Pepper Weevil, Anthonomus Eugenii Cano and Cuban Pepper Weevil, Faustinus Cubae (Boheman)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Anthonomus Eugenii Pepper Weevil
Pest specific plant health response plan: Outbreaks of Anthonomus eugenii Figure 1. Adult Anthonomus eugenii. © Fera Science Ltd 1 © Crown copyright 2020 You may re-use this information (not including logos) free of charge in any format or medium, under the terms of the Open Government Licence. To view this licence, visit www.nationalarchives.gov.uk/doc/open-government-licence/ or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or e-mail: [email protected] This document is also available on our website at: https://planthealthportal.defra.gov.uk/pests-and-diseases/contingency-planning/ Any enquiries regarding this document should be sent to us at: The UK Chief Plant Health Officer Department for Environment, Food and Rural Affairs Room 11G32 National Agri-Food Innovation Campus Sand Hutton York YO41 1LZ Email: [email protected] 2 Contents 1. Introduction and scope ......................................................................................................... 4 2. Summary of threat................................................................................................................. 4 3. Risk assessments ................................................................................................................. 5 4. Actions to prevent outbreaks ............................................................................................... 5 5. Response .............................................................................................................................. -
Artículos Originales
BOLETIN DEL MUSEO ENTOMOLÓGICO FRANCISCO LUÍS GALLEGO ARTÍCULOS ORIGINALES SPECIES OF THE BEETLE GENUS ANTHONOMUS GERMAR, 1817 (CURCULIONIDAE: CURCULIONINAE: ANTHONOMINI) OF QUARANTINE IMPORTANCE INTERCEPTED AT U.S. PORTS OF ENTRY Allan H. Smith-Pardo. Entomologist. USDA-APHIS-PPQ, 389 Oyster Point Blvd., Suite 2, South San Francisco, CA. 94080. United States of America. [email protected] Abstract This paper presents a discussion on the taxonomy of weevils of the genus Anthonomus and presents diagnostic characters useful for the identification of adult and immature stages of the genus. In addition, I ran a search in the USDA’s AQAS database for interceptions of species of Anthonomus of quarantine importance that have been intercepted at United States ports of entry. In total, six species of quarantine importance have been intercepted: Anthonomus flavus, Anthonomus grandis, Anthonomus melanosticus, Anthonomus pomorum, Anthonomus rubi, and Anthonomus sisyphus. Photographs and information on the origin and hosts of these interceptions are included. Key words Weevil, pest, crop, imported commodities, diagnostic character Resumen En este artículo se presenta una discusión acerca de la taxonomía de escarabajos- picudos del genero Anthonomus y se presentan los caracteres diagnósticos para la identificación de estadios inmaduros y de adultos. Adicionalmente, se hizo una búsqueda de las intercepciones de especies del genero Anthonomus de 7 Volumen 7 • Número 1 Marzo • 2015 importancia cuarentenaria en los EEUU plants of the family Rosaceae and is an que han sido interceptados en puertos de important pest of strawberry (Fragaria x entrada. En total se han interceptado seis ananassa) and raspberry (Rubus idaeus); especies de importancia cuarentenaria and the pepper weevil, Anthonomus de acuerdo a la base de datos AQAS del eugenii, which feeds on plants of the USDA: Anthonomus flavus, Anthonomus genus Capsicum and Solanum] or as grandis, Anthonomus melanosticus, biological control agents of invasive Anthonomus pomorum, Anthonomus rubi plants [e.g. -
(Coleoptera) from European Eocene Ambers
geosciences Review A Review of the Curculionoidea (Coleoptera) from European Eocene Ambers Andrei A. Legalov 1,2 1 Institute of Systematics and Ecology of Animals, Siberian Branch, Russian Academy of Sciences, Frunze Street 11, 630091 Novosibirsk, Russia; [email protected]; Tel.: +7-9139471413 2 Biological Institute, Tomsk State University, Lenina Prospekt 36, 634050 Tomsk, Russia Received: 16 October 2019; Accepted: 23 December 2019; Published: 30 December 2019 Abstract: All 142 known species of Curculionoidea in Eocene amber are documented, including one species of Nemonychidae, 16 species of Anthribidae, six species of Belidae, 10 species of Rhynchitidae, 13 species of Brentidae, 70 species of Curcuionidae, two species of Platypodidae, and 24 species of Scolytidae. Oise amber has eight species, Baltic amber has 118 species, and Rovno amber has 16 species. Nine new genera and 18 new species are described from Baltic amber. Four new synonyms are noted: Palaeometrioxena Legalov, 2012, syn. nov. is synonymous with Archimetrioxena Voss, 1953; Paleopissodes weigangae Ulke, 1947, syn. nov. is synonymous with Electrotribus theryi Hustache, 1942; Electrotribus erectosquamata Rheinheimer, 2007, syn. nov. is synonymous with Succinostyphlus mroczkowskii Kuska, 1996; Protonaupactus Zherikhin, 1971, syn. nov. is synonymous with Paonaupactus Voss, 1953. Keys for Eocene amber Curculionoidea are given. There are the first records of Aedemonini and Camarotini, and genera Limalophus and Cenocephalus in Baltic amber. Keywords: Coleoptera; Curculionoidea; fossil weevil; new taxa; keys; Palaeogene 1. Introduction The Curculionoidea are one of the largest and most diverse groups of beetles, including more than 62,000 species [1] comprising 11 families [2,3]. They have a complex morphological structure [2–7], ecological confinement, and diverse trophic links [1], which makes them a convenient group for characterizing modern and fossil biocenoses. -
The Mexican Cotton-Boll Weevil (Anthonomus Grandis Boh.)
Circular No. 14, Second Series. (Revision of No. 6.) United States Department of Agriculture, DIVISION OF ENTOMOLOGY. THE MEXICAN COTTON-BOLL WEEVIL. (Anthonomus grandis Bob.) SCOPE OF THE CIRCULAR. Circular No. 6 was published in April, 1895, and contained a brief report of the observations made up to that time, and the conclusions based on those observations, concerning the Mexican cotton boll weevil, an insect of Central American origin which, during 1894, attracted considera- ble attention in the cotton fields of south Texas. The investi- gation was continued during the summer, fall, and early winter of 1895, especially by Mr. Schwarz, who visited Texas in May and June and again from October to De- cember, and by Mr. Town send, who was FlG.l. Anthonomus grandis: a, adult beetle; b, pupa: larva—all enlarged. stationed in the State during the greater part of the summer. The writer went to Texas in December, and in companj- with Mr. Schwarz carefully studied the condition of affairs at that season and talked with many prominent cotton growers. The object of the present circular is to lay before cot- ton planters the results of this supplementary investigation. In order to make it complete in itself, such facts as are needed are repeated from Circular No. 6. GENERAL APPEARANCE AND METHOD OF WORK. This insect is a small, grayish weevil, of the shape and general appearance shown in fig. 1, «, and measuring a little less than a quar- ter of an inch in length. It is found in the cotton fields throughout the season, puncturing and laying its eggs in the squares and bolls. -
Insects and Related Arthropods Associated with of Agriculture
USDA United States Department Insects and Related Arthropods Associated with of Agriculture Forest Service Greenleaf Manzanita in Montane Chaparral Pacific Southwest Communities of Northeastern California Research Station General Technical Report Michael A. Valenti George T. Ferrell Alan A. Berryman PSW-GTR- 167 Publisher: Pacific Southwest Research Station Albany, California Forest Service Mailing address: U.S. Department of Agriculture PO Box 245, Berkeley CA 9470 1 -0245 Abstract Valenti, Michael A.; Ferrell, George T.; Berryman, Alan A. 1997. Insects and related arthropods associated with greenleaf manzanita in montane chaparral communities of northeastern California. Gen. Tech. Rep. PSW-GTR-167. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Dept. Agriculture; 26 p. September 1997 Specimens representing 19 orders and 169 arthropod families (mostly insects) were collected from greenleaf manzanita brushfields in northeastern California and identified to species whenever possible. More than500 taxa below the family level wereinventoried, and each listing includes relative frequency of encounter, life stages collected, and dominant role in the greenleaf manzanita community. Specific host relationships are included for some predators and parasitoids. Herbivores, predators, and parasitoids comprised the majority (80 percent) of identified insects and related taxa. Retrieval Terms: Arctostaphylos patula, arthropods, California, insects, manzanita The Authors Michael A. Valenti is Forest Health Specialist, Delaware Department of Agriculture, 2320 S. DuPont Hwy, Dover, DE 19901-5515. George T. Ferrell is a retired Research Entomologist, Pacific Southwest Research Station, 2400 Washington Ave., Redding, CA 96001. Alan A. Berryman is Professor of Entomology, Washington State University, Pullman, WA 99164-6382. All photographs were taken by Michael A. Valenti, except for Figure 2, which was taken by Amy H. -
Pepper Pest Management
Pepper Pest Management Kaushalya Amarasekare Ph.D. Assistant Professor of Entomology Dept. of Agricultural and Environmental Sciences College of Agriculture Tennessee State University University of Maryland Nashville, Tennessee Extension snaped.fns.usda.gov Goal The goal of this training is to educate stakeholders on arthropods (pest insects and mites) that damage peppers and methods to manage them using integrated pest management (IPM) techniques Objectives Upon completion of this training, the participants will be able to 1) teach, 2) demonstrate and 3) guide growers, small farmers, backyard and community gardeners, master gardeners, and other stakeholders on management of pest arthropods in peppers Course Outline 1. Introduction: background information on bell and chili pepper 2. Pests of pepper a) Seedling Pests b) Foliage Feeders c) Pod Feeders 3. Summary 4. References Introduction Bell /sweet pepper Peppers • Family Solanaceae • Capsicum annum L. • Bell/sweet peppers and chili agmrc.org Peppers: consumed as • Fresh • Dried chili pepper • Ground as spices • Processed (canned, pickled, brined or in salsas) 570cjk, Creative Commons wifss.ucdavis.edu Bell Pepper • 2017: U.S. consumption of fresh bell peppers ~ 11.4 lbs./person • High in vitamin C and dietary fiber • Provide small amounts of several vitamins and minerals • Usually sold as fresh produce Maturity Sugar Content Chili Pepper • 2017: U.S. consumption of chili peppers ~ 7.7 lbs./person • High in vitamin C • Small amounts of vitamin A and B-6, iron and magnesium 570cjk, Creative Commons wifss.ucdavis.edu • Sold as fresh produce and dried (whole peppers, crushed or powdered) pepperscale.com Myscha Theriault U.S. green pepper production • U.S. -
W024 Cotton Insects: Boll Weevil
Agricultural Extension Service The University of Tennessee W024 Cotton Insects Boll Weevil Scott D. Stewart, Associate Professor Entomology and Plant Pathology Classification and Description America in the 1890s and quickly made their way The boll weevil, Anthonomus grandis grandis across most of the Cotton Belt. Although adults can (Coleoptera: Curculionidae), belongs to a group of beetles characterized by an elongated snout (or probos- cis). The adult boll weevil is about 1⁄4 inch long. Re- cently emerged adults may have a slightly reddish hue, but adult color typically varies from gray or brown to nearly black. The boll weevilʼs snout is about one-half the length of its body. Chewing mouthparts are located at the end of the snout. Boll weevils can generally be separated from other weevils by the presence of two spurs on the femur of each front leg, with the inside spur being larger than the outside spur. Immature life stages, including eggs, larvae and pupae, are found inside squares or bolls. Eggs are small and embedded inside squares and bolls, and thus are not visible. The larval and pupal stages of the boll weevil are found inside squares or bolls. Larvae are white to cream- Boll weevil colored, legless and about 1⁄2 inch long when fully de- veloped. Pupae are also white to cream-colored. Legs, temporarily feed and persist on the pollen of some eyes and mouthparts become visible on pupae as they other plants, this insect can only reproduce on cotton. develop. Life History Hosts and Distribution The boll weevil overwinters as an adult. -
Sweet Peppers
Crop Protection Research Institute The Benefits of Insecticide Use: Sweet Peppers Pepper Maggot Adult Misshapen Green Bell Pepper, Possible Damage from Pepper Weevils Pepper Weevil Larvae Damage European Corn Borer Damage March 2009 Leonard Gianessi CropLife Foundation 1156 15th Street, NW #400 Washington, DC 20005 Phone 202-296-1585 www.croplifefoundation.org Fax 202-463-0474 Key Points • The pepper maggot feeds only on solanaceous crops and has damaged up to 90% of unsprayed pepper crops. • In the early 1900s the pepper weevil caused a 33% loss in the U.S. commercial pepper crop in the U.S. • Sprays for European corn borer control increased pepper yields by 2 to 4 tons per acre. • A near zero tolerance exists for peppers with a pepper weevil, pepper maggot, or European corn borer present. Technical Summary Growers in California and seven southern and north central states (Fl, GA, MI, NJ, NC, OH, TX) produce 1.7 billion pounds of sweet peppers with a value of $585 million on 66,000 acres annually. Insecticides are used on 85-100% of the pepper acres [21]. In Georgia, 10 insecticide applications are made to pepper acres annually [19]. The total cost of the pepper insecticide spray program in Georgia is estimated at $186 per acre out of a total cost of $8935 for producing an acre of peppers (2%) [20]. In Florida, New Jersey, and Michigan, the costs of insecticides are $322/A, $76/A, and $52/A respectively, representing 2-4% of the cost of producing sweet peppers [28]-[30].In California, insecticide costs are $120-$340/A[38][39]. -
Starvation-Induced Morphological Responses of the Boll Weevil, Anthonomus Grandis Grandis Boheman (Coleoptera: Curculionidae) Dale W
The Journal of Cotton Science 21:275–283 (2017) 275 http://journal.cotton.org, © The Cotton Foundation 2018 ARTHROPOD MANAGEMENT Starvation-Induced Morphological Responses of the Boll Weevil, Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae) Dale W. Spurgeon and Charles P.-C. Suh ABSTRACT improve the effectiveness and cost-efficiency of remedial actions in eradication programs. Status of the boll weevil, Anthonomus grandis grandis Boheman, as a pest of cotton (Gossypium he boll weevil (Anthonomus grandis grandis spp.) in the United States has diminished because TBoheman) has been eradicated from most of of progress by eradication programs. However, the cotton (Gossypium spp.) producing regions of this pest remains of critical importance in South the United States (U.S.), but remains one of the America, and intractable populations in extreme most important pests of cotton in much of South South Texas and northern Mexico persistently America (Scataglini et al. 2006). Even within the threaten reinfestation of adjoining eradicated U.S., intractable populations remain in southernmost regions. The pheromone trap is an essential tool Texas, and in Mexico (Anonymous 2014). These for detecting boll weevil infestations in eradica- populations are the putative sources of periodic tion and management programs, and captures by reinfestations of production regions in the Texas the traps are also used to infer aspects of weevil Coastal Bend and Wintergarden areas, and their ecology. Information provided by traps might be presence poses a threat to the investments in more interpretable if reliable morphological in- eradication by the cotton industry. dicators can be identified from captured weevils, The boll weevil pheromone trap plays a key role and less ambiguous if appropriate trapping inter- in population monitoring and detection in eradica- vals were identified to maximize the usefulness of tion and management programs. -
Entomology I
MZO-08 Vardhman Mahaveer Open University, Kota Entomology I MZO-08 Vardhman Mahaveer Open University, Kota Entomology I Course Development Committee Chair Person Prof. Ashok Sharma Prof. L.R.Gurjar Vice-Chancellor Director (Academic) Vardhman Mahaveer Open University, Kota Vardhman Mahaveer Open University, Kota Coordinator and Members Convener SANDEEP HOODA Assistant Professor of Zoology School of Science & Technology Vardhman Mahaveer Open University, Kota Members Prof . (Rtd.) Dr. D.P. Jaroli Prof. (Rtd.) Dr. Reena Mathur Professor Emeritus Former Head Department of Zoology Department of Zoology University of Rajasthan, Jaipur University of Rajasthan, Jaipur Prof. (Rtd.) Dr. S.C. Joshi Prof. (Rtd.) Dr. Maheep Bhatnagar Department of Zoology Mohan Lal Sukhadiya University University of Rajasthan, Jaipur Udaipur Prof. (Rtd.) Dr. K.K. Sharma Prof. M.M. Ranga Mahrishi Dayanand Saraswati University, Ajmer Ajmer Dr. Anuradha Singh Dr. Prahlad Dubey Rtd. Lecturer Government College Head Department of Zoology Kota Government College , Kota Dr. Subrat Sharma Dr. Anuradha Dubey Lecturer Deputy Director Government College , Kota School of Science and Technology Vardhman Mahaveer Open University, Kota Dr. Subhash Chandra Director (Regional Center) VMOU, Kota Editing and Course Writing Editors Dr. Subhash Chandra SANDEEP HOODA Director ,Regional Center Assistant Professor of Zoology Vardhman Mahaveer Open University ,Kota Vardhman Mahaveer Open University ,Kota Writers: Writer Name Unit No. Writer Name Unit No Ms. Asha Kumari Verma 3,5,8 Dr. Abhishek Rajpurohit 11,13 UGC-NET JRF Department of Assistant Professor Zoology, JNVU, Lachoo Memorial College Jodhpur of Science & Technology,Jodhpur Dr. Neetu Kachhawaha 1,2,4,6,7,12 Dr. Subhash Chandra 14,15 Assistant Professor, Director ,Regional Center Department of Zoology, Vardhman Mahaveer University of Rajasthan ,Jaipur. -
Biodynamics of Anthonomus Macromalus
a higher mortality than other insecticide treatments during Heidemann, O. 1908. Two new species of North American Tingidae. Pro ceedings of the Entomol. Soc. Washington. 10:103-108. 15 to 30 day post treatment period (Table 4). Larson, K. D., B. Schaffer and F. S. Davies. 1991. Flooding, leaf gas exchange, Because of increasing concerns about the excessive use of and growth of mango in containers. J. Amer. Soc. Hort. Sci. 116:156-160. pesticides, non pesticidal methods and environmentally Mead, F. andj. E. Pena. 1991. Avocado lace bug, Pseudacysta perseae (Hemi friendly methods for controlling P. perseae, such as those dis ptera: Tingidae). Florida Dept. Agr. 8c Consumer Serv., Div. Plant Indus covered or tested in this study, should be given priority to be try Entomol. Circ. 346. Medina-Gaud, S., A. Segarra and R. Franqui. 1991. The avocado lacewing bug adapted or used by the Florida avocado industry. Pseudacysta perseae (Heidemann) (Hemiptera: Tingidae).J. Agric. U. of Puerto Rico. 75:185-188. PefiaJ.E. 1992. Chemical control of avocado and lime pests. Proc. Fla. State Literature Cited Hort. Soc. 105:286-287. Schaffer, B. 1995. The environment, the urban jingle jungle and politics ver sus fruit production in south Florida, with special reference to avocado. Abud-Antum, A. 1991. Presence of avocado lacebug, Pseudacysta perseae Proceedings of the Australia (Heidemann) (Hemiptera: Tingidae) in Dominican Republic. Primera Avocado Grower's Federation, Inc., Conference 95, Freeman tie, Australia, Jornada de Proteccion Vegetal, Universidad de Santo Domingo, Domini pp.127-134. can Republic (Abstract p.4). Schaffer, B.J. E. Pena, A.M. -
Quick Scan Number: ENT–2012-03
National Plant Protection Organization Quick scan number: ENT–2012-03 Quick scan date : 11 September 2012 1 Anthonomus eugenii Cano, Pepper weevil What is the scientific name ( if possible up to species Coleoptera, Curculionidae, Curculioninae, Anthonomini level + author, also include (sub)family and order) and Dimensions of adult: 2 - 3.5 mm (White, 1983 ) English/common name of the organism? Add picture of organism/damage if available and publication allowed . Larval damage (source: NVWA) Exit hole of adult weevil (source: NVWA) Egg deposit on young pepper fruit (source: NVWA) Adult (source: Sarah McCaffrey Museum Victoria on www.padil.gov.au ) Pagina 1 van 6 National Plant Protection Organization 2 What prompted this quick scan? A grower of sweet pepper, Capsicum annuum, in Honselersdijk contacted the NVWA on Thursday 19 th of July Organism detected in produce for import, export, in about observations of a population of beetles and damaged peppers. cultivation, nature, mentioned in publications, e.g. EPPO alert list, etc. 3 USA: mainland and Hawaii What is the (most likely) area of distribution? Central America and Caribbean: Belize, Costa Rica, Dominican Republic, Mexico, Nicaraqua, El Salvador, Guatemala, Honduras, Jamaica, Panama, Puerto Rico Oceania: French Polynesia (Cabi Crop Compendium, 2012; Eppo Datasheet, 1995; Rodriguez-Leyva, 2006; Schultz & Kuhar, 2008) 4 No. Has the organism been detected, sighted and/or has it established itself in nearby countries (DE, BE, LU, FR, UK) Yes/no. If ‘yes’, provide details. No interceptions Pagina 2 van 6 National Plant Protection Organization 5 Yes. Does the organism cause any kind of plant damage in The pepper weevil is considered one of the most important insect pests of all cultivated varieties of chile pepper the current area of distribution and/or does the (Capsicum spp.) in the New World.