1107.Full.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

1107.Full.Pdf Movement disorders J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp-2012-304131 on 24 January 2013. Downloaded from RESEARCH PAPER Clinical, genetic, neurophysiological and functional study of new mutations in episodic ataxia type 1 Susan Elizabeth Tomlinson,1,2,3,4 Sanjeev Rajakulendran,1,2 Stella Veronica Tan,1,2 Tracey Dawn Graves,1,2 Doris-Eva Bamiou,1 Robyn W Labrum,1,2 David Burke,3 Carolyn M Sue,5 Paola Giunti,1,2 Stephanie Schorge,2 Dimitri M Kullmann,1,2 Michael G Hanna1,2 ▸ Additional material is ABSTRACT the expression and localisation of Kv channels, as published online only. To view Background and objective Heterozygous mutations well as their gating and kinetic properties.12 please visit the journal online + (http://dx.doi.org/10.1136/ in KCNA1 cause episodic ataxia type 1 (EA1), an ion Fast K channels that contain Kv1.1 subunits jnnp-2012-304131). channel disorder characterised by brief paroxysms of usually occur as heterotetramers in combination with cerebellar dysfunction and persistent neuromyotonia. This K 1.2 or K 1.4 subunits. These channels are mostly 1MRC Centre for v v Neuromuscular Disease, paper describes four previously unreported families with closed at resting membrane potential and have a rela- National Hospital for EA1, with the aim of understanding the phenotypic tively low threshold for activation and rapid activa- Neurology and Neurosurgery, spectrum associated with different mutations. tion kinetics, but are slower than fast Na+ channels London, UK Methods 15 affected individuals from four families (hence the term ‘delayed rectifier’). K+ ion efflux, 2Institute of Neurology, University College London, underwent clinical, genetic and neurophysiological driven by the electrochemical trans-membrane gradi- London, UK evaluation. The functional impact of new mutations ent, has a hyperpolarising effect on the membrane 3Institute of Clinical identified in the KCNA1 gene was investigated with in potential and therefore limits neuronal excitability.34 Neuroscience, Royal Prince + vitro electrophysiology and immunocytochemistry. In myelinated nerves, Kv1.1-containing K channels Alfred Hospital, University of Results Detailed clinical documentation, dating back to are densely expressed in the juxtaparanodal region of Sydney, Sydney, New South 2 + Wales, Australia 1928 in one family, indicates that all patients manifested the axon. Activation of fast K channels reduces the 4 Department of Neurology, St episodic ataxia of varying severity. Four subjects from resistance of the internodal membrane and limits copyright. Vincent’s Hospital, Sydney, three families reported hearing impairment, which has axonal hyperexcitability after an action potential.56 New South Wales, Australia not previously been reported in association with EA1. Dysfunction is thus expected to lead both to excessive 5Department of Neurology, Royal North Shore Hospital and New mutations (R167M, C185W and I407M) were excitability of neurons and to an enhanced duration Kolling Institute of Medical identified in three out of the four families. When of action potentials, which may in turn cause exces- Research, University of Sydney, expressed in human embryonic kidney cells, all three sive neurotransmitter release. These effects contrib- Sydney, New South Wales, new mutations resulted in a loss of Kv1.1 channel ute to the repetitive activity and paraesthesiae elicited Australia 7 function. The fourth family harboured a previously by the Kv blocker 4-aminopyridine. Of the many + + Correspondence to reported A242P mutation, which has not been other K channels, slow K channels encoded by Professor Dimitri M Kullmann, previously described in association with ataxia. KCNQ genes are especially important in neurological UCL Institute of Neurology, Conclusions The genetic basis of EA1 in four families disease, such as benign familial neonatal epilepsy.8 Queen Square, is established and this report presents the earliest They co-assemble to form outward rectifying cur- http://jnnp.bmj.com/ London WC1N 3BG, UK; [email protected] documented case from 1928. All three new mutations rents that helps stabilise the membrane potential. In caused a loss of Kv1.1 channel function. The finding of neurones, these commonly exist as Kv7.2–Kv7.3 het- Received 24 October 2012 deafness in four individuals raises the possibility of a link eromers, which activate slowly and are non- Revised 18 December 2012 39 + between Kv1.1 dysfunction and hearing impairment. Our inactivating. Slow K channels are highly Accepted 27 December 2012 findings broaden the phenotypic range associated with expressed in myelinated nerve at the nodes of Published Online First 10 11 24 January 2013 mutations in KCNA1. Ranvier and the axonal initial segments, and in the central nervous system they are abundant at the on September 23, 2021 by guest. Protected axonal initial segments.10 Heterozygous mutations in the KCNA1 gene INTRODUCTION (chromosome 12) encoding the α subunit of Kv1.1 12 Voltage-gated potassium channels (Kv channels) result in episodic ataxia type 1. EA1 is a domin- play fundamental roles in controlling neuronal antly inherited condition characterised by brief excitability. The main pore-forming channel is com- attacks of midline cerebellar disturbance including posed of four α subunits, of which approximately limb ataxia, dysarthria, titubation, nystagmus, ▸ 40 subtypes are known, organised in 12 subfamilies tremor and gait incoordination. Episodes may be http://dx.doi.org/10.1136/ – jnnp-2012-304857 (Kv1 Kv12). They include two subgroups relevant triggered by startle, vigorous activity, change in to disorders of peripheral nerve excitability, ataxia posture (eg, from sitting to standing), emotion, and epilepsy: fast potassium channels (Kv1), and hunger, alcohol or intercurrent illness. At the onset slow potassium channels (Kv7). The Kv channel of events, some of our patients describe the sensa- To cite: Tomlinson SE, β ‘ ’ ‘ ’ Rajakulendran S, Tan SV, also contains four intracellular auxiliary subunits. tion of a click or a shock in their head. Episodes et al. J Neurol Neurosurg The specificity of α subunits for β subunits is con- last seconds to minutes and may be associated with Psychiatry 2013;84: ferred by the cytosolic N-terminus of the α a feeling of apprehension or anxiety. Cerebellar – 1107 1112. subunit, and the combination of subunits influences function is typically normal between attacks. Tomlinson SE, et al. J Neurol Neurosurg Psychiatry 2013;84:1107–1112. doi:10.1136/jnnp-2012-304131 1107 Movement disorders J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp-2012-304131 on 24 January 2013. Downloaded from However, almost all patients exhibit persistent neuromyotonia Electrophysiology which can be confirmed on electromyography (EMG).13 14 An Whole-cell patch clamp recordings were performed to record increased incidence of epilepsy has also been reported in associ- potassium currents at room temperature. The external solution ation with EA1. Brain imaging in patients with EA1 is typically contained (in mM): NaCl2 135; KCl 4; MgCl2 1; CaCl2 2; – unremarkable.15 18 HEPES 10. The pipette solution contained (in mM): NaCl 135; Over 25 mutations have been identified in KCNA1, with func- KCl 2.5; EGTA 2; HEPES 10. Pipette resistance was 2–4MΩ tional studies demonstrating a loss of channel function through when filled with intracellular solution. Cells were held at a dominant-negative mechanism.13 16 However, the full clinical −80 mV, and series resistance was not compensated. Cells with spectrum of EA1 is unknown. Here we describe new clinical series resistance above 10 MΩ were discarded. A –P/4 protocol and genetic findings in four previously unreported families with was used to subtract leak currents. Currents were recorded EA1. In addition to typical features of EA1, several individuals using an Axopatch 200B amplifier (Molecular Devices). Data reported hearing impairment. New heterozygous mutations in were acquired and analysed using LabView software (V.8.0, KCNA1 were identified in three of the four families. All three National Instruments) with in-house acquisition programs new mutations caused a loss of KV1.1 function. The fourth (DMK). Data were sampled at 20 kHz and filtered at 5 kHz. family carried the A242P mutation which has previously been Graphs were plotted using Sigmaplot software (V.8.0, SPSS). reported in association with epilepsy and neuromyotonia but Statistical significance was determined using one-way analysis of not with ataxia.16 variance. METHODS Immunocytochemistry Ethics approval was obtained from the Joint National Hospital HEK cells were co-transfected using lipofectamine with for Neurology and Neurosurgery/University College London pMT2LF KCNA1 and pcDNA3.1 GFP constructs 48 h prior to Ethics Committee and the University of Sydney Research Ethics immunocytochemistry. Cells were initially fixed for 5 min with Committee for this project. All subjects provided written 2% and then 4% of paraformaldehyde, followed by washing informed consent. Patients were assessed clinically and, where with 0.01% phosphate buffered saline solution (PBS). Cells possible, nerve conduction studies and EMG were performed were permeabilised with 0.1% Triton X-100 in PBS for 5 min according to a previously described protocol.13 Non-invasive and then incubated with 4% normal goat serum for 20 min. nerve excitability studies were also performed in this cohort, Cells were incubated with the primary antibody, 1:500 rabbit and have been reported elsewhere.8
Recommended publications
  • Spinocerebellar Ataxia Genetic Testing
    Lab Management Guidelines V1.0.2020 Spinocerebellar Ataxia Genetic Testing MOL.TS.311.A v1.0.2020 Introduction Spinocerebellar ataxia (SCA) genetic testing is addressed by this guideline. Procedures addressed The inclusion of any procedure code in this table does not imply that the code is under management or requires prior authorization. Refer to the specific Health Plan's procedure code list for management requirements. Procedures addressed by this Procedure codes guideline ATXN1 gene analysis, evaluation to detect 81178 abnormal (eg,expanded) allele ATXN2 gene analysis, evaluation to detect 81179 abnormal (eg,expanded) allele ATXN3 gene analysis, evaluation to detect 81180 abnormal (eg,expanded) allele ATXN7 gene analysis, evaluation to detect 81181 abnormal (eg,expanded) allele ATXN8 gene analysis, evaluation to detect 81182 abnormal (eg, expanded) alleles ATXN10 gene analysis, evaluation to 81183 detect abnormal (eg, expanded) alleles CACNA1A gene analysis; evaluation to 81184 detect abnormal (eg, expanded) alleles CACNA1A gene analysis; full gene 81185 sequence CACNA1A gene analysis; known familial 81186 variant PPP2R2B gene analysis, evaluation to 81343 detect abnormal (eg, expanded) alleles TBP gene analysis, evaluation to detect 81344 abnormal (eg, expanded) alleles Unlisted molecular pathology procedure 81479 © 2020 eviCore healthcare. All Rights Reserved. 1 of 15 400 Buckwalter Place Boulevard, Bluffton, SC 29910 (800) 918-8924 www.eviCore.com Lab Management Guidelines V1.0.2020 What is spinocerebellar ataxia Definition Spinocerebrallar ataxias (SCA) are a group of autosomal dominant ataxias that have a range of phenotypes. There are various subtypes of SCA, which are denoted by numbers (e.g. SCA1, SCA3, etc.) Incidence and Prevalence The prevalence of autosomal dominant cerebellar ataxias, as a whole, is 1-5:100,000.1 SCA3 is the most common autosomal dominant form of ataxia.
    [Show full text]
  • Amino Acid Disorders 105
    AMINO ACID DISORDERS 105 Massaro, A. S. (1995). Trypanosomiasis. In Guide to Clinical tions in biological fluids relatively easy. These Neurology (J. P. Mohrand and J. C. Gautier, Eds.), pp. 663– analyzers separate amino acids either by ion-ex- 667. Churchill Livingstone, New York. Nussenzweig, V., Sonntag, R., Biancalana, A., et al. (1953). Ac¸a˜o change chromatography or by high-pressure liquid de corantes tri-fenil-metaˆnicos sobre o Trypanosoma cruzi in chromatography. The results are plotted as a graph vitro: Emprego da violeta de genciana na profilaxia da (Fig. 1). The concentration of each amino acid can transmissa˜o da mole´stia de chagas por transfusa˜o de sangue. then be calculated from the size of the corresponding O Hospital (Rio de Janeiro) 44, 731–744. peak on the graph. Pagano, M. A., Segura, M. J., DiLorenzo, G. A., et al. (1999). Cerebral tumor-like American trypanosomiasis in Most amino acid disorders can be diagnosed by acquired immunodeficiency syndrome. Ann. Neurol. 45, measuring the concentrations of amino acids in 403–406. blood plasma; however, some disorders of amino Rassi, A., Trancesi, J., and Tranchesi, B. (1982). Doenc¸ade acid transport are more easily recognized through the Chagas. In Doenc¸as Infecciosas e Parasita´rias (R. Veroesi, Ed.), analysis of urine amino acids. Therefore, screening 7th ed., pp. 674–712. Guanabara Koogan, Sa˜o Paulo, Brazil. Spina-Franc¸a, A., and Mattosinho-Franc¸a, L. C. (1988). for amino acid disorders is best done using both South American trypanosomiasis (Chagas’ disease). In blood and urine specimens. Occasionally, analysis of Handbook of Clinical Neurology (P.
    [Show full text]
  • Inherited Renal Tubulopathies—Challenges and Controversies
    G C A T T A C G G C A T genes Review Inherited Renal Tubulopathies—Challenges and Controversies Daniela Iancu 1,* and Emma Ashton 2 1 UCL-Centre for Nephrology, Royal Free Campus, University College London, Rowland Hill Street, London NW3 2PF, UK 2 Rare & Inherited Disease Laboratory, London North Genomic Laboratory Hub, Great Ormond Street Hospital for Children National Health Service Foundation Trust, Levels 4-6 Barclay House 37, Queen Square, London WC1N 3BH, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-2381204172; Fax: +44-020-74726476 Received: 11 February 2020; Accepted: 29 February 2020; Published: 5 March 2020 Abstract: Electrolyte homeostasis is maintained by the kidney through a complex transport function mostly performed by specialized proteins distributed along the renal tubules. Pathogenic variants in the genes encoding these proteins impair this function and have consequences on the whole organism. Establishing a genetic diagnosis in patients with renal tubular dysfunction is a challenging task given the genetic and phenotypic heterogeneity, functional characteristics of the genes involved and the number of yet unknown causes. Part of these difficulties can be overcome by gathering large patient cohorts and applying high-throughput sequencing techniques combined with experimental work to prove functional impact. This approach has led to the identification of a number of genes but also generated controversies about proper interpretation of variants. In this article, we will highlight these challenges and controversies. Keywords: inherited tubulopathies; next generation sequencing; genetic heterogeneity; variant classification. 1. Introduction Mutations in genes that encode transporter proteins in the renal tubule alter kidney capacity to maintain homeostasis and cause diseases recognized under the generic name of inherited tubulopathies.
    [Show full text]
  • Episodic Ataxias
    REVIEW ARTICLE http://dx.doi.org/10.14802/jmd.16028 / J Mov Disord 2016;9(3):129-135 pISSN 2005-940X / eISSN 2093-4939 Episodic Ataxias: ABSTRACT Episodic ataxia (EA) is a clinically heterogeneous group of disorders that are characterized by recur- Clinical and Genetic rent spells of truncal ataxia and incoordination last- ing minutes to hours. Most have an autosomal do- minant inheritance pattern. To date, 8 subtypes Features have been defined according to clinical and genet- ic characteristics, and five genes are known to be linked to EAs. Both EA1 and EA2, which are caus- ed by mutations in KCNA1 and CACNA1A, account Kwang-Dong Choi,1 Jae-Hwan Choi2 for the majority of EA, but many patients with no identified mutations still exhibit EA-like clinical fea- 1 Department of Neurology, College of Medicine, Pusan National University Hospital, tures. Furthermore, genetically confirmed EAs have Pusan National University School of Medicine and Biomedical Research Institute, Busan, Korea mostly been identified in Caucasian families. In this 2Department of Neurology, Pusan National University School of Medicine, article, we review the current knowledge on the Research Institute for Convergence of Biomedical Science and Technology, clinical and genetic characteristics of EAs. Addition- Pusan National University Yangsan Hospital, Yangsan, Korea ally, we summarize the phenotypic features of the genetically confirmed EA2 families in Korea. Key Words Episodic ataxia; KCNA1; CACNA1A. Received: June 30, 2016 Revised: July 25, 2016 Accepted: August 1,
    [Show full text]
  • The Genetic Relationship Between Paroxysmal Movement Disorders and Epilepsy
    Review article pISSN 2635-909X • eISSN 2635-9103 Ann Child Neurol 2020;28(3):76-87 https://doi.org/10.26815/acn.2020.00073 The Genetic Relationship between Paroxysmal Movement Disorders and Epilepsy Hyunji Ahn, MD, Tae-Sung Ko, MD Department of Pediatrics, Asan Medical Center Children’s Hospital, University of Ulsan College of Medicine, Seoul, Korea Received: May 1, 2020 Revised: May 12, 2020 Seizures and movement disorders both involve abnormal movements and are often difficult to Accepted: May 24, 2020 distinguish due to their overlapping phenomenology and possible etiological commonalities. Par- oxysmal movement disorders, which include three paroxysmal dyskinesia syndromes (paroxysmal Corresponding author: kinesigenic dyskinesia, paroxysmal non-kinesigenic dyskinesia, paroxysmal exercise-induced dys- Tae-Sung Ko, MD kinesia), hemiplegic migraine, and episodic ataxia, are important examples of conditions where Department of Pediatrics, Asan movement disorders and seizures overlap. Recently, many articles describing genes associated Medical Center Children’s Hospital, University of Ulsan College of with paroxysmal movement disorders and epilepsy have been published, providing much infor- Medicine, 88 Olympic-ro 43-gil, mation about their molecular pathology. In this review, we summarize the main genetic disorders Songpa-gu, Seoul 05505, Korea that results in co-occurrence of epilepsy and paroxysmal movement disorders, with a presenta- Tel: +82-2-3010-3390 tion of their genetic characteristics, suspected pathogenic mechanisms, and detailed descriptions Fax: +82-2-473-3725 of paroxysmal movement disorders and seizure types. E-mail: [email protected] Keywords: Dyskinesias; Movement disorders; Seizures; Epilepsy Introduction ies, and paroxysmal dyskinesias [3,4]. Paroxysmal dyskinesias are an important disease paradigm asso- Movement disorders often arise from the basal ganglia nuclei or ciated with overlapping movement disorders and seizures [5].
    [Show full text]
  • Therapeutic Approaches to Genetic Ion Channelopathies and Perspectives in Drug Discovery
    fphar-07-00121 May 7, 2016 Time: 11:45 # 1 REVIEW published: 10 May 2016 doi: 10.3389/fphar.2016.00121 Therapeutic Approaches to Genetic Ion Channelopathies and Perspectives in Drug Discovery Paola Imbrici1*, Antonella Liantonio1, Giulia M. Camerino1, Michela De Bellis1, Claudia Camerino2, Antonietta Mele1, Arcangela Giustino3, Sabata Pierno1, Annamaria De Luca1, Domenico Tricarico1, Jean-Francois Desaphy3 and Diana Conte1 1 Department of Pharmacy – Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy, 2 Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, Bari, Italy, 3 Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, Bari, Italy In the human genome more than 400 genes encode ion channels, which are transmembrane proteins mediating ion fluxes across membranes. Being expressed in all cell types, they are involved in almost all physiological processes, including sense perception, neurotransmission, muscle contraction, secretion, immune response, cell proliferation, and differentiation. Due to the widespread tissue distribution of ion channels and their physiological functions, mutations in genes encoding ion channel subunits, or their interacting proteins, are responsible for inherited ion channelopathies. These diseases can range from common to very rare disorders and their severity can be mild, Edited by: disabling, or life-threatening. In spite of this, ion channels are the primary target of only Maria Cristina D’Adamo, University of Perugia, Italy about 5% of the marketed drugs suggesting their potential in drug discovery. The current Reviewed by: review summarizes the therapeutic management of the principal ion channelopathies Mirko Baruscotti, of central and peripheral nervous system, heart, kidney, bone, skeletal muscle and University of Milano, Italy Adrien Moreau, pancreas, resulting from mutations in calcium, sodium, potassium, and chloride ion Institut Neuromyogene – École channels.
    [Show full text]
  • Channels and Disease Past, Present, and Future
    NEUROLOGICAL REVIEW SECTION EDITOR: DAVID E. PLEASURE, MD Channels and Disease Past, Present, and Future Louis J. Ptácek, MD; Ying-Hui Fu, PhD pisodic neurological phenotypes make up an interesting and important group of dis- eases affecting humans. These include disorders of the skeletal and cardiac muscles, peripheral nerves, and brain. They range from episodic weakness syndromes to rare paroxysmal movement disorders. More common episodic phenomena include cardiac Earrhythmias, epilepsy syndromes, and headache. Molecular characterization of these disorders is shedding light on their pathophysiologic features and will ultimately lead to better diagnosis and treatment of patients. CLINICAL SIMILARITIES AMONG Several syndromes with episodic or VARIOUS EPISODIC DISORDERS electrophysiologic phenomena involve more than 1 organ system or combine Disorders such as the periodic paralyses, multiple central nervous system pheno- nondystrophic myotonias, episodic atax- types within individual patients. For ias, paroxysmal dyskinesias, long QT syn- example, Andersen-Tawil syndrome is drome, migraine headache, and epilepsy characterized by episodic weakness, car- all share the feature of being episodic in diac arrhythmias, and developmental nature. Affected individuals are often com- features. Paroxysmal kinesigenic dyski- pletely healthy between attacks. Stress and nesia is an episodic movement disorder fatigue precipitate attacks in all of these that is precipitated by sudden move- diseases, and various dietary factors can ments; these individuals frequently have also contribute to attack onset. The drugs benign convulsions during infancy prior used to treat these disorders overlap sig- to the development of their movement nificantly. For example, carbonic anhy- disorder.1 Some patients with episodic drase inhibitors are effective for many pa- ataxia type 1 also manifest attacks of tients with periodic paralysis, episodic paroxysmal kinesigenic dyskinesia.
    [Show full text]
  • Cardiac Channelopathies
    Cardiac Channelopathies With the title "Cardiac Channelopathies", published in Nature Vol 415, 10 January 2002, Dr. Eduardo Marban explores the pathophysiology of ionic channels, this being a text that must be read obligatorily to understand the events that happen in syndromes such as the one we are dealing with, and in other entities where such channels have been affected. Considering its relevance, the mentioned text is included as part of the list of topics for this First Virtual Symposium about the Brugada Syndrome, for which we have the authorization by Dr. Marban and the editors of Nature. You may access the text from http://www.nature.com/cgi-taf/DynaPage.taf?file=/nature/journal/v415/n6868/f ull/415213a_fs.html&content_filetype=PDF In order to enter, you have to register first, in the site of Nature. The following material is an introduction of which we are authors, that we dared to write for Dr. Marban's paper. DISORDERS OF MEMBRANE CHANNELS OR CHANNELOPATHIES AND ITS RELATIONSHIP WITH THE BRUGADA DISEASE Pérez Riera AR, MD*and Schapachnik E, MD ** *Neomater Hospital. Cardiology Service. Hemodynamic Laboratory. São Paulo.Brazil Cientific Orientator of Cardiology Service ** Acute General Hospital Cosme Argerich - Buenos Aires -Argentine Brugada Disease (BrD) is a distinct subgroup of patient’s form of idiopathic ventricular fibrillation (IVF). It is occasinated by a mutation in a cardiac Na+ channel gene, SCN5A, localized in the number three chromosome, has been linked to BrD, which cause the Na+ channel to badfunction, and is worsened by Na-channel blocking agents. The channels affected in BrD are: primarily the rapid sodium channel and secondarily the " transient outward K+ current", "4 aminopyridine sensitive ++ outward current", or Ito channel and L-type (slow or long-lasting) calcium channel ICa-L type ICa - L (1).
    [Show full text]
  • Comprehensive Exonic Sequencing of Known Ataxia Genes in Episodic Ataxia
    biomedicines Article Comprehensive Exonic Sequencing of Known Ataxia Genes in Episodic Ataxia Neven Maksemous, Heidi G. Sutherland, Robert A. Smith, Larisa M. Haupt and Lyn R. Griffiths * Genomics Research Centre, Institute of Health and Biomedical Innovation (IHBI), School of Biomedical Sciences, Queensland University of Technology (QUT), Q Block, 60 Musk Ave, Kelvin Grove Campus, Brisbane, Queensland 4059, Australia; [email protected] (N.M.); [email protected] (H.G.S.); [email protected] (R.A.S.); [email protected] (L.M.H.) * Correspondence: lyn.griffi[email protected]; Tel.: +61-7-3138-6100 Received: 4 May 2020; Accepted: 21 May 2020; Published: 25 May 2020 Abstract: Episodic Ataxias (EAs) are a small group (EA1–EA8) of complex neurological conditions that manifest as incidents of poor balance and coordination. Diagnostic testing cannot always find causative variants for the phenotype, however, and this along with the recently proposed EA type 9 (EA9), suggest that more EA genes are yet to be discovered. We previously identified disease-causing mutations in the CACNA1A gene in 48% (n = 15) of 31 patients with a suspected clinical diagnosis of EA2, and referred to our laboratory for CACNA1A gene testing, leaving 52% of these cases (n = 16) with no molecular diagnosis. In this study, whole exome sequencing (WES) was performed on 16 patients who tested negative for CACNA1A mutations. Tiered analysis of WES data was performed to first explore (Tier-1) the ataxia and ataxia-associated genes (n = 170) available in the literature and databases for comprehensive EA molecular genetic testing; we then investigated 353 ion channel genes (Tier-2).
    [Show full text]
  • The Genetics of Ataxia: Through the Labyrinth of the Minotaur, Looking for Ariadne’S Thread
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector J Neurol (2014) 261 (Suppl 2):S528–S541 DOI 10.1007/s00415-014-7387-7 REVIEW The genetics of ataxia: through the labyrinth of the Minotaur, looking for Ariadne’s thread M. Mancuso • D. Orsucci • G. Siciliano • U. Bonuccelli Ó The Author(s) 2014. This article is published with open access at Springerlink.com Abstract Among the hereditary cerebellar ataxias (CAs), sporadic cases, a multi-disciplinary approach is needed and there are at least 36 different forms of autosomal dominant should consider the following points: (1) onset and clinical cerebellar ataxia (ADCAs), 20 autosomal recessive cere- course; (2) associated features; (3) neurophysiological bellar ataxias (ARCAs), two X-linked ataxias, and several parameters, with special attention to the occurrence of forms of ataxia associated with mitochondrial defects. peripheral neuropathy; (4) neuroimaging results; and (5) Despite the steady increase in the number of newly dis- laboratory findings. A late-onset sporadic ataxia, in which covered CA genes, patients, especially those with putative other possible causes have been excluded by following the ARCAs, cannot yet be genotyped. Moreover, in daily proposed steps, might be attributable to metabolic disor- clinical practice, ataxia may present as an isolated cere- ders, which in some instances may be treatable. In this bellar syndrome or, more often, it is associated with a review, we will guide the reader through the labyrinth of broad spectrum of neurological manifestations including CAs, and we propose a diagnostic flow chart. pyramidal, extrapyramidal, sensory, and cognitive dys- function.
    [Show full text]
  • Muscle Channelopathies
    Muscle Channelopathies Stanley Iyadurai, MSc PhD MD Assistant Professor of Neurology, Neuromuscular Specialist, OSU, Columbus, OH August 28, 2015 24 F 9 M 18 M 23 F 16 M 8/10 Occasional “Paralytic “Seizures at “Can’t Release Headaches Gait Problems Episodes” Night” Grip” Nausea Few Seconds Few Hours “Parasomnia” “Worse in Winter” Vomiting Debilitating Few Days Full Recovery Full Recovery Video EEG Exercise – Light- Worse Sound- 1-2x/month 1-2x/year Pelvic Red Lobster Thrusting 1-2x/day 3-4/year Dad? Dad? 1-2x/year Dad? Sister Normal Exam Normal Exam Normal Exam Normal Exam Hyporeflexia Normal Exam “Defined Muscles” Photophobia Hyper-reflexia Phonophobia Migraines Episodic Ataxia Hypo Per Paralysis ADNFLE PMC CHANNELOPATHIES DEFINITION Channelopathy: a disease caused by dysfunction of ion channels; either inherited (Mendelian) or acquired/complex (Non-Mendelian, e.g., autoimmune), presenting either in neurologic or non-neurologic fashion CHANNELOPATHY SPECTRUM CHARACTERISTICS Paroxysmal Episodic Intermittent/Fluctuating Bouts/Attacks Between Attacks Patients are Usually Completely Normal Triggers – Hunger, Fatigue, Emotions, Stress, Exercise, Diet, Temperature, or Hormones Muscle Myotonic Disorders Periodic Paralysis MUSCLE CHANNELOPATHIES Malignant Hyperthermia CNS Migraine Episodic Ataxia Generalized Epilepsy with Febrile Seizures Plus Hereditary & Peripheral nerve Acquired Erythromelalgia Congenital Insensitivity to Pain Neuromyotonia NMJ Congenital Myasthenic Syndromes Myasthenia Gravis Lambert-Eaton MS Cardiac Congenital
    [Show full text]
  • Review Article Channelopathies
    J Med Genet 2000;37:729–740 729 Review article J Med Genet: first published as 10.1136/jmg.37.10.729 on 1 October 2000. Downloaded from Channelopathies: ion channel defects linked to heritable clinical disorders Ricardo Felix Abstract number of inherited ion channel diseases Electrical signals are critical for the func- named collectively “channelopathies”, caused tion of neurones, muscle cells, and cardiac by mutations in K+,Na+,Ca2+, and Cl- channels myocytes. Proteins that regulate electrical that are known to exist in human and animal signalling in these cells, including voltage models. gated ion channels, are logical sites where Ion channels constitute a class of macromo- abnormality might lead to disease. Ge- lecular protein tunnels that span the lipid netic and biophysical approaches are bilayer of the cell membrane, which allow ions being used to show that several disorders to flow in or out of the cell in a very eYcient result from mutations in voltage gated ion fashion (up to 106 per second). This flow of channels. Understanding gained from ions creates electrical currents (in the order of early studies on the pathogenesis of a 10-12 to 10-10 amperes per channel) large enough group of muscle diseases that are similar to produce rapid changes in the transmem- in their episodic nature (periodic paraly- brane voltage, which is the electrical potential sis) showed that these disorders result diVerence between the cell interior and exte- from mutations in a gene encoding a volt- rior. Inasmuch as Na+ and Ca2+ ions are at age gated Na+ channel. Their characteri- higher concentrations extracellularly than in- sation as channelopathies has served as a tracellularly, openings of Na+ and Ca2+ chan- paradigm for other episodic disorders.
    [Show full text]