ME340A: Prof. Sameer Khandekar http://home.iitk.ac.in/~samkhan ME340A: Refrigeration and Air Conditioning Department of Mechanical Engineering Instructor: Prof. Sameer Khandekar Indian Institute of Technology Kanpur Tel: 7038; e-mail:
[email protected] Kanpur 208016 India Heat Exchanger Design – Part II Sameer Sameer Khandekar 1 ME340A: Refrigeration and Air Conditioning Department of Mechanical Engineering Instructor: Prof. Sameer Khandekar Indian Institute of Technology Kanpur Tel: 7038; e-mail:
[email protected] Kanpur 208016 India In this lecture… Part I ◉ Types of Heat Exchangers ◉ The Overall Heat Transfer Coefficient ◉ Fouling factor Part II ◉ The Log Mean Temperature Difference Method ◉ Counter-Flow Heat Exchangers ◉ Multipass and Cross-Flow Heat Exchangers: Use of a Correction Factor ◉ The Effectiveness–NTU Method ◉ Selection of Heat Exchangers Sameer Sameer Khandekar 2 Department of Mechanical Engineering Indian Institute of Technology Kanpur 208016 Kanpur India 1 ME340A: Prof. Sameer Khandekar http://home.iitk.ac.in/~samkhan ME340A: Refrigeration and Air Conditioning Department of Mechanical Engineering Instructor: Prof. Sameer Khandekar Indian Institute of Technology Kanpur Tel: 7038; e-mail:
[email protected] Kanpur 208016 India Analysis of heat exchangers An engineer often finds himself or herself in a position: 1. to select a heat exchanger (Sizing) that will achieve a specified temperature change in a fluid stream of known mass flow rate - the log mean temperature difference (or LMTD) method. 2. to predict the outlet temperatures of the hot and cold fluid streams in a specified heat exchanger (Rating)- the effectiveness–NTU method. Sameer Sameer Khandekar 3 ME340A: Refrigeration and Air Conditioning Department of Mechanical Engineering Instructor: Prof.