owners. A catalogue record for this book is available from the British Library, London, UK. Library of Congress Cataloging-in-Publication Data Biorational tree fruit pest management / edited by Martín Aluja, Tracy C. Leskey, and Charles Vincent. p. cm. Includes bibliographical references and index. ISBN 978-1-84593-484-2 (alk. paper) 1. Pests–Integrated control. 2. Fruit–Diseases and pests. I. Aluja, Martin. II. Leskey, Tracy C. III. Vincent, Charles, 1953- IV. Title. SB951.B48 2009 634′.049–dc22 2008045145 ISBN-13: 978 1 84593 484 2 Typeset by AMA Dataset, Preston. Printed and bound in the UK by the MPG Books Group, Bodmin. The paper used for the text pages in this book is FSC certifi ed. The FSC (Forest Stewardship Council) is an international network to promote responsible management of the world’s forests. -
W024 Cotton Insects: Boll Weevil
Agricultural Extension Service The University of Tennessee W024 Cotton Insects Boll Weevil Scott D. Stewart, Associate Professor Entomology and Plant Pathology Classification and Description America in the 1890s and quickly made their way The boll weevil, Anthonomus grandis grandis across most of the Cotton Belt. Although adults can (Coleoptera: Curculionidae), belongs to a group of beetles characterized by an elongated snout (or probos- cis). The adult boll weevil is about 1⁄4 inch long. Re- cently emerged adults may have a slightly reddish hue, but adult color typically varies from gray or brown to nearly black. The boll weevilʼs snout is about one-half the length of its body. Chewing mouthparts are located at the end of the snout. Boll weevils can generally be separated from other weevils by the presence of two spurs on the femur of each front leg, with the inside spur being larger than the outside spur. Immature life stages, including eggs, larvae and pupae, are found inside squares or bolls. Eggs are small and embedded inside squares and bolls, and thus are not visible. The larval and pupal stages of the boll weevil are found inside squares or bolls. Larvae are white to cream- Boll weevil colored, legless and about 1⁄2 inch long when fully de- veloped. Pupae are also white to cream-colored. Legs, temporarily feed and persist on the pollen of some eyes and mouthparts become visible on pupae as they other plants, this insect can only reproduce on cotton. develop. Life History Hosts and Distribution The boll weevil overwinters as an adult. -
Data Sheet on Anthonomus Bisignifer
EPPO quarantine pest Prepared by CABI and EPPO for the EU under Contract 90/399003 Data Sheets on Quarantine Pests Anthonomus bisignifer IDENTITY Name: Anthonomus bisignifer Schenkling Synonyms: Anthonomus bisignatus Roelofs Anthonomus signatus Kinoshita & Shinkai Minyrus japonicus Matsumara (nec Roelofs) Minyrus albopilosus Matsumara Taxonomic position: Insecta: Coleoptera: Curculionidae Common names: Strawberry weevil, strawberry blossom weevil (English) Bayer computer code: ANTHBI EPPO A1 list: No. 189 EU Annex designation: II/A1 HOSTS Strawberries are the main economic host crop. A. bisignifer has also been recorded on Rubus and on wild roses. Within the EPPO region, strawberries, which are widely grown throughout, would be the principal crop at risk. GEOGRAPHICAL DISTRIBUTION EPPO region: Russia (Far East: Sakhalin, Kurile Islands). Asia: Japan, Russia (Far East: Sakhalin, Kurile Islands). EU: Absent. BIOLOGY In Sendai, Japan, A. bisignifer emerges from hibernation in late April, mates and begins egg laying (Katô, 1936). The female lays eggs in holes excavated in the flower buds of strawberries. She then bites through the stalk a few millimetres below the bud. Most of the flower buds fall off, but a few remain hanging on the plants. The eggs are laid, mostly during the day, and egg laying reaches a peak in mid- to late-May in Sendai. The number of eggs laid increases with air and soil surface temperature and hours of sunshine, being highest when sunshine approaches 12 h and the temperature is above 20°C, but many eggs are laid even when the temperature is around 12°C (Katô, 1936; 1937). About 77 eggs are laid per female (Kinoshita & Shinkai, 1926).